Download citation
Download citation
link to html
Among the several available X-ray optics for synchrotron radiation producing micrometre and submicrometre beams with high intensity, the X-ray waveguide (WG) can provide the smallest hard X-ray beam in one direction. A drawback of this optics is that, owing to the divergence at the exit, a nanometre-sized spot on the sample can only be obtained if this is within a few micrometres of the WG exit. Another limitation is that in planar WGs the beam is compressed in only one direction. Here, using a dynamically bent elliptical Si/Pt mirror, the guided X-ray beam has been refocused at ∼1 m from the waveguide exit. The large working distance between the device and the submicrometre focus leaves some space for sample environment (vacuum chamber, furnace, cryostat, magnets, high-pressure device etc.) and allows cross-coupled geometries with two WGs for efficient compression in two directions.

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds