Download citation
Download citation
link to html
In the title structure, C6H9N4+·C2HO4, there are O—H...O, N—H...N and N—H...O hydrogen bonds that form a three-dimensional network. The hydrogenoxalate anions are bonded by O—H...O hydrogen bonds to form chains parallel to the b axis. The pyridine-2-carboxamidrazonium cations are linked by the N—H...N bonds into dimeric centrosymmetric entities with an R22(10) motif. These dimers are connected to hydrogenoxalates via N—H...O hydrogen bonds. In addition, there is a weak C—H...O hydrogen bond, as well as a C—H...π inter­action with the 2-pyridyl ring [C—H...Cg: C—H = 0.93 Å, H...Cg = 2.90 Å, C...Cg = 3.581 (3) Å and C—H...Cg = 131°; Cg is the centroid of the 2-pyridyl ring at ({1\over 2} − x, −{1\over 2} + y, {3\over 2} − z)]. It is inter­esting to note that the two NH2 groups in the structure occur both in planar and pyramidal arrangements.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702822X/fb2050sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702822X/fb2050Isup2.hkl
Contains datablock I

CCDC reference: 654957

Key indicators

  • Single-crystal X-ray study
  • T = 299 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.058
  • wR factor = 0.137
  • Data-to-parameter ratio = 15.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.80 PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C8 - C9 ... 1.54 Ang. PLAT731_ALERT_1_C Bond Calc 0.88(3), Rep 0.882(9) ...... 3.33 su-Ra N3 -H3 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.89(3), Rep 0.891(9) ...... 3.33 su-Ra N4 -H4B 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.89(3), Rep 0.891(9) ...... 3.33 su-Ra N4 -H4B 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.88(3), Rep 0.882(9) ...... 3.33 su-Ra N3 -H3 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.88(3), Rep 0.882(9) ...... 3.33 su-Ra N3 -H3 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 2.12(3), Rep 2.120(10) ...... 3.00 su-Ra H4B -O1 1.555 1.565 PLAT736_ALERT_1_C H...A Calc 1.93(3), Rep 1.930(12) ...... 2.50 su-Ra H3 -O3 1.555 1.555
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyridinecarboxamidrazones are well studied, due to their high antituberculosis activities (Banachiewicz et al., 2004). As a part of our investigation of the reactions of 2-pyridinecarboxamidrazone with dicarboxylic acids, we report the crystal structure of the title compound, (I).

Unlike other similar semi-oxalate complexes (Krishnakumar et al., 2002; Subha Nandhini et al., 2001; Ejsmont, 2007) the hydrogenoxalate ion in (I) is not planar. The dihedral angle O1—C8—C9—O3 is 14.49 (16)°. In the cation, the dihedral angle N2—C1—C2—N1 is -151.1 (2)°.

Related literature top

For related literature, see: Banachiewicz & Banachiewicz (2004); Case (1965); Ejsmont (2007); Krishnakumar et al. (2002); Subha Nandhini et al. (2001); Etter et al. (1990).

Experimental top

The 2-pyridinecarboxamidrazone was prepared as described by Case (1965). A solution of oxalic acid dihydrate (0.126 g, 1 mmol) in ethanol (15 ml) was added to the solution of 2-pyridinecarboxamidrazone (0.136 g, 1 mmol) in ethanol (15 ml). The suspension was stirred for one hour at room temperature and filtrated, the light yellow solution was allowed to stand at room temperature, then light yellow well shaped crystals with typical dimensions about 0.5 x 1 x 1 mm were obtained after about one week.

Refinement top

All the H-atoms were discernible in the difference Fourier map. H atoms bound to C atoms were included in calculated positions and allowed to ride during refinement, with C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(C). H atoms bound to O or N atoms were refined with restraints for O—H = 0.82 (1) Å, N(sp2-state)-H = 0.86 (1) Å, N(sp3-state)-H = 0.89 (1) Å, and Uiso(H) = 1.5Ueq(O, N).

Structure description top

Pyridinecarboxamidrazones are well studied, due to their high antituberculosis activities (Banachiewicz et al., 2004). As a part of our investigation of the reactions of 2-pyridinecarboxamidrazone with dicarboxylic acids, we report the crystal structure of the title compound, (I).

Unlike other similar semi-oxalate complexes (Krishnakumar et al., 2002; Subha Nandhini et al., 2001; Ejsmont, 2007) the hydrogenoxalate ion in (I) is not planar. The dihedral angle O1—C8—C9—O3 is 14.49 (16)°. In the cation, the dihedral angle N2—C1—C2—N1 is -151.1 (2)°.

For related literature, see: Banachiewicz & Banachiewicz (2004); Case (1965); Ejsmont (2007); Krishnakumar et al. (2002); Subha Nandhini et al. (2001); Etter et al. (1990).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The title molecules of the asymmetric unit with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title molecule viewed down the b axis, showing the formation of columns.
Pyridine-2-carboxamidrazonium hydrogenoxalate top
Crystal data top
C6H9N4+·C2HO4F(000) = 944
Mr = 226.20Dx = 1.445 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1565 reflections
a = 26.634 (3) Åθ = 3.0–22.8°
b = 5.6454 (7) ŵ = 0.12 mm1
c = 18.337 (2) ÅT = 299 K
β = 131.030 (2)°Plate, light yellow
V = 2079.9 (4) Å30.24 × 0.24 × 0.12 mm
Z = 8
Data collection top
Bruker APEX CCD area-detector
diffractometer
2470 independent reflections
Radiation source: fine-focus sealed tube1649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
φ and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 3434
Tmin = 0.972, Tmax = 0.986k = 77
9695 measured reflectionsl = 2421
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: difference Fourier map
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.061P)2]
where P = (Fo2 + 2Fc2)/3
2470 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.32 e Å3
6 restraintsΔρmin = 0.33 e Å3
22 constraints
Crystal data top
C6H9N4+·C2HO4V = 2079.9 (4) Å3
Mr = 226.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.634 (3) ŵ = 0.12 mm1
b = 5.6454 (7) ÅT = 299 K
c = 18.337 (2) Å0.24 × 0.24 × 0.12 mm
β = 131.030 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2470 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1649 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.986Rint = 0.091
9695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0586 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.32 e Å3
2470 reflectionsΔρmin = 0.33 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.19244 (10)0.5643 (4)0.56883 (16)0.0487 (6)
N20.06855 (10)0.6941 (3)0.58191 (15)0.0361 (5)
H2A0.0365 (9)0.797 (3)0.5560 (16)0.043*
H2B0.0798 (11)0.609 (4)0.6303 (12)0.043*
N30.07582 (9)0.7962 (3)0.46892 (14)0.0299 (4)
H30.0878 (10)0.761 (4)0.4353 (14)0.036*
N40.02341 (9)0.9613 (3)0.42661 (13)0.0298 (4)
H4A0.0122 (8)0.887 (4)0.3731 (11)0.036*
H4B0.0319 (11)1.073 (3)0.4017 (15)0.036*
C10.09544 (10)0.6720 (3)0.54292 (15)0.0259 (5)
C20.15045 (10)0.5003 (4)0.58226 (15)0.0304 (5)
C40.15572 (11)0.2932 (4)0.62603 (16)0.0339 (5)
H40.12580.25730.63470.041*
C50.20684 (12)0.1395 (4)0.65693 (18)0.0446 (6)
H50.21140.00390.68570.054*
C60.25023 (13)0.2003 (5)0.6447 (2)0.0542 (8)
H60.28520.10020.66570.065*
C70.24161 (14)0.4136 (5)0.6005 (2)0.0624 (8)
H70.27160.45380.59250.075*
O10.06808 (8)0.3398 (2)0.36510 (12)0.0411 (4)
O20.09533 (8)0.1966 (2)0.28170 (12)0.0367 (4)
H2C0.0937 (12)0.061 (2)0.2986 (17)0.044*
O30.08940 (9)0.7835 (2)0.33181 (13)0.0412 (4)
O40.08870 (8)0.6301 (2)0.21993 (12)0.0379 (4)
C80.08279 (10)0.3658 (3)0.31594 (15)0.0247 (4)
C90.08774 (10)0.6146 (3)0.28618 (15)0.0253 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0439 (12)0.0554 (14)0.0590 (15)0.0103 (10)0.0391 (12)0.0110 (11)
N20.0506 (12)0.0368 (11)0.0381 (12)0.0156 (9)0.0367 (11)0.0144 (9)
N30.0409 (10)0.0308 (9)0.0322 (10)0.0089 (8)0.0301 (9)0.0058 (8)
N40.0398 (10)0.0260 (9)0.0305 (11)0.0060 (8)0.0261 (9)0.0054 (8)
C10.0311 (11)0.0245 (10)0.0250 (11)0.0007 (8)0.0196 (9)0.0023 (9)
C20.0320 (11)0.0309 (11)0.0280 (12)0.0029 (9)0.0197 (10)0.0018 (9)
C40.0371 (12)0.0324 (11)0.0340 (13)0.0007 (10)0.0242 (11)0.0020 (10)
