Download citation
Download citation
link to html
The complex [1,2-bis­(di-tert-butyl­phosphan­yl)ethane-κ2P,P′]di­iodido­nickel(II), [NiI2(C18H40P2] or (dtbpe-κ2P)NiI2, [dtbpe is 1,2-bis­(di-tert-butyl­phosphan­yl)ethane], is bright blue–green in the solid state and in solution, but, contrary to the structure predicted for a blue or green nickel(II) bis­(phos­phine) complex, it is found to be close to square planar in the solid state. The solution structure is deduced to be similar, because the optical spectra measured in solution and in the solid state contain similar absorptions. In solution at room temperature, no 31P{1H} NMR resonance is observed, but the very small solid-state magnetic moment at temperatures down to 4 K indicates that the weak paramagnetism of this nickel(II) complex can be ascribed to temperature independent paramagnetism, and that the complex has no unpaired electrons. The red [1,2-bis­(di-tert-butyl­phosphan­yl)ethane-κ2P,P′]di­chlorido­nickel(II), [NiCl2(C18H40P2] or (dtbpe-κ2P)NiCl2, is very close to square planar and very weakly paramagnetic in the solid state and in solution, while the maroon [1,2-bis­(di-tert-butyl­phosphan­yl)ethane-κ2P,P′]di­bromido­nickel(II), [NiBr2(C18H40P2] or (dtbpe-κ2P)NiBr2, is isostructural with the diiodide in the solid state, and displays paramagnetism inter­mediate between that of the dichloride and the diiodide in the solid state and in solution. Density functional calculations demonstrate that distortion from an ideal square plane for these complexes occurs on a flat potential energy surface. The calculations reproduce the observed structures and colours, and explain the trends observed for these and similar complexes. Although theoretical investigation identified magnetic-dipole-allowed excitations that are characteristic for temperature-independent paramagnetism (TIP), theory predicts the mol­ecules to be diamagnetic.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113030692/fa3325sup1.cif
Contains datablocks msc6, lw27, msc11, lw23, lw29, GLOBAL

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113030692/fa3325msc6sup2.hkl
Contains datablock msc6

cdx

Chemdraw file https://doi.org/10.1107/S0108270113030692/fa3325msc6sup7.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113030692/fa3325lw27sup5.hkl
Contains datablock lw27

cdx

Chemdraw file https://doi.org/10.1107/S0108270113030692/fa3325lw27sup8.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113030692/fa3325msc11sup3.hkl
Contains datablock msc11

cdx

Chemdraw file https://doi.org/10.1107/S0108270113030692/fa3325msc11sup9.cdx
Supplementary material

cdx

Chemdraw file https://doi.org/10.1107/S0108270113030692/fa3325lw23sup10.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113030692/fa3325lw23sup4.hkl
Contains datablock lw23

cdx

Chemdraw file https://doi.org/10.1107/S0108270113030692/fa3325lw29sup11.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113030692/fa3325lw29sup6.hkl
Contains datablock lw29

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270113030692/fa3325sup12.pdf
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270113030692/fa3325sup13.pdf
Supplementary material

CCDC references: 939496; 939497; 939498; 939499; 939500

Introduction top

It is axiomatic in the chemistry of nickel(II) complexes with four ligands that orange and red examples are square planar and diamagnetic, while green and blue examples are tetra­hedral and paramagnetic (Cotton et al., 1999; Hayter & Humiec, 1965). The magnetism can be explained by a simple crystal field model as resulting from the eight valence electrons occupying the d orbitals, split by the different crystal fields of the two geometries as shown in Fig. 1. For a square-planar geometry, the dx2-y2 orbital lies at much higher energy than the other d orbitals and so the ground state is expected to be diamagnetic. For a tetra­hedral geometry, paramagnetism results from single occupation of two of the degenerate dxy, dxz and dyz orbitals, leading to a triplet ground state.

A few exceptions to the `square planar equals diamagnetic' rule for NiII have been reported, involving N—P—O chelating ligands (Brück et al., 1996; Frömmel et al., 1992); these square-planar paramagnetic complexes are green or blue. The origin of their paramagnetism has been deduced through theoretical investigations to lie in the strong π bonding of the amide group, which leads to a smaller gap between the two highest energy orbitals. In combination with the relatively large pairing energy of NiII this can lead to a high-spin ground state, depending on the ligands (Bridgeman, 2008).

The colours of transition metal complexes result largely from electronic transitions within the d orbitals. In the vast majority of four-coordinate NiII complexes, square planar, diamagnetic examples are observed to be red or orange, while tetra­hedral, paramagnetic complexes are green or blue (Hayter & Humiec, 1965). For the C2v symmetric square-planar complexes, the colour has been ascribed to the 1A1 1B2 transition (Jarrett & Sadler, 1991; van Hecke & Horrocks, 1966).

A solution square-planar (diamagnetic)–tetra­hedral (paramagnetic) equilibrium for complexes of the type Ni(PR3)2X2 was first proposed 50 years ago (Hayter & Humiec, 1962). In that work, Ni(PEtPh2)2Br2 is found to crystallize either in a green tetra­hedral paramagnetic form or in a red square-planar diamagnetic form, depending on the solvent used. The dichloride forms such red crystals while the diiodide forms a brown–red tetra­hedral paramagnetic structure. For the simplest member of this series, Ni(PPh3)2Cl2, first reported 55 years ago (Venanzi, 1958), crystals can be grown of either the blue–green tetra­hedral or the red square-planar isomer, depending on the solvent used (Corain et al., 1985).

In this work, we focus on neutral complexes of the type P2NiX2, with P2 being a bidentate phosphine ligand and X a halide. With the bidentate ligand bis­(di­phenyl­phosphanyl)propane (dppp), the three dihalides, (dppp-κ2P)NiX2 (X = Cl, Br, I), are found to be diamagnetic and red (Cl and Br) or purple (I) in the solid state, but show paramagnetism in solution, increasing in the order Cl < Br < I, which can be attributed to an equilibrium between structures with singlet and triplet ground states (van Hecke & Horrocks, 1966). Only the crystal structure of the dichloride has been reported, and it is square planar in the sold state (Bomfim et al., 2003). The analogous complexes of bis­(di­phenyl­phosphanyl)ethane, (dppe-κ2P)NiX2 (X = Cl, Br, I), with an ethyl­ene, rather than a propyl­ene, bridge between the P atoms are reported to be red (Cl and Br) and deep purple (I), and diamagnetic in the solid state and in solution at all temperatures (van Hecke & Horrocks, 1966), although the initial report of (dppe-κ2P)NiCl2 indicated that it showed variable amounts of paramagnetism (Booth & Chatt, 1965). The structures of the dichloride and dibromide have been reported multiple times and the compounds are always square planar (Beaudoin et al., 2001; Bomfim et al., 2003; Busby et al., 1993; Rahn et al., 1989; Spek et al., 1987). However, the same complexes (dppe-κ2P)NiX2 (X = Cl, Br, I) have also been reported to exhibit temperature-independent paramagnetism in the solid state (Hudson et al., 1968; Jarrett & Sadler, 1991) while being diamagnetic in solution (Jarrett & Sadler, 1991).

A search of the Cambridge Structural Database (CSD; Version 5.34; Allen, 2002) shows that all 25 reported Ni(P–P)X2 complexes that have been crystallographically characterized involving bidentate ligands of this type are cis-oriented and square planar, including some with heteroatoms in the ligand (Lavanant et al., 2008), and with very long chelate rings (up to eight members) (Pandarus et al., 2008). All dichloride and dibromide complexes that have been crystallographically characterised are described as red or orange. To date, only one NiII bis­(phosphine) diiodide has been characterized crystallographically; this square-planar complex is described as purple (Angulo, Bouwman, Lutz et al., 2001).

In published reports of distorted square-planar complexes, the distortion has usually been measured by defining two planes based on the metal and the ligand pairs (in these cases, P–P—Ni and XX—Ni) and measuring the dihedral angle between these planes (Martin et al., 1991; Miedaner et al., 1991). This method is easy to define and calculate but has the major disadvantage that the planes may be tilted as well as rotated with respect to each other. That is, this method measures a mixture of pyramidalization and tetra­hedral distortion. In complexes with unsymmetrical ligands, the pyramidalization frequently makes a larger contribution to the observed angle than the tetra­hedral distortion. In this work, we use the mean of the two torsion angles P···P···X···X to describe deviations from ideal square-planar geometry.

Bidentate bis­(phosphines) with alkyl substituents such as methyl (dmpe), ethyl (depe) and cyclo­hexyl (dcpe) have long been used in nickel chemistry. In recent years, inter­est has moved to the more bulky tert-butyl substituent on the ligand bis­(di-tert-butyl­phosphanyl)ethane (dtbpe). The compound (dtbpe-κ2P)NiCl2 has been used as a starting material for nickel complexes with inter­esting properties by Pörschke (Bach et al., 1999) and Hillhouse (Anderson et al., 2010; Kitiachvili et al., 2004; Mindiola & Hillhouse, 2001; Waterman & Hillhouse, 2008). In Pörschke's reported synthesis, it is described as red and paramagnetic, based on the lack of observation of a 31P{1H} NMR resonance. This observation seemed to contradict the general rule of red NiII complexes being square planar and diamagnetic, and so warranted further investigation. The related nickel(I) dimer, [(dtbpe-κ2P)NiCl]2, has been reported by Hillhouse, and is found to be tetra­hedral; inter­estingly, oxidation of a single nickel centre leads to a structure in which both nickel centres are almost square planar (Mindiola et al., 2003).

It was therefore of inter­est to resolve the issue of structure and magnetism for the rather simple complex (dtbpe-κ2P)NiCl2 and its homologues (dtbpe-κ2P)NiBr2 and (dtbpe-κ2P)NiI2. Experimental techniques including spectroscopy and X-ray crystallography have been supplemented by the use of density functional theory to probe the molecular structure, the predicted electronic ground state and the expected electronic absorptions. To validate our theoretical methods we also prepared and characterised (dppe-κ2P)NiI2. During the course of our investigations we became inter­ested in the theoretical study of temperature independent paramagnetism of these molecules and the results of this study are also reported.

Results and discussion top

Synthesis top

The synthesis of the dichloride and diiodide complexes, (dtbpe-κ2P)NiX2 (X = Cl, I) and (dppe-κ2P)NiI2 proceeded in high yield from the corresponding anhydrous nickel halides and bis­(phosphine) ligands in refluxing ethanol, while the bromide was prepared from NiBr2(PPh3)2 in toluene. The compounds are quite air stable as solids [although (dtbpe-κ2P)NiI2 decomposes in the solid state over years] but they decompose in solution in air over a few hours. Scheme 1 shows the connectivity of the complexes studied in this work.

Characterization top

Crystal and Molecular Structures top

Crystal data, data collection and structure refinement details are summarized in Table 1. The solid-state structures of the four compounds were determined by X-ray crystallography at 200 K. A structure of the dichloride has previously been provided as a personal communication to the CSD with two molecules of chloro­form in the asymmetric unit, with a mean of the torsion angles P···P···Cl···Cl of 11° (Batsanov et al., 2009). We were able to obtain X-ray quality crystals of the dichloride with and without chloro­form, both with different space groups and unit cell parameters from those of the structure in the CSD.

Table 2 contains important bond distances and angles for the five crystal structures, while data collection and structure solution parameters are included in the Experimental section. Fig. 2 shows the two chemically equivalent but crystallographically unique molecules in the asymmetric unit for solvent-free (dtbpe-κ2P)NiCl2. A view of (dtbpe-κ2P)NiI2 is shown in Fig. 3. The dibromide is isostructural to the diiodide.

It can be seen from Figs. 2 and 3 that the halide atoms are not in the plane formed by the NiII and two P atoms; the means of the two torsion angles P···P···X···X for each structure are provided in Table 2. The distortion from square planarity for the dibromide and diiodide, over 19°, is greater than in any analogous complex in the CSD; the only other values above 15° are found for complexes with a propyl­ene rather than ethyl­ene tether in the bis­(phosphine) ligand (Angulo, Bouwman, Lok et al., 2001).

Examples of crystallographically characterised nickel(II) bis­(phosphine) dihalide complexes are relatively common; nearly 60 structures can be found in the CSD although several complexes have been reported in multiple modifications. Compared with the typical distances and angles for those reported structures, the bond distances and angles are slightly unusual in the four dtbpe structures. In particular, with an ethyl­ene bridge between the two P atoms (23 structures in the CSD), P—Ni—P angles of around 87° are more common than the 90° observed in these dtbpe structures, and the Ni—P bond distances of 2.2 Å observed here are somewhat longer than is found for complexes with other substituents on the phosphine, where Ni—P distances of around 2.15 Å are more usual. The bond distances and angles in the structure of (dppe-κ2P)NiI2 reported here fall exactly in the normal ranges. Thus, the steric bulk of the tert-butyl groups appears to be putting pressure on the coordination environment. However, the Ni—X distances are not changed in the dtbpe structures from those observed in structures with less bulky ligands.

A steric explanation for the non-zero torsion angles, which is consistent with the changes to bond distances and angles just described, can be found in the orientation of the tert-butyl groups of the dtbpe ligand. As can be seen from the structures in Figs. 2 and 3, the four tert-butyl groups are not equivalent in the crystals. The (dtbpe-κ2P)Ni fragment possesses pseudo-C2 symmetry, so that the pairs of tert-butyl groups that are transformed into one another by rotation are nearly symmetry equivalent. Two of the tert-butyl groups are in a perfectly staggered conformation with respect to the other substituents on the phospho­rus atom (C_A and C_A'), each of which has one methyl group pointing towards the halide ligands (C_A1 and C_A'1). The other two tert-butyl groups are slightly rotated with respect to a staggered conformation, and none of their methyl groups point at the halide ligands (C_B and C_B' in Figs. 2 and 3). This results in openings in the coordination environment across one, but not the other, diagonal looking along the axis from Ni to the midpoint of P1 and P2 (the view in Figs. 2 and 3). In all but one of the dtbpe structures, the two halide ligands are notably distorted into these openings, as can be seen in Figures 2 and 3. We define a positive dihedral distortion (mean of the torsion angles P···P···X···X) as one in which the halide ligands are moved towards the opening as described. A negative dihedral distortion is then rotation of the halide ligands towards the nearest methyl groups. Such a negative distortion has been observed once in these structures, in the second unique molecule in the asymmetric unit of the solvent free dichloride, a view of which is shown in Fig. 4.

The fact that in most cases the direction of distortion is apparently determined by the tert-butyl groups implies that it is of steric origin. Because the Ni—I and Ni—Br distances are longer than the Ni—Cl distance, the larger halide ligands are closer to the region where the methyl protons are found, and so more sensitive to this steric effect. This explains the lower distortion in the dichloride and the existence of the sterically unfavourable conformation shown in Fig. 4.

In the absence of the steric pressure caused by the tert-butyl groups, such as in (dppe-κ2P)NiI2, no distortion from square-planar geometry is observed. This is consistent with the square-planar structures previously reported for compounds of this type, which have significantly less bulky substituents on phospho­rus.

The ethyl­ene backbone of the dtbpe ligand can be oriented parallel to the diagonal opening in which the halide ligands fit from C_B to C_B', which we call the P conformation and which is the conformation observed in the structures in Figs. 2 and 3, or in the opposite direction, the O conformation. Alternatively, the halide ligands can be oriented towards the closest methyl groups as seen in Fig. 4, which we call the K conformation. These structural possibilities and their inter­conversions are summarized in Fig. 5.

Only the P and K conformations have been observed crystallographically. However, in the calculations discussed below, minima were located for the P and O conformations.

Optical spectroscopy top

The colours of the three compounds are very different; the dichloride is deep red, the dibromide, maroon, and the diiodide is deep blue–green. The optical spectra were measured in di­chloro­methane solution and in the solid state using diffuse refle­cta­nce on a powdered sample and transmittance on thin films. Fig. 6 contains the solution spectra, while Table 2 provides the observed λmax values for both solution and solid-state measurements.

It can be seen from Table 3 that the positions of the absorptions are almost unchanged on going from the solution to the solid state spectra, and the characteristic double absorption of the dibromide appears in both spectra. This indicates that the structures are very likely the same in solution as those determined in the solid state. For this reason, a solution equilibrium between the square-planar and tetra­hedral forms is considered unlikely although we cannot rule it out.

No band is observed in any of the spectra in the range 800–1000 nm for freshly prepared and recrystallized complexes. A band in this region is reported to result from the 3T1 3A2 transition of the tetra­hedral isomer (van Hecke & Horrocks, 1966), and its absence speaks against the existence of a solution equilibrium between the two geometries. A band was observed in solution at 913 nm and in the solid state at 937 nm for samples of the diiodide that had partially decomposed. It is worth noting that freshly prepared samples of the diiodide appear blue–green, and as the samples stand in air in solution they become visibly more green within minutes. The dibromide and dichloride decompose more slowly in air in solution over hours, and lose colour as they do so.

Magnetism top

The magnetism of the three complexes was measured in the solid state at room temperature using a Gouy balance, and then at temperatures from 4–300 K using a SQUID magnetometer. Only extremely small values that did not vary with temperature were recorded for freshly recrystallised samples of the dibromide (0.2 BM at room temperature) and diiodide (0.4 BM at room temperature), while the dichloride appeared diamagnetic, with a small negative value recorded at room temperature. Low magnetic moments between 0.1–0.4 BM recorded for complexes of the type (dppe-κ2P)NiX2 (X = Cl, Br, I) were originally ascribed to some oxidation of the complexes (Hudson et al., 1968); however, they may derive from the temperature-independent paramagnetism in pure samples, as has subsequently been reported (Jarrett & Sadler, 1991).

The 1H NMR spectra of the three complexes at room temperature in CD2Cl2 solution indicate that they vary from very slightly (dichloride: ν1/2 = 100 Hz at room temperature) to somewhat paramagnetic; in a solution of the diiodide complex, no 31P signal is observed. The temperature dependence of the 1H NMR and 31P{1H} spectra for the dichloride and dibromide were measured; all become sharper at lower temperatures and broader at higher temperatures, as well as moving to lower field with increasing temperature. Fig. 7 contains a chemical shift versus 1/T plot for the 31P{1H} resonance of the dibromide; similar data were obtained for the dichloride. Table 3 presents the variable temperature NMR data.

Non-linear plots of chemical shift versus 1/T indicate that the behaviour is non-Curie–Weiss. Multiple attempts to qu­antify the solution magnetism using the Evans method were unsuccessful (Evans, 1959); due to the low magnetic moments only extremely small changes in chemical shift were observed and no qu­anti­tative data could be obtained. Sophisticated NMR methods are now available for the inter­pretation of paramagnetic complexes (Cremer & Burger, 2003; Köhler, 2011). However, to date the NMR data could not be fitted with these methods to an equilibrium between a paramagnetic (tetra­hedral) and a diamagnetic (square planar) complex, as has been done for related systems (Pignolet & Horrocks, 1969).

Density functional theory top

Structure optimizations were carried out for singlet closed-shell and triplet (unrestricted Kohn–Sham) ground states using TURBOMOLE (Bauernschmitt & Ahlrichs, 1996; Bauernschmitt et al., 1997; Deglmann et al., 2004; Eichkorn et al., 1995; Eichkorn et al., 1997; Furche & Ahlrichs, 2002; Furche & Rappoport, 2005; Häser & Ahlrichs, 1989; Hättig & Köhn, 2002; Hättig & Weigend, 2000; Schäfer et al., 1992; Treutler & Ahlrichs, 1995; TURBOMOLE, 2012; Weigend, 2006; Weigend & Ahlrichs, 2005; Weigend et al., 1998, 2003). Although the wavefunctions with Sz = 1n at UHF/UKS level are not eigenfunctions of S2, we will refer to them as triplet wavefunctions because they show only moderate spin-contamination, typically the deviation from <S2> = 2n2 is about 0.01 n2. The triplet-optimized structures show a pseudo-tetra­hedral coordination on the nickel atom, which is significantly different from that observed in the crystal structures. In terms of energy, triplet and singlet ground state energies for the corresponding optimized structures are similar. The singlet–triplet splitting varies systematically with the amount of Hartree–Fock (HF) exchange used in the exchange–correlation functional, where more HF exchange favours the triplet ground state. The triplet UHF wavefunction itself is lower in energy than the singlet RHF wave function even for (DFT) singlet optimized structures. Based on the calculations it can therefore not be excluded that the pseudo-tetra­hedral structure with a triplet ground state is significantly populated in an equilibrium in solution. Unless otherwise noted, energies are discussed at the B3LYP/def2-TZVPP//BP86/def2-TZVP level of theory (Becke, 1988, 1993; Dirac, 1929; Lee et al., 1988; Perdew, 1986; Slater, 1951; Vosko et al., 1980).

Since the crystal structure as well as the magnetic properties in solution indicate that the singlet structure dominates, only singlet states will be discussed in the following. The structural possibilities discussed above lead to two distinctive minima for conformations of the (dtbpe-κ2P)NiX2 complexes depicted in Fig. 5. The ethyl­ene backbone is found to be oriented parallel with (P) or opposite (O) the opening in the coordination environment created by the tert-butyl groups; no minimum was found for the K conformation. The energy barrier required for inversion of the ethyl­ene backbone is very low (< 25 kJ mol-1) in all cases. The energy of O relative to P is 7 (Cl), 1 (Br) and -3 (I). Figs. 8–10 show a relaxed potential surface for the distortion of the complexes out of planarity in each conformation. It can be seen that the minimum found for the O isomer is in all cases the more distorted one, and the distortion angles increase in the order Cl < Br < I. The planar structures have the shortest Ni—X distances and the distorted structures exhibit miniscule changes in the Ni—X distances with distances elongated around 0.004, 0.006 and 0.015 Å for the dichloride, dibromide and diiodide, respectively. The diiodide complex is the only one for which P and O have a minimum structure at similar distortion angles at around 23°, slightly greater than the crystallographically observed angle of 19.7°.

As explained above, all but one of the crystal structures correspond to the P isomers, and the bond distances and angles for the calculated minimum energy P structures are given in Table 2. It can be seen from that table that the calculations reproduce the bond distances and angles of the observed structures well, in particular the elongation of the Ni—P bond compared with less bulky phosphines described above. The distortion from planarity is also found for the minimum-energy structures. The calculations indicate that this is a very soft potential surface and also that flipping the backbone conformation (P to O) is a low-energy process. The existence of at least three different crystalline modifications of the dichloride with four different distortion angles supports the notion that the distortion is on a flat energy surface, and that packing effects will significantly affect the observed structure.

Using the calculated minimum structures, the vertical excitation spectra (showing the energy differences between ground and excited states at ground state geometry) were calculated at the B3LYP/def2-TZVPP//BP86/def2-TZVP level of linear response-time-dependent density functional theory (TDDFT) within the adiabatic approximation. Other choices of functionals for excitation or geometry optimization did not significantly change the relative positions of the excitations under consideration, but moved their absolute positions. The chosen methodology showed the best agreement with the absolute positions of excitations observed experimentally. The colour was attributed to the most intense absorption in the region with highest spectral sensitivity to human visual perception, between 650–450 nm. The computed excitation energies are in good agreement with experiment (Table 5).

The location of the main absorption differs between P and O isomers by less than 5 nm. For the dibromide and dichloride, the distortion of the minimum structures with respect to planarity changes the excitation energy only very slightly. In the case of the diiodide, the restriction to planarity leads to a blue shift of 20 nm. The change of the total electron density associated with this excitation is metal-centred and implies a dxy to dx2-y2 transition in all studied complexes of P-type. Fig. 11 shows the calculated energies of the excited states of the P isomers for the different dihalide complexes.

Based on these TDDFT calculations, the excitation cannot be attributed to a simple transition from one occupied to one virtual orbital. Instead, there are several occupied to LUMO (lowest unoccupied molecular orbital) contributions. The LUMO is the anti­bonding combination of metal dx2-y2 and halide p-orbitals. The most important contributing occupied orbitals are bonding or non-bonding combinations of the dxy-metal and p-halide orbitals. In all cases the HOMO-2 (highest occupied molecular orbital) has the largest contribution, for the less distorted complexes about 60%.

The red shift of the main absorption on going from the dichloride complex to the dibromide complex and from a planar diiodide complex to the actual distorted diiodide complex (see Table 5 and Fig. 11) is reflected in the increasing orbital energies of contributing occupied orbitals and decreasing LUMO orbital energy. This can be rationalized in terms of higher p-orbital energies of the heavier halogen atoms and less overlap of halogen p-orbitals with metal orbitals, which results in weaker bonding and anti­bonding character. The influence of distortion can be understood in terms of further reduced overlap in bonding and anti­bonding orbitals. This dependence on the halide ligand is also predicted by the spectrochemical series. To verify this methodology, calculations were used to predict the positions of the corresponding absorptions of analogous complexes with phenyl-substituted bis­(phosphine) ligands, which have colours, structures and magnetism as described in the introduction and above. Table 6 summarizes the results.

As can be seen from Tables 5 and 6, the computed wavelengths are systematically red-shifted by around 10–20 nm so that the observed trends both in terms of bis­(phosphine) ligand dtbpe > dppp > dppe and halide ligand I > Br > Cl are correctly predicted. This is illustrated in Fig. 12.

In general, the agreement of calculated absorptions with experiment is somewhat worse for phenyl-substituted ligands compared with dtbpe. A reason for this could be dispersion inter­action between the phenyl rings, which influences the structures of the complexes. Indeed, if the geometry is optimized with Grimme's dispersion correction (Grimme et al., 2010) and the excitation energy then recomputed [B3LYP/def2-TZVPP//BP86—D3/def2-SV(P)], the values for dtbpe change less than those for phenyl-containing bis­(phosphines). Although the results obtained are somewhat improved, this should not be overinter­preted. Effects of dispersion inter­actions on the structures with phenyl-substituted ligands probably influence the excitation energies to a degree comparable to the deviations between experiment and theory.

The calculations also show that as compared to dtbpe, dppe complexes have a more stable singlet ground state, while dppp complexes have a more stable triplet ground state. This is in agreement with the fact that an equilibrium between molecules with singlet and triplet ground states has been observed for the complexes (dppp-κ2P)NiX2 (van Hecke & Horrocks, 1966). As above, the calculated singlet-triplet splitting varies with the amount of HF-exchange used, while the ligand dependence is the same for all functionals.

Temperature independent paramagnetism top

Small magnetic moments are difficult to measure experimentally and are sensitive to impurities from compounds with higher magnetic moments (Walter et al., 2006). In particular, temperature independent paramagnetism (TIP) is difficult to measure accurately, particularly for compounds that can decompose to products with temperature dependent paramagnetism, such as the nickel complexes in this study. We have investigated TIP in detail for the complexes introduced above using DFT/TDDFT and for model complexes also using coupled cluster calculations; an extensive discussion is given in the Supplementary Information. We conclude that planar d8 nickel complexes can, based on simple crystal-field arguments and based on our DFT and ab initio calculations, be expected to have paramagnetic contributions to the magnetisability comparable to those of the molecules for which TIP is well-established (such as BH and isoelectronic molecules) (Fowler & Steiner, 1992, 1993; Pelloni et al., 2009; Ruud et al., 1995; Sauer et al., 1993; Stevens & Lipscomb, 1965). The magnitude of the individual contributions is similar and the corresponding excitations can be understood in terms of simple orbital considerations. However, the nickel bis­(phosphine) complexes have a much higher number of atoms and electrons and therefore a much larger diamagnetic contribution, which overcompensates this paramagnetic part by far, so no TIP is expected according to these calculations. The calculations therefore suggest that the small paramagnetism observed in experiments is due to conventional, temperature-dependent paramagnetism of species that are present only in very small concentrations. These are likely pseudo-tetra­hedral nickel bis­(phosphine) complexes with triplet ground states that either result from decomposition, or exist in equilibrium with the near planar complexes, at concentrations too low to be observed by optical spectroscopy.

Conclusions top

The crystal structures and spectroscopic and magnetic properties of the compounds (dtbpe-κ2P)NiX2 are not as straightforward as their rather simple chemical structures would suggest. Density functional theory indicates that the distortions from square planarity observed in the solid state lie on a very flat energy surface. Good agreement between theory and experiment was observed for the geometries and colours of the complexes. The colour of the diiodide, while somewhat unexpected, does not indicate a tetra­hedral structure and is the result of the reduced excitation energy for this combination of sterically hindered ligand and heavy halide.

Experiments showed weak paramagnetism similar to that previously found in dppe complexes and attributed in those reports to temperature independent paramagnetism (TIP). Theory does not predict TIP for these complexes because the calculated paramagnetic contribution is outweighed by the diamagnetic component. Traces of paramagnetic impurities, or an equilibrium between planar (singlet) and pseudo-tetra­hedral (triplet) complexes, are more likely responsible for the observed magnetism according to our calculations, and cannot be ruled out on the basis of the experiments.

Experimental top

Synthetic details top

For the preparation of (dtbpe-κ2P)NiCl2, anhydrous nickel dichloride (0.20 g, 1.5 mmol) was suspended in ethanol (20 ml) and a solution of dtbpe (0.50 g, 1.6 mmol) in ethanol (30 ml) was added. The resulting mixture was heated under reflux for 4 h, during which time the colour changed from orange to deep red. Upon cooling, a red solid product was obtained (yield 0.50 g, 1.1 mmol, 74%). Recrystallisation from CH2Cl2 led to the formation of solvent-free X-ray-quality crystals. Recrystallization from CHCl3 led to the formation of X-ray quality crystals of (dtbpe-κ2P)NiCl2.2CHCl3, which lose solvent readily. Both sets of crystals are air-stable when dry but decompose over hours in solution. When heated to 523 K the compound loses colour irreversibly but it does not melt to 573 K Analysis calculated for C18H40NiCl2P2: C 48.25, H 9.00, P 13.83%; found: C 48.14, H 8.96, P 13.83%. UV–Vis: solution: 351 (1800), 495 (790) nm; solid: 323, 491 nm. MS(FAB): 448 (M+), 411 (M - Cl)+ (with correct isotope patterns). 1H NMR (500 MHz, CDCl3, 298 K): δ 1.71 (br d, 4H, CH2CH2), 1.58 (br d, 36H, t-Bu). 31P{1H} NMR (202 MHz, CDCl3, 298 K): δ 89.5 (ν1/2 = 300 Hz).

For the preparation of (dtbpe-κ2P)NiBr2, NiBr2(PPh3)2 (0.70 g, 0.94 mmol) and dtbpe (0.30 g, 0.94 mmol) were weighed into separate Schlenk flasks. Toluene (20 ml) was added to both flasks which were warmed slightly. The dtbpe solution was added to the green nickel suspension via cannula, and the resulting deep-red mixture was heated to reflux. The toluene was removed in vacuo and the product was extracted to CH2Cl2 and filtered through Celite, then the CH2Cl2 was also removed under dynamic vacuum. The PPh3 was washed out with hexane and deep maroon microcrystals were collected (yield 0.35 g, 0.65 mmol, 69%). The compound decomposes without melting at 543 K. Analysis calculated for C18H40NiBr2P2: C 40.26, H 7.51, P 11.54%; found: C 40.03, H 7.37, P 11.41%. UV–Vis: solution: 417 (340), 523 (420) nm; solid: 550, 425 nm. MS(FAB): 457 (M - Br)+ (correct isotope pattern). 1H NMR (500 MHz, CDCl3, 298 K): δ 1.7 (br, 4H, CH2CH2), 1.5 (br, 36H, t-Bu). 31P{1H} NMR (202 MHz, CDCl3, 298 K): δ 100 (ν1/2 = 240 Hz).

(dtbpe-κ2P)NiI2 was prepared as deep-blue–green crystals in exactly the same manner as the dichloride analogue, starting from NiI2 (yield 60%). It turns black and melts at 544–545 K. The 1H NMR spectrum contains very broad peaks and no 31P resonance is observed at room temperature. Analysis calculated for C18H40NiI2P2: C 34.26, H 6.39, P 9.82%; found: C 34.22, H 6.49, P 9.80%. UV–Vis: solution: 391 (3050), 606 (817) nm; solid: 396, 602 nm. MS(FAB): 630 (M+), 503 (M - I)+ (correct isotope pattern).

(dppe-κ2P)NiI2.CH2Cl2, was prepared according to the published procedure of Hudson et al. (1968) and crystallized from di­chloro­methane to provide the solvated crystals.

X-ray crystallography top

For (dtbpe-κ2P)NiCl2.2CHCl3, H atoms were placed at calculated positions and refined as riding atoms, with Uiso values set at 1.5Ueq of the respective parent for CH3 groups (refined with free rotation) and at 1.2Ueq in all other groups. Both chloro­form solvent molecules were disordered and were refined as the superposition of two orientations. The solvent molecules were restrained to have threefold local symmetry and to have similar bond lengths and angles within and across both molecules.

For (dtbpe-κ2P)NiCl2, most H atoms were located in a difference map; they were placed at calculated positions and were refined as riding atoms, with Uiso values set at 1.2 Ueq of the respective parent atoms for CH2 groups and at 1.5Ueq with free rotation for CH3 groups. One tert-butyl group in one of the two independent molecules was refined with a disorder model of two different conformations. These two superimposed orientations were restrained to have a local threefold rotational symmetry and similar bond lengths and angles. The occupations refined to about 40:60%.

For (dtbpe-κ2P)NiBr2, H atoms were placed at calculated positions and refined as riding atoms, with Uiso values set at 1.2Ueq of the respective parent atoms for CH2 groups and at 1.5Ueq (with free rotation) for CH3 groups.

For (dtbpe-κ2<P)NiI2, all H atoms were located in a difference map but then placed at calculated positions and refined as riding atoms, with Uiso values set at 1.2Ueq of the respective parent atoms for CH2 groups and at1.5Ueq (with free rotation) for CH3 groups.

For (dppe-κ2P)NiI2.CH2Cl2, H atoms could not be located in a difference map; they were placed at calculated positions and were refined as riding atoms, with Uiso values set at 1.2Ueq of their respective parent atoms.

Related literature top

For related literature, see: Allen (2002); Anderson et al. (2010); Angulo, Bouwman, Lok, Lutz, Mul & Spek (2001); Angulo, Bouwman, Lutz, Mul & Spek (2001); Bach et al. (1999); Batsanov et al. (2009); Bauernschmitt & Ahlrichs (1996); Bauernschmitt et al. (1997); Beaudoin et al. (2001); Becke (1988, 1993); Bomfim et al. (2003); Booth & Chatt (1965); Brück et al. (1996); Bridgeman (2008); Busby et al. (1993); Corain et al. (1985); Cotton et al. (1999); Cremer & Burger (2003); Deglmann et al. (2004); Dirac (1929); Eichkorn et al. (1995, 1997); Evans (1959); Fowler & Steiner (1992, 1993); Frömmel et al. (1992); Furche & Ahlrichs (2002); Furche & Rappoport (2005); Grimme et al. (2010); Häser & Ahlrichs (1989); Hättig & Köhn (2002); Hättig & Weigend (2000); Hayter & Humiec (1962, 1965); Hecke & Horrocks (1966); Hudson et al. (1968); Jarrett & Sadler (1991); Köhler (2011); Kitiachvili et al. (2004); Lavanant et al. (2008); Lee et al. (1988); Martin et al. (1991); Miedaner et al. (1991); Mindiola & Hillhouse (2001); Mindiola et al. (2003); Pandarus et al. (2008); Pelloni et al. (2009); Perdew (1986); Pignolet & Horrocks (1969); Rahn et al. (1989); Ruud et al. (1995); Sauer et al. (1993); Schäfer et al. (1992); Slater (1951); Spek et al. (1987); Stevens & Lipscomb (1965); TURBOMOLE (2012); Treutler & Ahlrichs (1995); Venanzi (1958); Vosko et al. (1980); Walter et al. (2006); Waterman & Hillhouse (2008); Weigend (2006); Weigend & Ahlrichs (2005); Weigend et al. (1998, 2003).

Computing details top

Data collection: SMART (Bruker, 2001) for msc6, msc11; APEX2 (Bruker, 2005) for lw27, lw23, lw29. Cell refinement: SMART (Bruker, 2001) for msc6, msc11; SAINT (Bruker, 2005) for lw27, lw23, lw29. Data reduction: SAINT (Bruker, 2001) for msc6, msc11; SAINT (Bruker, 2005) for lw27, lw23, lw29. For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Crystal field splitting diagrams for square planar (left) and tetrahedral (right) geometries with d8 occupation.
[Figure 2] Fig. 2. The molecular structure of (dtbpe-κ2P)NiCl2 (one of two unique molecules in asymmetric unit), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The molecular structure of (dtbpe-κ2P)NiI2, with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 4] Fig. 4. The molecular structure of (dtbpe-κ2P)NiCl2 (second of two unique molecules in the asymmetric unit), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 5] Fig. 5. Schematic representation of principal conformations of (dtbpe-κ2P)NiX2 and their relation by backbone-inversion without tert-butyl substituent rotation, or rotation of halide ligands.
[Figure 6] Fig. 6. Optical spectra of (dtbpe-κ2P)NiX2 (X = Cl, Br, I) in solution.
[Figure 7] Fig. 7. Temperature dependence of 31P{1H} chemical shift of a CD2Cl2 solution of (dtbpe-κ2P)NiBr2.
[Figure 8] Fig. 8. Relative energies in kJ mol-1 of (dtbpe-κ2P)NiCl2 P and O structures. The angle is the mean of the two P···P···X···X torsion angles. BP86/def2-TZVP.
[Figure 9] Fig. 9. Relative energies in kJ mol-1 of (dtbpe-κ2P)NiBr2 P and O structures. The angle is the mean of the two P···P···X···X torsion angles. BP86/def2-TZVP.
[Figure 10] Fig. 10. Relative energies in kJ mol-1 of (dtbpe-κ2P)NiI2 P and O structures. The angle is the mean of the two P···P···X···X torsion angles. BP86/def2-TZVP.
[Figure 11] Fig. 11. Energy of the excited state of the P isomer (top line) for the different halide complexes including the planarized diiodide complex; difference between density of excited and ground state of dichloride and diiodide (left and right diagrams at top; red: negative; blue: positive). Energies of orbitals that contribute most to the excitation are also depicted, along with plots of the orbitals for dichloride and diiodide. All energies are given in eV.
[Figure 12] Fig. 12. Comparison of the experimentally observed and calculated wavelengths of the main absorption of complexes P2NiX2 as a function of bis(phosphine) and halide ligand (nm).
(msc6) [1,2-Bis(di-tert-butylphosphanyl)ethane-κ2P,P']dichloridonickel(II) chloroform disolvate top
Crystal data top
[NiCl2(C18H40P2)]·2CHCl3F(000) = 2848
Mr = 686.78Dx = 1.438 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.2040 (3) ÅCell parameters from 7319 reflections
b = 18.2618 (3) ŵ = 1.40 mm1
c = 20.2538 (4) ÅT = 200 K
β = 94.572 (1)°Polyhedron, red
V = 6343.0 (2) Å30.42 × 0.40 × 0.15 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
7308 independent reflections
Radiation source: fine-focus sealed tube5638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2222
Tmin = 0.61, Tmax = 0.83k = 2323
32371 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0417P)2 + 25.352P]
where P = (Fo2 + 2Fc2)/3
7308 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 1.20 e Å3
132 restraintsΔρmin = 0.64 e Å3
Crystal data top
[NiCl2(C18H40P2)]·2CHCl3V = 6343.0 (2) Å3
Mr = 686.78Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.2040 (3) ŵ = 1.40 mm1
b = 18.2618 (3) ÅT = 200 K
c = 20.2538 (4) Å0.42 × 0.40 × 0.15 mm
β = 94.572 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7308 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
5638 reflections with I > 2σ(I)
Tmin = 0.61, Tmax = 0.83Rint = 0.047
32371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054132 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0417P)2 + 25.352P]
where P = (Fo2 + 2Fc2)/3
7308 reflectionsΔρmax = 1.20 e Å3
326 parametersΔρmin = 0.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.73904 (2)0.00993 (2)0.30173 (2)0.02831 (11)
P10.74269 (5)0.12608 (5)0.33156 (4)0.03154 (19)
P20.73218 (5)0.04086 (5)0.19651 (4)0.03277 (19)
Cl10.73926 (6)0.10701 (5)0.27272 (5)0.0479 (2)
Cl20.74224 (7)0.02311 (5)0.40635 (4)0.0509 (3)
C90.7545 (2)0.17882 (19)0.25551 (18)0.0435 (9)
H9A0.73090.22790.25960.052*
H9B0.81080.18560.25020.052*
C100.7166 (3)0.14080 (19)0.19459 (17)0.0438 (9)
H10A0.73820.16120.15460.053*
H10B0.65990.15090.19130.053*
C110.8307 (2)0.1536 (2)0.38836 (19)0.0440 (8)
C120.8494 (3)0.2353 (3)0.3825 (3)0.0677 (13)
H12A0.80610.26430.39730.101*
H12B0.85670.24710.33620.101*
H12C0.89720.24660.41020.101*
C130.8212 (3)0.1370 (3)0.4613 (2)0.0647 (13)
H13A0.86970.14920.48780.097*
H13B0.80960.08490.46640.097*
H13C0.77840.16640.47630.097*
C140.9002 (3)0.1089 (3)0.3671 (3)0.0666 (13)
H14A0.94600.11830.39780.100*
H14B0.91140.12320.32220.100*
H14C0.88740.05660.36770.100*
C150.6504 (2)0.1637 (2)0.36434 (18)0.0430 (8)
C160.6572 (3)0.2434 (3)0.3830 (3)0.0810 (17)
H16A0.67380.27150.34530.121*
H16B0.69580.24910.42090.121*
H16C0.60650.26150.39480.121*
C170.6235 (3)0.1177 (4)0.4211 (3)0.0820 (17)
H17A0.57220.13490.43240.123*
H17B0.66110.12250.45980.123*
H17C0.61980.06630.40750.123*
C180.5847 (3)0.1572 (3)0.3090 (2)0.0691 (14)
H18A0.53610.17600.32470.104*
H18B0.57780.10560.29630.104*
H18C0.59820.18570.27050.104*
C210.6433 (2)0.0040 (2)0.14552 (19)0.0477 (9)
C220.6579 (3)0.0710 (3)0.1150 (2)0.0636 (12)
H22A0.60900.08980.09320.095*
H22B0.67730.10500.14990.095*
H22C0.69660.06610.08230.095*
C230.6151 (4)0.0559 (3)0.0891 (2)0.0815 (17)
H23A0.65800.06570.06120.122*
H23B0.59750.10200.10760.122*
H23C0.57170.03310.06220.122*
C240.5776 (2)0.0048 (3)0.1923 (2)0.0602 (12)
H24A0.56450.04310.21010.090*
H24B0.59500.03760.22880.090*
H24C0.53140.02560.16770.090*
C250.8232 (2)0.0249 (2)0.15201 (19)0.0483 (9)
C260.8137 (4)0.0535 (3)0.0805 (2)0.0790 (17)
H26A0.79880.10520.08070.119*
H26B0.77320.02520.05510.119*
H26C0.86320.04820.06020.119*
C270.8893 (3)0.0655 (3)0.1901 (3)0.0824 (18)
H27A0.93810.05580.16990.124*
H27B0.89400.04880.23620.124*
H27C0.87840.11820.18880.124*
C280.8463 (3)0.0561 (2)0.1506 (2)0.0579 (11)
H28A0.89580.06110.13020.087*
H28B0.80570.08380.12480.087*
H28C0.85230.07510.19600.087*
C300.9062 (5)0.1434 (4)0.3899 (3)0.051 (2)0.831 (9)
H300.85170.12470.38160.061*0.831 (9)
Cl30.90719 (17)0.22804 (18)0.4290 (3)0.1346 (16)0.831 (9)
Cl40.95081 (12)0.1507 (3)0.31618 (9)0.1053 (15)0.831 (9)
Cl50.9602 (2)0.0875 (2)0.44481 (19)0.1185 (15)0.831 (9)
C310.6183 (5)0.1721 (3)0.3849 (3)0.049 (2)0.852 (7)
H310.64390.13000.36370.059*0.852 (7)
Cl60.56786 (16)0.2223 (2)0.32269 (16)0.1090 (12)0.852 (7)
Cl70.69096 (16)0.22418 (14)0.42682 (12)0.0890 (9)0.852 (7)
Cl80.5546 (2)0.1367 (2)0.4395 (2)0.0835 (14)0.852 (7)
C30B0.914 (2)0.1335 (11)0.3951 (8)0.042 (12)*0.169 (9)
H30B0.85940.11440.39380.051*0.169 (9)
Cl3B0.9030 (6)0.2284 (6)0.3924 (6)0.068 (3)*0.169 (9)
Cl4B0.9465 (5)0.1071 (6)0.3192 (4)0.055 (3)*0.169 (9)
Cl5B0.9672 (8)0.0747 (7)0.4491 (6)0.050 (3)*0.169 (9)
C31B0.6040 (16)0.1707 (14)0.3817 (9)0.058 (18)*0.148 (7)
H31B0.64390.13340.37130.070*0.148 (7)
Cl6B0.5434 (7)0.1883 (6)0.3107 (5)0.059 (3)*0.148 (7)
Cl7B0.6514 (10)0.2490 (8)0.4128 (6)0.089 (4)*0.148 (7)
Cl8B0.5474 (12)0.1353 (9)0.4416 (9)0.051 (4)*0.148 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0336 (2)0.0252 (2)0.0262 (2)0.00114 (16)0.00302 (15)0.00032 (15)
P10.0383 (4)0.0286 (4)0.0279 (4)0.0020 (3)0.0036 (3)0.0034 (3)
P20.0439 (5)0.0300 (4)0.0250 (4)0.0012 (4)0.0068 (3)0.0010 (3)
Cl10.0709 (6)0.0288 (4)0.0453 (5)0.0002 (4)0.0135 (4)0.0019 (4)
Cl20.0812 (7)0.0419 (5)0.0286 (4)0.0103 (5)0.0023 (4)0.0041 (4)
C90.065 (2)0.0284 (18)0.0381 (18)0.0036 (16)0.0104 (17)0.0009 (14)
C100.067 (2)0.0312 (19)0.0335 (18)0.0033 (17)0.0062 (17)0.0034 (14)
C110.045 (2)0.043 (2)0.044 (2)0.0056 (16)0.0010 (16)0.0118 (16)
C120.069 (3)0.051 (3)0.081 (3)0.026 (2)0.006 (3)0.011 (2)
C130.076 (3)0.072 (3)0.043 (2)0.017 (2)0.014 (2)0.011 (2)
C140.044 (2)0.081 (3)0.072 (3)0.005 (2)0.011 (2)0.024 (3)
C150.046 (2)0.045 (2)0.0388 (19)0.0075 (16)0.0051 (15)0.0085 (16)
C160.072 (3)0.062 (3)0.109 (4)0.012 (3)0.009 (3)0.043 (3)
C170.068 (3)0.115 (5)0.067 (3)0.027 (3)0.033 (3)0.016 (3)
C180.048 (2)0.091 (4)0.068 (3)0.010 (2)0.000 (2)0.031 (3)
C210.052 (2)0.051 (2)0.0381 (19)0.0057 (18)0.0075 (16)0.0095 (17)
C220.064 (3)0.064 (3)0.061 (3)0.002 (2)0.006 (2)0.028 (2)
C230.105 (4)0.080 (4)0.053 (3)0.016 (3)0.032 (3)0.005 (3)
C240.044 (2)0.067 (3)0.068 (3)0.000 (2)0.002 (2)0.024 (2)
C250.057 (2)0.048 (2)0.043 (2)0.0047 (18)0.0246 (18)0.0068 (17)
C260.120 (5)0.075 (3)0.048 (3)0.010 (3)0.046 (3)0.008 (2)
C270.057 (3)0.101 (4)0.095 (4)0.025 (3)0.037 (3)0.038 (3)
C280.054 (2)0.060 (3)0.063 (3)0.008 (2)0.027 (2)0.004 (2)
C300.041 (3)0.062 (4)0.050 (4)0.004 (3)0.007 (2)0.005 (3)
Cl30.1143 (18)0.1015 (18)0.189 (4)0.0034 (14)0.016 (2)0.081 (2)
Cl40.0756 (12)0.187 (5)0.0551 (10)0.0318 (15)0.0134 (8)0.0076 (13)
Cl50.0695 (15)0.163 (3)0.124 (2)0.0137 (16)0.0119 (12)0.078 (2)
C310.048 (3)0.045 (4)0.054 (4)0.001 (2)0.011 (2)0.007 (2)
Cl60.0792 (14)0.130 (3)0.1185 (18)0.0246 (15)0.0117 (13)0.0751 (18)
Cl70.0768 (15)0.0759 (14)0.1161 (15)0.0347 (11)0.0188 (12)0.0194 (11)
Cl80.0702 (17)0.113 (2)0.0671 (13)0.0392 (13)0.0075 (9)0.0213 (10)
Geometric parameters (Å, º) top
Ni1—P22.1986 (9)C21—C231.533 (6)
Ni1—Cl22.1997 (9)C21—C241.541 (6)
Ni1—P12.2049 (9)C22—H22A0.9800
Ni1—Cl12.2150 (10)C22—H22B0.9800
P1—C91.841 (4)C22—H22C0.9800
P1—C111.895 (4)C23—H23A0.9800
P1—C151.897 (4)C23—H23B0.9800
P2—C101.845 (4)C23—H23C0.9800
P2—C251.890 (4)C24—H24A0.9800
P2—C211.899 (4)C24—H24B0.9800
C9—C101.517 (5)C24—H24C0.9800
C9—H9A0.9900C25—C271.516 (6)
C9—H9B0.9900C25—C281.531 (6)
C10—H10A0.9900C25—C261.536 (6)
C10—H10B0.9900C26—H26A0.9800
C11—C131.528 (6)C26—H26B0.9800
C11—C121.533 (6)C26—H26C0.9800
C11—C141.537 (6)C27—H27A0.9800
C12—H12A0.9800C27—H27B0.9800
C12—H12B0.9800C27—H27C0.9800
C12—H12C0.9800C28—H28A0.9800
C13—H13A0.9800C28—H28B0.9800
C13—H13B0.9800C28—H28C0.9800
C13—H13C0.9800C30—Cl51.725 (8)
C14—H14A0.9800C30—Cl41.737 (6)
C14—H14B0.9800C30—Cl31.737 (7)
C14—H14C0.9800C30—H301.0000
C15—C161.507 (6)C31—Cl61.734 (6)
C15—C171.524 (6)C31—Cl71.738 (7)
C15—C181.532 (6)C31—Cl81.742 (6)
C16—H16A0.9800C31—H311.0000
C16—H16B0.9800C30B—Cl5B1.740 (14)
C16—H16C0.9800C30B—Cl4B1.744 (15)
C17—H17A0.9800C30B—Cl3B1.745 (14)
C17—H17B0.9800C30B—H30B1.0000
C17—H17C0.9800C31B—Cl6B1.738 (15)
C18—H18A0.9800C31B—Cl7B1.739 (15)
C18—H18B0.9800C31B—Cl8B1.740 (15)
C18—H18C0.9800C31B—H31B1.0000
C21—C221.531 (6)
P2—Ni1—Cl2178.08 (4)C15—C18—H18C109.5
P2—Ni1—P190.96 (3)H18A—C18—H18C109.5
Cl2—Ni1—P190.11 (4)H18B—C18—H18C109.5
P2—Ni1—Cl189.52 (4)C22—C21—C23107.7 (4)
Cl2—Ni1—Cl189.46 (4)C22—C21—C24107.8 (4)
P1—Ni1—Cl1178.23 (4)C23—C21—C24108.6 (4)
C9—P1—C11103.48 (18)C22—C21—P2112.7 (3)
C9—P1—C15104.75 (18)C23—C21—P2112.4 (3)
C11—P1—C15110.02 (17)C24—C21—P2107.5 (3)
C9—P1—Ni1106.05 (12)C21—C22—H22A109.5
C11—P1—Ni1115.15 (13)C21—C22—H22B109.5
C15—P1—Ni1115.94 (13)H22A—C22—H22B109.5
C10—P2—C25105.52 (18)C21—C22—H22C109.5
C10—P2—C21103.26 (18)H22A—C22—H22C109.5
C25—P2—C21110.32 (18)H22B—C22—H22C109.5
C10—P2—Ni1105.73 (12)C21—C23—H23A109.5
C25—P2—Ni1116.11 (14)C21—C23—H23B109.5
C21—P2—Ni1114.52 (13)H23A—C23—H23B109.5
C10—C9—P1111.8 (2)C21—C23—H23C109.5
C10—C9—H9A109.2H23A—C23—H23C109.5
P1—C9—H9A109.2H23B—C23—H23C109.5
C10—C9—H9B109.2C21—C24—H24A109.5
P1—C9—H9B109.2C21—C24—H24B109.5
H9A—C9—H9B107.9H24A—C24—H24B109.5
C9—C10—P2112.5 (3)C21—C24—H24C109.5
C9—C10—H10A109.1H24A—C24—H24C109.5
P2—C10—H10A109.1H24B—C24—H24C109.5
C9—C10—H10B109.1C27—C25—C28107.2 (4)
P2—C10—H10B109.1C27—C25—C26109.3 (4)
H10A—C10—H10B107.8C28—C25—C26108.6 (3)
C13—C11—C12107.9 (4)C27—C25—P2107.3 (3)
C13—C11—C14108.1 (4)C28—C25—P2112.6 (3)
C12—C11—C14108.9 (4)C26—C25—P2111.6 (3)
C13—C11—P1113.1 (3)C25—C26—H26A109.5
C12—C11—P1111.9 (3)C25—C26—H26B109.5
C14—C11—P1106.9 (3)H26A—C26—H26B109.5
C11—C12—H12A109.5C25—C26—H26C109.5
C11—C12—H12B109.5H26A—C26—H26C109.5
H12A—C12—H12B109.5H26B—C26—H26C109.5
C11—C12—H12C109.5C25—C27—H27A109.5
H12A—C12—H12C109.5C25—C27—H27B109.5
H12B—C12—H12C109.5H27A—C27—H27B109.5
C11—C13—H13A109.5C25—C27—H27C109.5
C11—C13—H13B109.5H27A—C27—H27C109.5
H13A—C13—H13B109.5H27B—C27—H27C109.5
C11—C13—H13C109.5C25—C28—H28A109.5
H13A—C13—H13C109.5C25—C28—H28B109.5
H13B—C13—H13C109.5H28A—C28—H28B109.5
C11—C14—H14A109.5C25—C28—H28C109.5
C11—C14—H14B109.5H28A—C28—H28C109.5
H14A—C14—H14B109.5H28B—C28—H28C109.5
C11—C14—H14C109.5Cl5—C30—Cl4110.4 (5)
H14A—C14—H14C109.5Cl5—C30—Cl3104.3 (5)
H14B—C14—H14C109.5Cl4—C30—Cl3109.6 (4)
C16—C15—C17111.4 (4)Cl5—C30—H30110.8
C16—C15—C18107.2 (4)Cl4—C30—H30110.8
C17—C15—C18105.0 (4)Cl3—C30—H30110.8
C16—C15—P1112.7 (3)Cl6—C31—Cl7111.4 (3)
C17—C15—P1112.2 (3)Cl6—C31—Cl8110.7 (5)
C18—C15—P1107.7 (3)Cl7—C31—Cl8110.9 (3)
C15—C16—H16A109.5Cl6—C31—H31107.9
C15—C16—H16B109.5Cl7—C31—H31107.9
H16A—C16—H16B109.5Cl8—C31—H31107.9
C15—C16—H16C109.5Cl5B—C30B—Cl4B101.2 (11)
H16A—C16—H16C109.5Cl5B—C30B—Cl3B133.1 (19)
H16B—C16—H16C109.5Cl4B—C30B—Cl3B106.8 (11)
C15—C17—H17A109.5Cl5B—C30B—H30B104.3
C15—C17—H17B109.5Cl4B—C30B—H30B104.3
H17A—C17—H17B109.5Cl3B—C30B—H30B104.3
C15—C17—H17C109.5Cl6B—C31B—Cl7B112.4 (13)
H17A—C17—H17C109.5Cl6B—C31B—Cl8B108.3 (14)
H17B—C17—H17C109.5Cl7B—C31B—Cl8B109.0 (15)
C15—C18—H18A109.5Cl6B—C31B—H31B109.0
C15—C18—H18B109.5Cl7B—C31B—H31B109.0
H18A—C18—H18B109.5Cl8B—C31B—H31B109.0
C11—P1—C9—C10152.3 (3)C9—P1—C15—C1855.2 (3)
C15—P1—C9—C1092.4 (3)C11—P1—C15—C18165.9 (3)
Ni1—P1—C9—C1030.7 (3)Ni1—P1—C15—C1861.3 (3)
P1—C9—C10—P240.5 (4)C10—P2—C21—C22155.3 (3)
C25—P2—C10—C992.4 (3)C25—P2—C21—C2243.0 (4)
C21—P2—C10—C9151.8 (3)Ni1—P2—C21—C2290.2 (3)
Ni1—P2—C10—C931.1 (3)C10—P2—C21—C2333.5 (4)
C9—P1—C11—C13161.3 (3)C25—P2—C21—C2378.9 (4)
C15—P1—C11—C1349.8 (4)Ni1—P2—C21—C23147.9 (3)
Ni1—P1—C11—C1383.4 (3)C10—P2—C21—C2486.0 (3)
C9—P1—C11—C1239.3 (3)C25—P2—C21—C24161.6 (3)
C15—P1—C11—C1272.2 (3)Ni1—P2—C21—C2428.4 (3)
Ni1—P1—C11—C12154.5 (3)C10—P2—C25—C2760.6 (4)
C9—P1—C11—C1479.8 (3)C21—P2—C25—C27171.5 (4)
C15—P1—C11—C14168.7 (3)Ni1—P2—C25—C2756.1 (4)
Ni1—P1—C11—C1435.4 (3)C10—P2—C25—C28178.4 (3)
C9—P1—C15—C1662.9 (4)C21—P2—C25—C2870.7 (4)
C11—P1—C15—C1647.7 (4)Ni1—P2—C25—C2861.7 (3)
Ni1—P1—C15—C16179.4 (3)C10—P2—C25—C2659.2 (4)
C9—P1—C15—C17170.3 (4)C21—P2—C25—C2651.7 (4)
C11—P1—C15—C1779.1 (4)Ni1—P2—C25—C26175.9 (3)
Ni1—P1—C15—C1753.8 (4)
(lw27) [1,2-Bis(di-tert-butylphosphanyl)ethane-κ2P,P']dichloridonickel(II) top
Crystal data top
[NiCl2(C18H40P2)]F(000) = 960
Mr = 448.05Dx = 1.298 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.1034 (7) ÅCell parameters from 9977 reflections
b = 15.1216 (9) Åθ = 2.4–29.0°
c = 14.5301 (9) ŵ = 1.22 mm1
β = 109.965 (1)°T = 200 K
V = 2293.0 (2) Å3Needle, red
Z = 40.20 × 0.08 × 0.07 mm
Data collection top
Bruker APEXII Quazar
diffractometer
11668 independent reflections
Radiation source: ImuS microsource9616 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
ϕ and ω scansθmax = 28.7°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1515
Tmin = 0.793, Tmax = 0.920k = 1920
30373 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0328P)2 + 1.7022P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
11668 reflectionsΔρmax = 0.51 e Å3
479 parametersΔρmin = 0.43 e Å3
67 restraintsAbsolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.497 (11)
Crystal data top
[NiCl2(C18H40P2)]V = 2293.0 (2) Å3
Mr = 448.05Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.1034 (7) ŵ = 1.22 mm1
b = 15.1216 (9) ÅT = 200 K
c = 14.5301 (9) Å0.20 × 0.08 × 0.07 mm
β = 109.965 (1)°
Data collection top
Bruker APEXII Quazar
diffractometer
11668 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
9616 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.920Rint = 0.037
30373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.51 e Å3
S = 1.03Δρmin = 0.43 e Å3
11668 reflectionsAbsolute structure: Flack (1983), ???? Friedel pairs
479 parametersAbsolute structure parameter: 0.497 (11)
67 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni1_10.46480 (4)1.04090 (3)0.47529 (3)0.02289 (10)
Cl1_10.56346 (9)0.94644 (7)0.41005 (7)0.0386 (2)
Cl2_10.29424 (10)0.95426 (7)0.43790 (8)0.0424 (2)
P1_10.37696 (9)1.12973 (6)0.55408 (7)0.0253 (2)
P2_10.63105 (9)1.12983 (6)0.50540 (6)0.02363 (19)
C9_10.5015 (4)1.2119 (3)0.6146 (3)0.0348 (9)
H9A_10.45971.26760.62310.042*
H9B_10.55281.18980.68050.042*
C10_10.5891 (4)1.2309 (3)0.5588 (3)0.0354 (9)
H10A_10.66841.25870.60310.042*
H10B_10.54721.27340.50570.042*
C11_10.3417 (4)1.0762 (3)0.6604 (3)0.0366 (9)
C12_10.4413 (5)1.0029 (3)0.7020 (4)0.0552 (13)
H12A_10.43800.96070.64990.083*
H12B_10.42240.97200.75480.083*
H12C_10.52711.02900.72780.083*
C13_10.3523 (6)1.1414 (4)0.7437 (4)0.0700 (17)
H13A_10.44111.16160.77260.105*
H13B_10.32611.11200.79390.105*
H13C_10.29631.19230.71770.105*
C14_10.2106 (4)1.0326 (3)0.6299 (3)0.0501 (11)
H14A_10.20320.98940.57800.075*
H14B_10.14391.07780.60570.075*
H14C_10.20011.00250.68650.075*
C15_10.2332 (4)1.1964 (3)0.4768 (3)0.0399 (10)
C16_10.1812 (5)1.2568 (3)0.5390 (5)0.0630 (15)
H16A_10.25221.28980.58540.094*
H16B_10.13881.22100.57520.094*
H16C_10.11941.29840.49630.094*
C17_10.1260 (4)1.1389 (4)0.4139 (4)0.0651 (15)
H17A_10.09791.09890.45560.098*
H17B_10.15621.10420.36910.098*
H17C_10.05401.17630.37590.098*
C18_10.2798 (5)1.2571 (3)0.4114 (4)0.0575 (13)
H18A_10.35111.29340.45230.086*
H18B_10.20941.29560.37330.086*
H18C_10.30851.22110.36670.086*
C21_10.7893 (18)1.0986 (11)0.6028 (13)0.026 (3)0.395 (13)
C22_10.8978 (12)1.1676 (9)0.6190 (11)0.045 (3)0.395 (13)
H22A_10.92331.17010.56070.068*0.395 (13)
H22B_10.97171.15040.67590.068*0.395 (13)
H22C_10.86711.22580.63060.068*0.395 (13)
C23_10.7624 (11)1.0885 (12)0.6990 (8)0.053 (5)0.395 (13)
H23A_10.68731.05050.68820.080*0.395 (13)
H23B_10.74591.14680.72160.080*0.395 (13)
H23C_10.83691.06160.74860.080*0.395 (13)
C24_10.8380 (17)1.0097 (10)0.5773 (14)0.045 (4)0.395 (13)
H24A_10.78020.96210.58180.067*0.395 (13)
H24B_10.92440.99810.62340.067*0.395 (13)
H24C_10.84021.01220.51060.067*0.395 (13)
C21B_10.7810 (14)1.0794 (8)0.5965 (10)0.034 (3)0.605 (13)
C22B_10.8652 (10)1.1531 (6)0.6599 (8)0.057 (3)0.605 (13)
H22D_10.88961.19490.61780.085*0.605 (13)
H22E_10.94251.12700.70700.085*0.605 (13)
H22F_10.81701.18440.69530.085*0.605 (13)
C23B_10.7408 (7)1.0182 (7)0.6648 (6)0.047 (3)0.605 (13)
H23D_10.68520.97140.62630.070*0.605 (13)
H23E_10.69421.05240.69910.070*0.605 (13)
H23F_10.81720.99180.71260.070*0.605 (13)
C24B_10.8627 (12)1.0264 (7)0.5486 (9)0.047 (3)0.605 (13)
H24D_10.80920.98160.50470.070*0.605 (13)
H24E_10.93330.99740.59960.070*0.605 (13)
H24F_10.89761.06670.51110.070*0.605 (13)
C25_10.6639 (4)1.1747 (3)0.3943 (3)0.0357 (9)
C26_10.5365 (5)1.2001 (5)0.3179 (4)0.092 (2)
H26A_10.47811.14940.30480.138*
H26B_10.55031.21770.25730.138*
H26C_10.49911.24960.34240.138*
C27_10.7195 (8)1.1068 (4)0.3423 (5)0.098 (3)
H27A_10.66211.05560.32370.148*
H27B_10.80381.08770.38630.148*
H27C_10.72821.13340.28340.148*
C28_10.7511 (6)1.2544 (4)0.4192 (4)0.0750 (19)
H28A_10.71251.30070.44730.113*
H28B_10.76321.27680.35970.113*
H28C_10.83431.23750.46680.113*
Ni1_20.01605 (4)0.95328 (3)0.03278 (3)0.02298 (10)
Cl1_20.13978 (11)1.05016 (7)0.06309 (9)0.0478 (3)
Cl2_20.09688 (10)1.02515 (8)0.13063 (8)0.0514 (3)
P1_20.18540 (9)0.86700 (6)0.01397 (7)0.02372 (19)
P2_20.07680 (9)0.87348 (6)0.05081 (7)0.0265 (2)
C9_20.1453 (4)0.7732 (3)0.0783 (3)0.0363 (10)
H9A_20.11370.72390.03140.044*
H9B_20.22420.75290.13020.044*
C10_20.0439 (4)0.7948 (3)0.1248 (3)0.0358 (10)
H10A_20.08660.82010.19080.043*
H10B_20.00060.73950.13260.043*
C11_20.3253 (3)0.9243 (3)0.1068 (3)0.0338 (9)
C12_20.3661 (4)1.0085 (3)0.0671 (4)0.0488 (12)
H12A_20.29161.04720.03950.073*
H12B_20.40140.99300.01590.073*
H12C_20.43151.03940.12040.073*
C13_20.4419 (4)0.8638 (3)0.1491 (3)0.0478 (11)
H13A_20.41640.81020.17560.072*
H13B_20.50830.89490.20150.072*
H13C_20.47570.84760.09730.072*
C14_20.2779 (4)0.9529 (5)0.1906 (3)0.0625 (15)
H14A_20.25230.90050.21910.094*
H14B_20.20430.99270.16480.094*
H14C_20.34700.98370.24120.094*
C15_20.2390 (4)0.8099 (3)0.0817 (3)0.0398 (10)
C16_20.3112 (5)0.7231 (3)0.0427 (4)0.0591 (15)
H16A_20.38480.73550.01640.089*
H16B_20.34120.69720.09280.089*
H16C_20.25340.68160.02680.089*
C17_20.3276 (4)0.8689 (3)0.1165 (3)0.0439 (10)
H17A_20.28870.92750.13380.066*
H17B_20.34010.84210.17410.066*
H17C_20.41070.87470.06400.066*
C18_20.1197 (5)0.7892 (4)0.1693 (4)0.0690 (17)
H18A_20.07110.84370.19240.104*
H18B_20.06620.74670.14990.104*
H18C_20.14510.76380.22210.104*
C21_20.1326 (4)0.9303 (3)0.1465 (3)0.0378 (10)
C22_20.1341 (5)0.8656 (4)0.2277 (4)0.0650 (15)
H22A_20.04610.84840.26590.098*
H22B_20.18350.81290.19820.098*
H22C_20.17360.89430.27080.098*
C23_20.0376 (4)1.0052 (3)0.1929 (3)0.0496 (12)
H23A_20.04660.97980.22900.074*
H23B_20.06841.03900.23790.074*
H23C_20.03041.04440.14130.074*
C24_20.2660 (4)0.9709 (3)0.1024 (3)0.0420 (10)
H24A_20.32920.92380.07710.063*
H24B_20.26771.01080.04890.063*
H24C_20.28671.00420.15300.063*
C25_20.2112 (4)0.8033 (3)0.0326 (4)0.0431 (11)
C26_20.1518 (5)0.7383 (3)0.0858 (4)0.0553 (13)
H26A_20.09620.69670.03840.083*
H26B_20.10120.77100.11810.083*
H26C_20.22000.70550.13500.083*
C27_20.3069 (4)0.8609 (3)0.1111 (4)0.0558 (13)
H27A_20.34190.90650.07930.084*
H27B_20.37680.82390.15250.084*
H27C_20.26300.88930.15140.084*
C28_20.2822 (5)0.7497 (3)0.0224 (5)0.0606 (15)
H28A_20.32830.78990.05150.091*
H28B_20.22030.71500.07420.091*
H28C_20.34330.70970.02340.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni1_10.0322 (2)0.0164 (2)0.0192 (2)0.00034 (18)0.00768 (17)0.00137 (18)
Cl1_10.0351 (5)0.0319 (5)0.0428 (5)0.0071 (4)0.0055 (4)0.0160 (5)
Cl2_10.0544 (6)0.0308 (5)0.0502 (6)0.0165 (5)0.0285 (5)0.0127 (5)
P1_10.0284 (5)0.0219 (5)0.0274 (5)0.0029 (4)0.0119 (4)0.0046 (4)
P2_10.0281 (5)0.0227 (5)0.0208 (4)0.0006 (4)0.0093 (4)0.0015 (4)
C9_10.040 (2)0.034 (2)0.034 (2)0.0105 (17)0.0170 (17)0.0159 (18)
C10_10.045 (2)0.025 (2)0.042 (2)0.0061 (17)0.0232 (19)0.0102 (17)
C11_10.038 (2)0.044 (3)0.032 (2)0.0052 (18)0.0171 (18)0.0002 (18)
C12_10.060 (3)0.065 (3)0.047 (3)0.001 (2)0.026 (2)0.023 (2)
C13_10.097 (4)0.080 (4)0.054 (3)0.033 (3)0.053 (3)0.025 (3)
C14_10.058 (3)0.049 (3)0.053 (3)0.012 (2)0.032 (2)0.001 (2)
C15_10.033 (2)0.031 (2)0.052 (3)0.0027 (18)0.0101 (19)0.001 (2)
C16_10.045 (3)0.046 (3)0.101 (5)0.010 (2)0.028 (3)0.003 (3)
C17_10.044 (3)0.054 (3)0.073 (4)0.000 (2)0.013 (2)0.002 (3)
C18_10.054 (3)0.050 (3)0.060 (3)0.012 (2)0.009 (2)0.018 (3)
C21_10.013 (6)0.038 (8)0.024 (7)0.001 (5)0.003 (5)0.004 (6)
C22_10.026 (6)0.063 (8)0.043 (8)0.015 (5)0.005 (5)0.018 (6)
C23_10.041 (6)0.090 (12)0.022 (5)0.011 (7)0.003 (4)0.019 (6)
C24_10.022 (8)0.050 (7)0.055 (10)0.005 (5)0.004 (6)0.001 (7)
C21B_10.034 (5)0.026 (5)0.033 (5)0.007 (4)0.001 (4)0.000 (3)
C22B_10.047 (6)0.057 (6)0.047 (6)0.015 (4)0.007 (4)0.006 (4)
C23B_10.037 (4)0.065 (6)0.033 (4)0.001 (3)0.005 (3)0.016 (4)
C24B_10.024 (5)0.054 (6)0.060 (7)0.002 (4)0.012 (4)0.005 (5)
C25_10.049 (2)0.031 (2)0.032 (2)0.0029 (18)0.0200 (18)0.0081 (17)
C26_10.066 (4)0.156 (7)0.053 (3)0.010 (4)0.017 (3)0.059 (4)
C27_10.202 (8)0.058 (4)0.084 (4)0.019 (4)0.113 (5)0.012 (3)
C28_10.109 (5)0.075 (4)0.069 (4)0.048 (4)0.068 (4)0.022 (3)
Ni1_20.0286 (2)0.0180 (2)0.0205 (2)0.00148 (18)0.00606 (17)0.00289 (18)
Cl1_20.0595 (7)0.0284 (6)0.0607 (7)0.0175 (5)0.0273 (6)0.0140 (5)
Cl2_20.0376 (5)0.0632 (8)0.0520 (6)0.0012 (5)0.0136 (5)0.0368 (6)
P1_20.0310 (5)0.0213 (5)0.0215 (4)0.0010 (4)0.0124 (4)0.0015 (4)
P2_20.0343 (5)0.0192 (5)0.0308 (5)0.0032 (4)0.0173 (4)0.0033 (4)
C9_20.044 (2)0.025 (2)0.051 (3)0.0119 (17)0.029 (2)0.0128 (18)
C10_20.041 (2)0.030 (2)0.047 (2)0.0152 (17)0.0286 (19)0.0197 (18)
C11_20.0239 (18)0.048 (3)0.0252 (19)0.0080 (16)0.0024 (14)0.0032 (17)
C12_20.035 (2)0.034 (2)0.061 (3)0.0091 (18)0.004 (2)0.006 (2)
C13_20.036 (2)0.064 (3)0.043 (2)0.017 (2)0.0129 (19)0.016 (2)
C14_20.035 (2)0.108 (4)0.039 (2)0.002 (3)0.0069 (19)0.035 (3)
C15_20.050 (2)0.042 (3)0.038 (2)0.013 (2)0.029 (2)0.017 (2)
C16_20.082 (4)0.030 (2)0.092 (4)0.001 (2)0.066 (3)0.013 (3)
C17_20.052 (2)0.050 (3)0.043 (2)0.010 (2)0.034 (2)0.004 (2)
C18_20.071 (3)0.096 (4)0.054 (3)0.036 (3)0.039 (3)0.047 (3)
C21_20.042 (2)0.043 (3)0.037 (2)0.0087 (18)0.0254 (18)0.0026 (18)
C22_20.089 (4)0.075 (4)0.055 (3)0.028 (3)0.055 (3)0.023 (3)
C23_20.050 (3)0.063 (3)0.040 (2)0.010 (2)0.022 (2)0.017 (2)
C24_20.041 (2)0.035 (2)0.058 (3)0.0068 (18)0.026 (2)0.005 (2)
C25_20.044 (2)0.025 (2)0.065 (3)0.0056 (18)0.024 (2)0.009 (2)
C26_20.056 (3)0.039 (3)0.077 (4)0.009 (2)0.031 (3)0.023 (3)
C27_20.043 (2)0.043 (3)0.068 (3)0.001 (2)0.002 (2)0.013 (3)
C28_20.059 (3)0.030 (3)0.111 (5)0.007 (2)0.053 (3)0.003 (3)
Geometric parameters (Å, º) top
Ni1_1—P1_12.1975 (10)C27_1—H27A_10.9800
Ni1_1—Cl1_12.2018 (10)C27_1—H27B_10.9800
Ni1_1—P2_12.2037 (10)C27_1—H27C_10.9800
Ni1_1—Cl2_12.2125 (11)C28_1—H28A_10.9800
P1_1—C9_11.844 (4)C28_1—H28B_10.9800
P1_1—C15_11.898 (4)C28_1—H28C_10.9800
P1_1—C11_11.900 (4)Ni1_2—Cl1_22.1941 (11)
P2_1—C10_11.844 (4)Ni1_2—P1_22.1971 (10)
P2_1—C21B_11.898 (17)Ni1_2—P2_22.2021 (10)
P2_1—C25_11.898 (4)Ni1_2—Cl2_22.2090 (11)
P2_1—C21_11.90 (2)P1_2—C9_21.835 (4)
C9_1—C10_11.492 (5)P1_2—C11_21.884 (4)
C9_1—H9A_10.9900P1_2—C15_21.897 (4)
C9_1—H9B_10.9900P2_2—C10_21.840 (4)
C10_1—H10A_10.9900P2_2—C25_21.894 (4)
C10_1—H10B_10.9900P2_2—C21_21.910 (4)
C11_1—C14_11.520 (6)C9_2—C10_21.534 (5)
C11_1—C13_11.534 (6)C9_2—H9A_20.9900
C11_1—C12_11.537 (6)C9_2—H9B_20.9900
C12_1—H12A_10.9800C10_2—H10A_20.9900
C12_1—H12B_10.9800C10_2—H10B_20.9900
C12_1—H12C_10.9800C11_2—C12_21.529 (6)
C13_1—H13A_10.9800C11_2—C13_21.533 (5)
C13_1—H13B_10.9800C11_2—C14_21.545 (5)
C13_1—H13C_10.9800C12_2—H12A_20.9800
C14_1—H14A_10.9800C12_2—H12B_20.9800
C14_1—H14B_10.9800C12_2—H12C_20.9800
C14_1—H14C_10.9800C13_2—H13A_20.9800
C15_1—C17_11.505 (6)C13_2—H13B_20.9800
C15_1—C16_11.531 (7)C13_2—H13C_20.9800
C15_1—C18_11.532 (7)C14_2—H14A_20.9800
C16_1—H16A_10.9800C14_2—H14B_20.9800
C16_1—H16B_10.9800C14_2—H14C_20.9800
C16_1—H16C_10.9800C15_2—C18_21.524 (6)
C17_1—H17A_10.9800C15_2—C17_21.537 (5)
C17_1—H17B_10.9800C15_2—C16_21.540 (7)
C17_1—H17C_10.9800C16_2—H16A_20.9800
C18_1—H18A_10.9800C16_2—H16B_20.9800
C18_1—H18B_10.9800C16_2—H16C_20.9800
C18_1—H18C_10.9800C17_2—H17A_20.9800
C21_1—C23_11.533 (12)C17_2—H17B_20.9800
C21_1—C24_11.540 (12)C17_2—H17C_20.9800
C21_1—C22_11.550 (12)C18_2—H18A_20.9800
C22_1—H22A_10.9800C18_2—H18B_20.9800
C22_1—H22B_10.9800C18_2—H18C_20.9800
C22_1—H22C_10.9800C21_2—C24_21.527 (5)
C23_1—H23A_10.9800C21_2—C23_21.537 (6)
C23_1—H23B_10.9800C21_2—C22_21.537 (6)
C23_1—H23C_10.9800C22_2—H22A_20.9800
C24_1—H24A_10.9800C22_2—H22B_20.9800
C24_1—H24B_10.9800C22_2—H22C_20.9800
C24_1—H24C_10.9800C23_2—H23A_20.9800
C21B_1—C23B_11.530 (11)C23_2—H23B_20.9800
C21B_1—C22B_11.542 (10)C23_2—H23C_20.9800
C21B_1—C24B_11.543 (11)C24_2—H24A_20.9800
C22B_1—H22D_10.9800C24_2—H24B_20.9800
C22B_1—H22E_10.9800C24_2—H24C_20.9800
C22B_1—H22F_10.9800C25_2—C28_21.532 (6)
C23B_1—H23D_10.9800C25_2—C26_21.533 (6)
C23B_1—H23E_10.9800C25_2—C27_21.537 (7)
C23B_1—H23F_10.9800C26_2—H26A_20.9800
C24B_1—H24D_10.9800C26_2—H26B_20.9800
C24B_1—H24E_10.9800C26_2—H26C_20.9800
C24B_1—H24F_10.9800C27_2—H27A_20.9800
C25_1—C28_11.511 (6)C27_2—H27B_20.9800
C25_1—C26_11.519 (7)C27_2—H27C_20.9800
C25_1—C27_11.525 (6)C28_2—H28A_20.9800
C26_1—H26A_10.9800C28_2—H28B_20.9800
C26_1—H26B_10.9800C28_2—H28C_20.9800
C26_1—H26C_10.9800
P1_1—Ni1_1—Cl1_1174.52 (4)C25_1—C28_1—H28B_1109.5
P1_1—Ni1_1—P2_190.82 (4)H28A_1—C28_1—H28B_1109.5
Cl1_1—Ni1_1—P2_188.57 (4)C25_1—C28_1—H28C_1109.5
P1_1—Ni1_1—Cl2_189.71 (4)H28A_1—C28_1—H28C_1109.5
Cl1_1—Ni1_1—Cl2_191.16 (4)H28B_1—C28_1—H28C_1109.5
P2_1—Ni1_1—Cl2_1177.26 (4)Cl1_2—Ni1_2—P1_2172.57 (5)
C9_1—P1_1—C15_1105.48 (19)Cl1_2—Ni1_2—P2_289.48 (4)
C9_1—P1_1—C11_1103.19 (18)P1_2—Ni1_2—P2_290.95 (4)
C15_1—P1_1—C11_1110.04 (19)Cl1_2—Ni1_2—Cl2_290.47 (4)
C9_1—P1_1—Ni1_1105.44 (13)P1_2—Ni1_2—Cl2_289.90 (4)
C15_1—P1_1—Ni1_1116.71 (15)P2_2—Ni1_2—Cl2_2173.84 (5)
C11_1—P1_1—Ni1_1114.50 (14)C9_2—P1_2—C11_2106.0 (2)
C10_1—P2_1—C21B_1109.1 (4)C9_2—P1_2—C15_2102.27 (19)
C10_1—P2_1—C25_1102.19 (19)C11_2—P1_2—C15_2110.23 (17)
C21B_1—P2_1—C25_1111.1 (3)C9_2—P1_2—Ni1_2106.60 (13)
C10_1—P2_1—C21_1101.2 (5)C11_2—P1_2—Ni1_2110.94 (13)
C21B_1—P2_1—C21_19.3 (7)C15_2—P1_2—Ni1_2119.56 (15)
C25_1—P2_1—C21_1108.9 (4)C10_2—P2_2—C25_2105.6 (2)
C10_1—P2_1—Ni1_1105.91 (13)C10_2—P2_2—C21_2102.61 (18)
C21B_1—P2_1—Ni1_1111.7 (3)C25_2—P2_2—C21_2109.71 (18)
C25_1—P2_1—Ni1_1116.15 (14)C10_2—P2_2—Ni1_2106.98 (12)
C21_1—P2_1—Ni1_1119.7 (4)C25_2—P2_2—Ni1_2111.67 (15)
C10_1—C9_1—P1_1113.1 (3)C21_2—P2_2—Ni1_2118.98 (14)
C10_1—C9_1—H9A_1109.0C10_2—C9_2—P1_2113.7 (3)
P1_1—C9_1—H9A_1109.0C10_2—C9_2—H9A_2108.8
C10_1—C9_1—H9B_1109.0P1_2—C9_2—H9A_2108.8
P1_1—C9_1—H9B_1109.0C10_2—C9_2—H9B_2108.8
H9A_1—C9_1—H9B_1107.8P1_2—C9_2—H9B_2108.8
C9_1—C10_1—P2_1112.0 (3)H9A_2—C9_2—H9B_2107.7
C9_1—C10_1—H10A_1109.2C9_2—C10_2—P2_2112.2 (3)
P2_1—C10_1—H10A_1109.2C9_2—C10_2—H10A_2109.2
C9_1—C10_1—H10B_1109.2P2_2—C10_2—H10A_2109.2
P2_1—C10_1—H10B_1109.2C9_2—C10_2—H10B_2109.2
H10A_1—C10_1—H10B_1107.9P2_2—C10_2—H10B_2109.2
C14_1—C11_1—C13_1108.4 (4)H10A_2—C10_2—H10B_2107.9
C14_1—C11_1—C12_1106.9 (4)C12_2—C11_2—C13_2109.3 (3)
C13_1—C11_1—C12_1107.7 (4)C12_2—C11_2—C14_2106.8 (4)
C14_1—C11_1—P1_1113.0 (3)C13_2—C11_2—C14_2108.6 (3)
C13_1—C11_1—P1_1112.7 (3)C12_2—C11_2—P1_2113.0 (3)
C12_1—C11_1—P1_1107.9 (3)C13_2—C11_2—P1_2112.9 (3)
C11_1—C12_1—H12A_1109.5C14_2—C11_2—P1_2105.9 (3)
C11_1—C12_1—H12B_1109.5C11_2—C12_2—H12A_2109.5
H12A_1—C12_1—H12B_1109.5C11_2—C12_2—H12B_2109.5
C11_1—C12_1—H12C_1109.5H12A_2—C12_2—H12B_2109.5
H12A_1—C12_1—H12C_1109.5C11_2—C12_2—H12C_2109.5
H12B_1—C12_1—H12C_1109.5H12A_2—C12_2—H12C_2109.5
C11_1—C13_1—H13A_1109.5H12B_2—C12_2—H12C_2109.5
C11_1—C13_1—H13B_1109.5C11_2—C13_2—H13A_2109.5
H13A_1—C13_1—H13B_1109.5C11_2—C13_2—H13B_2109.5
C11_1—C13_1—H13C_1109.5H13A_2—C13_2—H13B_2109.5
H13A_1—C13_1—H13C_1109.5C11_2—C13_2—H13C_2109.5
H13B_1—C13_1—H13C_1109.5H13A_2—C13_2—H13C_2109.5
C11_1—C14_1—H14A_1109.5H13B_2—C13_2—H13C_2109.5
C11_1—C14_1—H14B_1109.5C11_2—C14_2—H14A_2109.5
H14A_1—C14_1—H14B_1109.5C11_2—C14_2—H14B_2109.5
C11_1—C14_1—H14C_1109.5H14A_2—C14_2—H14B_2109.5
H14A_1—C14_1—H14C_1109.5C11_2—C14_2—H14C_2109.5
H14B_1—C14_1—H14C_1109.5H14A_2—C14_2—H14C_2109.5
C17_1—C15_1—C16_1108.9 (4)H14B_2—C14_2—H14C_2109.5
C17_1—C15_1—C18_1109.5 (4)C18_2—C15_2—C17_2108.4 (4)
C16_1—C15_1—C18_1106.5 (4)C18_2—C15_2—C16_2109.1 (4)
C17_1—C15_1—P1_1112.6 (3)C17_2—C15_2—C16_2107.8 (4)
C16_1—C15_1—P1_1112.2 (3)C18_2—C15_2—P1_2107.8 (3)
C18_1—C15_1—P1_1107.0 (3)C17_2—C15_2—P1_2111.9 (3)
C15_1—C16_1—H16A_1109.5C16_2—C15_2—P1_2111.8 (3)
C15_1—C16_1—H16B_1109.5C15_2—C16_2—H16A_2109.5
H16A_1—C16_1—H16B_1109.5C15_2—C16_2—H16B_2109.5
C15_1—C16_1—H16C_1109.5H16A_2—C16_2—H16B_2109.5
H16A_1—C16_1—H16C_1109.5C15_2—C16_2—H16C_2109.5
H16B_1—C16_1—H16C_1109.5H16A_2—C16_2—H16C_2109.5
C15_1—C17_1—H17A_1109.5H16B_2—C16_2—H16C_2109.5
C15_1—C17_1—H17B_1109.5C15_2—C17_2—H17A_2109.5
H17A_1—C17_1—H17B_1109.5C15_2—C17_2—H17B_2109.5
C15_1—C17_1—H17C_1109.5H17A_2—C17_2—H17B_2109.5
H17A_1—C17_1—H17C_1109.5C15_2—C17_2—H17C_2109.5
H17B_1—C17_1—H17C_1109.5H17A_2—C17_2—H17C_2109.5
C15_1—C18_1—H18A_1109.5H17B_2—C17_2—H17C_2109.5
C15_1—C18_1—H18B_1109.5C15_2—C18_2—H18A_2109.5
H18A_1—C18_1—H18B_1109.5C15_2—C18_2—H18B_2109.5
C15_1—C18_1—H18C_1109.5H18A_2—C18_2—H18B_2109.5
H18A_1—C18_1—H18C_1109.5C15_2—C18_2—H18C_2109.5
H18B_1—C18_1—H18C_1109.5H18A_2—C18_2—H18C_2109.5
C23_1—C21_1—C24_1109.0 (12)H18B_2—C18_2—H18C_2109.5
C23_1—C21_1—C22_1108.2 (11)C24_2—C21_2—C23_2108.1 (3)
C24_1—C21_1—C22_1107.8 (12)C24_2—C21_2—C22_2108.4 (3)
C23_1—C21_1—P2_1106.6 (10)C23_2—C21_2—C22_2108.5 (4)
C24_1—C21_1—P2_1110.4 (11)C24_2—C21_2—P2_2112.6 (3)
C22_1—C21_1—P2_1114.7 (11)C23_2—C21_2—P2_2107.8 (3)
C23B_1—C21B_1—C22B_1107.5 (9)C22_2—C21_2—P2_2111.3 (3)
C23B_1—C21B_1—C24B_1109.0 (9)C21_2—C22_2—H22A_2109.5
C22B_1—C21B_1—C24B_1108.3 (10)C21_2—C22_2—H22B_2109.5
C23B_1—C21B_1—P2_1108.3 (8)H22A_2—C22_2—H22B_2109.5
C22B_1—C21B_1—P2_1109.6 (8)C21_2—C22_2—H22C_2109.5
C24B_1—C21B_1—P2_1113.9 (9)H22A_2—C22_2—H22C_2109.5
C21B_1—C22B_1—H22D_1109.5H22B_2—C22_2—H22C_2109.5
C21B_1—C22B_1—H22E_1109.5C21_2—C23_2—H23A_2109.5
H22D_1—C22B_1—H22E_1109.5C21_2—C23_2—H23B_2109.5
C21B_1—C22B_1—H22F_1109.5H23A_2—C23_2—H23B_2109.5
H22D_1—C22B_1—H22F_1109.5C21_2—C23_2—H23C_2109.5
H22E_1—C22B_1—H22F_1109.5H23A_2—C23_2—H23C_2109.5
C21B_1—C23B_1—H23D_1109.5H23B_2—C23_2—H23C_2109.5
C21B_1—C23B_1—H23E_1109.5C21_2—C24_2—H24A_2109.5
H23D_1—C23B_1—H23E_1109.5C21_2—C24_2—H24B_2109.5
C21B_1—C23B_1—H23F_1109.5H24A_2—C24_2—H24B_2109.5
H23D_1—C23B_1—H23F_1109.5C21_2—C24_2—H24C_2109.5
H23E_1—C23B_1—H23F_1109.5H24A_2—C24_2—H24C_2109.5
C21B_1—C24B_1—H24D_1109.5H24B_2—C24_2—H24C_2109.5
C21B_1—C24B_1—H24E_1109.5C28_2—C25_2—C26_2108.0 (4)
H24D_1—C24B_1—H24E_1109.5C28_2—C25_2—C27_2109.8 (4)
C21B_1—C24B_1—H24F_1109.5C26_2—C25_2—C27_2107.3 (4)
H24D_1—C24B_1—H24F_1109.5C28_2—C25_2—P2_2113.4 (4)
H24E_1—C24B_1—H24F_1109.5C26_2—C25_2—P2_2107.5 (3)
C28_1—C25_1—C26_1109.5 (5)C27_2—C25_2—P2_2110.6 (3)
C28_1—C25_1—C27_1108.8 (4)C25_2—C26_2—H26A_2109.5
C26_1—C25_1—C27_1104.0 (5)C25_2—C26_2—H26B_2109.5
C28_1—C25_1—P2_1112.0 (3)H26A_2—C26_2—H26B_2109.5
C26_1—C25_1—P2_1108.1 (3)C25_2—C26_2—H26C_2109.5
C27_1—C25_1—P2_1114.1 (3)H26A_2—C26_2—H26C_2109.5
C25_1—C26_1—H26A_1109.5H26B_2—C26_2—H26C_2109.5
C25_1—C26_1—H26B_1109.5C25_2—C27_2—H27A_2109.5
H26A_1—C26_1—H26B_1109.5C25_2—C27_2—H27B_2109.5
C25_1—C26_1—H26C_1109.5H27A_2—C27_2—H27B_2109.5
H26A_1—C26_1—H26C_1109.5C25_2—C27_2—H27C_2109.5
H26B_1—C26_1—H26C_1109.5H27A_2—C27_2—H27C_2109.5
C25_1—C27_1—H27A_1109.5H27B_2—C27_2—H27C_2109.5
C25_1—C27_1—H27B_1109.5C25_2—C28_2—H28A_2109.5
H27A_1—C27_1—H27B_1109.5C25_2—C28_2—H28B_2109.5
C25_1—C27_1—H27C_1109.5H28A_2—C28_2—H28B_2109.5
H27A_1—C27_1—H27C_1109.5C25_2—C28_2—H28C_2109.5
H27B_1—C27_1—H27C_1109.5H28A_2—C28_2—H28C_2109.5
C25_1—C28_1—H28A_1109.5H28B_2—C28_2—H28C_2109.5
Cl1_1—Ni1_1—P1_1—C9_174.2 (5)C21B_1—P2_1—C25_1—C28_168.3 (5)
P2_1—Ni1_1—P1_1—C9_19.42 (15)C21_1—P2_1—C25_1—C28_158.7 (6)
Cl2_1—Ni1_1—P1_1—C9_1173.27 (15)Ni1_1—P2_1—C25_1—C28_1162.6 (3)
Cl1_1—Ni1_1—P1_1—C15_1169.1 (5)C10_1—P2_1—C25_1—C26_172.9 (4)
P2_1—Ni1_1—P1_1—C15_1107.27 (15)C21B_1—P2_1—C25_1—C26_1170.9 (5)
Cl2_1—Ni1_1—P1_1—C15_170.05 (16)C21_1—P2_1—C25_1—C26_1179.4 (6)
Cl1_1—Ni1_1—P1_1—C11_138.5 (5)Ni1_1—P2_1—C25_1—C26_141.9 (4)
P2_1—Ni1_1—P1_1—C11_1122.12 (14)C10_1—P2_1—C25_1—C27_1172.0 (4)
Cl2_1—Ni1_1—P1_1—C11_160.56 (15)C21B_1—P2_1—C25_1—C27_155.8 (6)
P1_1—Ni1_1—P2_1—C10_18.71 (15)C21_1—P2_1—C25_1—C27_165.5 (7)
Cl1_1—Ni1_1—P2_1—C10_1176.74 (15)Ni1_1—P2_1—C25_1—C27_173.2 (4)
Cl2_1—Ni1_1—P2_1—C10_192.4 (9)Cl1_2—Ni1_2—P1_2—C9_2100.8 (4)
P1_1—Ni1_1—P2_1—C21B_1109.9 (4)P2_2—Ni1_2—P1_2—C9_27.60 (16)
Cl1_1—Ni1_1—P2_1—C21B_164.6 (4)Cl2_2—Ni1_2—P1_2—C9_2166.30 (16)
Cl2_1—Ni1_1—P2_1—C21B_1149.0 (10)Cl1_2—Ni1_2—P1_2—C11_214.1 (4)
P1_1—Ni1_1—P2_1—C25_1121.33 (15)P2_2—Ni1_2—P1_2—C11_2107.33 (14)
Cl1_1—Ni1_1—P2_1—C25_164.12 (15)Cl2_2—Ni1_2—P1_2—C11_278.77 (14)
Cl2_1—Ni1_1—P2_1—C25_120.3 (10)Cl1_2—Ni1_2—P1_2—C15_2144.1 (3)
P1_1—Ni1_1—P2_1—C21_1104.6 (5)P2_2—Ni1_2—P1_2—C15_2122.69 (15)
Cl1_1—Ni1_1—P2_1—C21_170.0 (5)Cl2_2—Ni1_2—P1_2—C15_251.21 (15)
Cl2_1—Ni1_1—P2_1—C21_1154.3 (10)Cl1_2—Ni1_2—P2_2—C10_2163.95 (16)
C15_1—P1_1—C9_1—C10_192.8 (3)P1_2—Ni1_2—P2_2—C10_28.64 (16)
C11_1—P1_1—C9_1—C10_1151.7 (3)Cl2_2—Ni1_2—P2_2—C10_2106.5 (4)
Ni1_1—P1_1—C9_1—C10_131.3 (3)Cl1_2—Ni1_2—P2_2—C25_280.95 (15)
P1_1—C9_1—C10_1—P2_140.4 (4)P1_2—Ni1_2—P2_2—C25_2106.47 (15)
C21B_1—P2_1—C10_1—C9_190.0 (4)Cl2_2—Ni1_2—P2_2—C25_28.6 (5)
C25_1—P2_1—C10_1—C9_1152.4 (3)Cl1_2—Ni1_2—P2_2—C21_248.47 (15)
C21_1—P2_1—C10_1—C9_195.2 (5)P1_2—Ni1_2—P2_2—C21_2124.11 (15)
Ni1_1—P2_1—C10_1—C9_130.3 (3)Cl2_2—Ni1_2—P2_2—C21_2138.0 (4)
C9_1—P1_1—C11_1—C14_1157.8 (3)C11_2—P1_2—C9_2—C10_291.7 (3)
C15_1—P1_1—C11_1—C14_145.7 (4)C15_2—P1_2—C9_2—C10_2152.8 (3)
Ni1_1—P1_1—C11_1—C14_188.1 (3)Ni1_2—P1_2—C9_2—C10_226.6 (4)
C9_1—P1_1—C11_1—C13_134.5 (4)P1_2—C9_2—C10_2—P2_234.9 (4)
C15_1—P1_1—C11_1—C13_177.7 (4)C25_2—P2_2—C10_2—C9_292.2 (3)
Ni1_1—P1_1—C11_1—C13_1148.5 (3)C21_2—P2_2—C10_2—C9_2152.9 (3)
C9_1—P1_1—C11_1—C12_184.2 (3)Ni1_2—P2_2—C10_2—C9_226.9 (4)
C15_1—P1_1—C11_1—C12_1163.6 (3)C9_2—P1_2—C11_2—C12_2176.2 (3)
Ni1_1—P1_1—C11_1—C12_129.8 (3)C15_2—P1_2—C11_2—C12_273.9 (3)
C9_1—P1_1—C15_1—C17_1174.3 (4)Ni1_2—P1_2—C11_2—C12_260.9 (3)
C11_1—P1_1—C15_1—C17_175.1 (4)C9_2—P1_2—C11_2—C13_259.1 (3)
Ni1_1—P1_1—C15_1—C17_157.6 (4)C15_2—P1_2—C11_2—C13_250.8 (3)
C9_1—P1_1—C15_1—C16_162.5 (4)Ni1_2—P1_2—C11_2—C13_2174.4 (2)
C11_1—P1_1—C15_1—C16_148.2 (4)C9_2—P1_2—C11_2—C14_259.6 (4)
Ni1_1—P1_1—C15_1—C16_1179.1 (3)C15_2—P1_2—C11_2—C14_2169.6 (3)
C9_1—P1_1—C15_1—C18_154.0 (4)Ni1_2—P1_2—C11_2—C14_255.7 (4)
C11_1—P1_1—C15_1—C18_1164.6 (3)C9_2—P1_2—C15_2—C18_284.4 (4)
Ni1_1—P1_1—C15_1—C18_162.7 (3)C11_2—P1_2—C15_2—C18_2163.3 (3)
C10_1—P2_1—C21_1—C23_157.0 (9)Ni1_2—P1_2—C15_2—C18_233.0 (4)
C21B_1—P2_1—C21_1—C23_191 (4)C9_2—P1_2—C15_2—C17_2156.5 (3)
C25_1—P2_1—C21_1—C23_1164.2 (8)C11_2—P1_2—C15_2—C17_244.2 (4)
Ni1_1—P2_1—C21_1—C23_158.8 (10)Ni1_2—P1_2—C15_2—C17_286.2 (3)
C10_1—P2_1—C21_1—C24_1175.2 (9)C9_2—P1_2—C15_2—C16_235.5 (4)
C21B_1—P2_1—C21_1—C24_127 (3)C11_2—P1_2—C15_2—C16_276.8 (3)
C25_1—P2_1—C21_1—C24_177.6 (10)Ni1_2—P1_2—C15_2—C16_2152.9 (3)
Ni1_1—P2_1—C21_1—C24_159.4 (10)C10_2—P2_2—C21_2—C24_2157.1 (3)
C10_1—P2_1—C21_1—C22_162.7 (10)C25_2—P2_2—C21_2—C24_245.2 (4)
C21B_1—P2_1—C21_1—C22_1149 (5)Ni1_2—P2_2—C21_2—C24_285.1 (3)
C25_1—P2_1—C21_1—C22_144.5 (11)C10_2—P2_2—C21_2—C23_283.8 (3)
Ni1_1—P2_1—C21_1—C22_1178.5 (8)C25_2—P2_2—C21_2—C23_2164.3 (3)
C10_1—P2_1—C21B_1—C23B_187.0 (7)Ni1_2—P2_2—C21_2—C23_234.0 (3)
C25_1—P2_1—C21B_1—C23B_1161.1 (6)C10_2—P2_2—C21_2—C22_235.2 (4)
C21_1—P2_1—C21B_1—C23B_1120 (4)C25_2—P2_2—C21_2—C22_276.8 (4)
Ni1_1—P2_1—C21B_1—C23B_129.7 (7)Ni1_2—P2_2—C21_2—C22_2152.9 (3)
C10_1—P2_1—C21B_1—C22B_130.0 (8)C10_2—P2_2—C25_2—C28_266.5 (3)
C25_1—P2_1—C21B_1—C22B_181.9 (8)C21_2—P2_2—C25_2—C28_243.4 (4)
C21_1—P2_1—C21B_1—C22B_13 (3)Ni1_2—P2_2—C25_2—C28_2177.6 (3)
Ni1_1—P2_1—C21B_1—C22B_1146.7 (7)C10_2—P2_2—C25_2—C26_252.9 (4)
C10_1—P2_1—C21B_1—C24B_1151.5 (7)C21_2—P2_2—C25_2—C26_2162.8 (3)
C25_1—P2_1—C21B_1—C24B_139.6 (8)Ni1_2—P2_2—C25_2—C26_263.1 (3)
C21_1—P2_1—C21B_1—C24B_1118 (4)C10_2—P2_2—C25_2—C27_2169.7 (3)
Ni1_1—P2_1—C21B_1—C24B_191.8 (7)C21_2—P2_2—C25_2—C27_280.4 (4)
C10_1—P2_1—C25_1—C28_147.9 (4)Ni1_2—P2_2—C25_2—C27_253.7 (3)
(msc11) [1,2-Bis(di-tert-butylphosphanyl)ethane-κ2P,P']dibromidonickel(II) top
Crystal data top
[NiBr2(C18H40P2)]F(000) = 1104
Mr = 536.97Dx = 1.569 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 20.3765 (14) ÅCell parameters from 2012 reflections
b = 8.1817 (6) ŵ = 4.51 mm1
c = 14.7392 (10) ÅT = 200 K
β = 112.272 (1)°Polyhedron, dark red
V = 2273.9 (3) Å30.22 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3024 independent reflections
Radiation source: fine-focus sealed tube2676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2613
Tmin = 0.42, Tmax = 0.67k = 410
3740 measured reflectionsl = 1718
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0502P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.004
3024 reflectionsΔρmax = 0.58 e Å3
220 parametersΔρmin = 0.50 e Å3
2 restraintsAbsolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.033 (12)
Crystal data top
[NiBr2(C18H40P2)]V = 2273.9 (3) Å3
Mr = 536.97Z = 4
Monoclinic, CcMo Kα radiation
a = 20.3765 (14) ŵ = 4.51 mm1
b = 8.1817 (6) ÅT = 200 K
c = 14.7392 (10) Å0.22 × 0.16 × 0.12 mm
β = 112.272 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3024 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2676 reflections with I > 2σ(I)
Tmin = 0.42, Tmax = 0.67Rint = 0.032
3740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.079Δρmax = 0.58 e Å3
S = 0.99Δρmin = 0.50 e Å3
3024 reflectionsAbsolute structure: Flack (1983), ???? Friedel pairs
220 parametersAbsolute structure parameter: 0.033 (12)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.86806 (3)0.23380 (6)0.56885 (4)0.02888 (16)
Br20.69196 (4)0.23502 (9)0.49396 (5)0.0412 (2)
Ni30.78552 (4)0.34430 (7)0.62955 (5)0.01845 (17)
P40.86805 (8)0.50060 (16)0.73702 (10)0.0179 (3)
P50.71332 (8)0.39128 (17)0.70768 (11)0.0198 (3)
C10.8370 (3)0.5523 (7)0.8353 (4)0.0228 (13)
H1A0.85750.47400.89000.027*
H1B0.85410.66290.86050.027*
C30.9609 (3)0.4275 (7)0.8114 (4)0.0242 (13)
C20.7561 (3)0.5483 (7)0.8008 (4)0.0242 (13)
H2A0.73720.65680.77350.029*
H2B0.74320.52890.85820.029*
C110.7094 (3)0.1981 (7)0.7758 (4)0.0251 (13)
C140.6740 (4)0.0552 (7)0.7080 (5)0.0314 (15)
H14A0.62350.07870.67330.047*
H14B0.67950.04460.74700.047*
H14C0.69640.03990.66040.047*
C130.6728 (5)0.2236 (8)0.8494 (6)0.0419 (19)
H13A0.69240.32100.88910.063*
H13B0.68110.12790.89230.063*
H13C0.62170.23810.81350.063*
C120.7858 (4)0.1450 (8)0.8339 (5)0.0363 (16)
H12A0.78580.04410.86970.054*
H12B0.81060.23120.88050.054*
H12C0.81000.12580.78870.054*
C100.7998 (4)0.7792 (7)0.6417 (6)0.0356 (16)
H10A0.76380.69970.60410.053*
H10B0.79830.87390.60030.053*
H10C0.79030.81470.69900.053*
C90.9260 (4)0.8221 (7)0.7428 (5)0.0313 (14)
H9A0.92310.92550.70790.047*
H9B0.97400.77740.76250.047*
H9C0.91510.84140.80120.047*
C80.8889 (4)0.6687 (7)0.5835 (5)0.0318 (15)
H8A0.93630.62070.60260.048*
H8B0.88720.77210.54910.048*
H8C0.85370.59310.54010.048*
C70.8727 (3)0.7005 (7)0.6753 (5)0.0248 (14)
C150.6208 (3)0.4818 (7)0.6466 (5)0.0312 (14)
C60.9953 (3)0.5201 (7)0.9083 (4)0.0317 (15)
H6A0.99920.63620.89470.048*
H6B1.04270.47550.94470.048*
H6C0.96600.50780.94740.048*
C180.5971 (4)0.5732 (8)0.7209 (6)0.0433 (19)
H18A0.54800.61000.68800.065*
H18B0.62800.66800.74680.065*
H18C0.60050.49950.77490.065*
C170.6229 (4)0.6035 (9)0.5693 (6)0.0433 (18)
H17A0.57580.65190.53640.065*
H17B0.63690.54690.52090.065*
H17C0.65730.68990.60080.065*
C160.5645 (3)0.3520 (8)0.5971 (5)0.0351 (15)
H16A0.57910.28720.55200.053*
H16B0.51910.40540.56050.053*
H16C0.55930.28010.64720.053*
C51.0111 (3)0.4395 (7)0.7539 (5)0.0315 (14)
H5A1.05780.39490.79410.047*
H5B1.01620.55420.73860.047*
H5C0.99100.37680.69290.047*
C40.9571 (4)0.2448 (7)0.8375 (5)0.0327 (15)
H4A0.92960.23450.87920.049*
H4B1.00520.20300.87280.049*
H4C0.93420.18170.77720.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0324 (4)0.0317 (3)0.0267 (3)0.0010 (3)0.0159 (3)0.0055 (3)
Br20.0304 (4)0.0645 (5)0.0278 (4)0.0184 (4)0.0100 (3)0.0205 (3)
Ni30.0198 (4)0.0197 (3)0.0166 (3)0.0038 (3)0.0076 (3)0.0040 (3)
P40.0185 (8)0.0179 (6)0.0177 (7)0.0012 (6)0.0075 (6)0.0016 (6)
P50.0188 (8)0.0195 (7)0.0214 (7)0.0025 (6)0.0082 (6)0.0030 (6)
C10.020 (3)0.026 (3)0.028 (3)0.008 (3)0.016 (3)0.009 (3)
C30.020 (3)0.024 (3)0.027 (3)0.000 (3)0.007 (3)0.002 (3)
C20.022 (3)0.022 (3)0.032 (3)0.005 (3)0.014 (3)0.007 (3)
C110.027 (3)0.024 (3)0.024 (3)0.009 (3)0.009 (3)0.001 (2)
C140.031 (4)0.023 (3)0.039 (4)0.008 (3)0.013 (3)0.007 (3)
C130.048 (5)0.045 (4)0.040 (4)0.013 (4)0.026 (4)0.002 (3)
C120.032 (4)0.035 (3)0.036 (4)0.007 (3)0.006 (3)0.008 (3)
C100.032 (4)0.028 (3)0.047 (4)0.008 (3)0.015 (4)0.013 (3)
C90.030 (4)0.021 (3)0.036 (4)0.000 (3)0.005 (3)0.004 (3)
C80.038 (4)0.033 (3)0.024 (3)0.000 (3)0.011 (3)0.009 (3)
C70.022 (4)0.023 (3)0.034 (4)0.001 (2)0.016 (3)0.001 (2)
C150.018 (3)0.032 (3)0.039 (4)0.006 (3)0.005 (3)0.002 (3)
C60.022 (4)0.032 (3)0.031 (4)0.007 (3)0.002 (3)0.004 (3)
C180.025 (4)0.038 (4)0.070 (5)0.003 (3)0.022 (4)0.016 (4)
C170.021 (4)0.044 (4)0.056 (5)0.004 (3)0.005 (3)0.019 (4)
C160.019 (3)0.043 (4)0.039 (4)0.006 (3)0.006 (3)0.004 (3)
C50.017 (3)0.033 (3)0.046 (4)0.003 (3)0.014 (3)0.003 (3)
C40.037 (4)0.029 (3)0.027 (4)0.003 (3)0.007 (3)0.001 (3)
Geometric parameters (Å, º) top
Br1—Ni32.3638 (9)C10—H10B0.9800
Br2—Ni32.3537 (10)C10—H10C0.9800
Ni3—P52.2186 (16)C9—C71.530 (9)
Ni3—P42.2256 (16)C9—H9A0.9800
P4—C11.837 (5)C9—H9B0.9800
P4—C31.889 (6)C9—H9C0.9800
P4—C71.891 (6)C8—C71.533 (8)
P5—C21.841 (6)C8—H8A0.9800
P5—C111.890 (6)C8—H8B0.9800
P5—C151.904 (6)C8—H8C0.9800
C1—C21.529 (8)C15—C171.526 (9)
C1—H1A0.9900C15—C161.530 (9)
C1—H1B0.9900C15—C181.546 (9)
C3—C61.532 (8)C6—H6A0.9800
C3—C41.553 (7)C6—H6B0.9800
C3—C51.559 (8)C6—H6C0.9800
C2—H2A0.9900C18—H18A0.9800
C2—H2B0.9900C18—H18B0.9800
C11—C121.529 (10)C18—H18C0.9800
C11—C141.529 (8)C17—H17A0.9800
C11—C131.546 (9)C17—H17B0.9800
C14—H14A0.9800C17—H17C0.9800
C14—H14B0.9800C16—H16A0.9800
C14—H14C0.9800C16—H16B0.9800
C13—H13A0.9800C16—H16C0.9800
C13—H13B0.9800C5—H5A0.9800
C13—H13C0.9800C5—H5B0.9800
C12—H12A0.9800C5—H5C0.9800
C12—H12B0.9800C4—H4A0.9800
C12—H12C0.9800C4—H4B0.9800
C10—C71.519 (9)C4—H4C0.9800
C10—H10A0.9800
P5—Ni3—P490.10 (6)C7—C10—H10C109.5
P5—Ni3—Br291.35 (5)H10A—C10—H10C109.5
P4—Ni3—Br2166.65 (5)H10B—C10—H10C109.5
P5—Ni3—Br1165.85 (5)C7—C9—H9A109.5
P4—Ni3—Br192.01 (5)C7—C9—H9B109.5
Br2—Ni3—Br189.82 (3)H9A—C9—H9B109.5
C1—P4—C3100.6 (3)C7—C9—H9C109.5
C1—P4—C7106.0 (3)H9A—C9—H9C109.5
C3—P4—C7109.4 (3)H9B—C9—H9C109.5
C1—P4—Ni3107.48 (19)C7—C8—H8A109.5
C3—P4—Ni3123.47 (18)C7—C8—H8B109.5
C7—P4—Ni3108.4 (2)H8A—C8—H8B109.5
C2—P5—C11106.9 (3)C7—C8—H8C109.5
C2—P5—C15100.7 (3)H8A—C8—H8C109.5
C11—P5—C15110.0 (3)H8B—C8—H8C109.5
C2—P5—Ni3106.72 (19)C10—C7—C9107.6 (5)
C11—P5—Ni3107.51 (19)C10—C7—C8107.2 (5)
C15—P5—Ni3123.7 (2)C9—C7—C8110.2 (5)
C2—C1—P4112.5 (4)C10—C7—P4107.6 (4)
C2—C1—H1A109.1C9—C7—P4113.7 (5)
P4—C1—H1A109.1C8—C7—P4110.2 (4)
C2—C1—H1B109.1C17—C15—C16109.0 (6)
P4—C1—H1B109.1C17—C15—C18108.5 (6)
H1A—C1—H1B107.8C16—C15—C18107.1 (5)
C6—C3—C4107.0 (5)C17—C15—P5107.7 (4)
C6—C3—C5108.3 (5)C16—C15—P5112.6 (4)
C4—C3—C5107.5 (5)C18—C15—P5111.8 (5)
C6—C3—P4112.8 (4)C3—C6—H6A109.5
C4—C3—P4108.4 (4)C3—C6—H6B109.5
C5—C3—P4112.6 (4)H6A—C6—H6B109.5
C1—C2—P5114.2 (4)C3—C6—H6C109.5
C1—C2—H2A108.7H6A—C6—H6C109.5
P5—C2—H2A108.7H6B—C6—H6C109.5
C1—C2—H2B108.7C15—C18—H18A109.5
P5—C2—H2B108.7C15—C18—H18B109.5
H2A—C2—H2B107.6H18A—C18—H18B109.5
C12—C11—C14106.1 (5)C15—C18—H18C109.5
C12—C11—C13107.8 (6)H18A—C18—H18C109.5
C14—C11—C13109.2 (5)H18B—C18—H18C109.5
C12—C11—P5107.2 (4)C15—C17—H17