C50.0458 (14)0.0320 (12)0.0431 (15)0.0079 (11)0.0236 (13)0.0038 (11)
C60.0442 (15)0.0547 (17)0.0614 (19)0.0198 (13)0.0337 (15)0.0057 (15)
C70.0500 (16)0.074 (2)0.079 (2)0.0152 (15)0.0497 (17)0.0138 (17)
O10.0732 (12)0.0269 (8)0.0515 (11)0.0049 (8)0.0533 (11)0.0008 (7)
O20.0617 (11)0.0166 (7)0.0540 (11)0.0023 (7)0.0476 (10)0.0019 (7)
O30.0825 (12)0.0186 (7)0.0527 (11)0.0015 (8)0.0575 (10)0.0015 (7)
O40.0702 (11)0.0256 (8)0.0444 (10)0.0013 (7)0.0490 (10)0.0016 (7)
C80.0320 (11)0.0209 (9)0.0259 (11)0.0005 (8)0.0211 (10)0.0009 (9)
C90.0351 (11)0.0203 (10)0.0312 (12)0.0026 (8)0.0263 (10)0.0030 (9)
Geometric parameters (Å, º) top
N1—C71.333 (3)C4—H40.9300
N1—C21.343 (3)C5—C61.358 (4)
N2—C11.308 (3)C5—H50.9300
N2—H2A0.871 (10)C6—C71.384 (4)
N2—H2B0.870 (10)C6—H60.9300
N3—C11.294 (3)C7—H70.9300
N3—N41.413 (2)O1—C81.205 (2)
N3—H30.882 (9)O2—C81.301 (2)
N4—H4A0.904 (9)O2—H2C0.837 (10)
N4—H4B0.891 (9)O3—C91.250 (2)
C1—C21.489 (3)O4—C91.235 (2)
C2—C41.372 (3)C8—C91.543 (3)
C4—C51.384 (3)
C7—N1—C2116.5 (2)C5—C4—H4121.0
C1—N2—H2A117.2 (16)C6—C5—C4119.3 (2)
C1—N2—H2B124.0 (16)C6—C5—H5120.4
H2A—N2—H2B119 (2)C4—C5—H5120.4
C1—N3—N4120.41 (17)C5—C6—C7119.0 (2)
C1—N3—H3122.0 (15)C5—C6—H6120.5
N4—N3—H3116.3 (15)C7—C6—H6120.5
N3—N4—H4A104.2 (14)N1—C7—C6123.3 (3)
N3—N4—H4B105.0 (14)N1—C7—H7118.4
H4A—N4—H4B102 (2)C6—C7—H7118.4
N3—C1—N2122.16 (19)C8—O2—H2C113.5 (17)
N3—C1—C2116.87 (18)O1—C8—O2125.73 (18)
N2—C1—C2120.97 (19)O1—C8—C9121.40 (17)
N1—C2—C4124.0 (2)O2—C8—C9112.87 (17)
N1—C2—C1114.14 (19)O4—C9—O3126.15 (19)
C4—C2—C1121.87 (19)O4—C9—C8118.31 (17)
C2—C4—C5118.0 (2)O3—C9—C8115.53 (18)
C2—C4—H4121.0
N4—N3—C1—N20.5 (3)C1—C2—C4—C5177.4 (2)
N4—N3—C1—C2179.35 (18)C2—C4—C5—C61.3 (4)
C7—N1—C2—C40.2 (4)C4—C5—C6—C70.8 (4)
C7—N1—C2—C1178.3 (2)C2—N1—C7—C60.4 (5)
N3—C1—C2—N129.1 (3)C5—C6—C7—N10.1 (5)
N2—C1—C2—N1151.0 (2)O1—C8—C9—O4164.6 (2)
N3—C1—C2—C4149.4 (2)O2—C8—C9—O414.7 (3)
N2—C1—C2—C430.5 (3)O1—C8—C9—O314.3 (3)
N1—C2—C4—C51.0 (4)O2—C8—C9—O3166.32 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.87 (1)2.28 (2)3.051 (3)148 (2)
N2—H2B···O4ii0.87 (1)2.02 (1)2.874 (2)168 (2)
N4—H4A···O4iii0.90 (1)2.15 (1)3.016 (2)162 (2)
N4—H4B···O1iv0.89 (1)2.12 (1)3.002 (2)171 (2)
O2—H2C···O3v0.84 (1)1.71 (1)2.550 (2)179 (4)
N3—H3···O30.88 (1)1.93 (1)2.766 (2)158 (2)
N3—H3···O10.88 (1)2.59 (2)3.129 (2)120 (2)
C4—H4···O4ii0.932.423.221 (4)144
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1/2; (iii) x, y, z+1/2; (iv) x, y+1, z; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC6H9N4+·C2HO4
Mr226.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)26.634 (3), 5.6454 (7), 18.337 (2)
β (°) 131.030 (2)
V3)2079.9 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.24 × 0.24 × 0.12
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.972, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
9695, 2470, 1649
Rint0.091
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.137, 0.99
No. of reflections2470
No. of parameters163
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.33

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.871 (10)2.277 (15)3.051 (3)148 (2)
N2—H2B···O4ii0.870 (10)2.018 (11)2.874 (2)168 (2)
N4—H4A···O4iii0.904 (9)2.145 (12)3.016 (2)162 (2)
N4—H4B···O1iv0.891 (9)2.120 (10)3.002 (2)171 (2)
O2—H2C···O3v0.837 (10)1.713 (10)2.550 (2)179 (4)
N3—H3···O30.882 (9)1.930 (12)2.766 (2)158 (2)
N3—H3···O10.882 (9)2.59 (2)3.129 (2)120.3 (17)
C4—H4···O4ii0.932.423.221 (4)144
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1/2; (iii) x, y, z+1/2; (iv) x, y+1, z; (v) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds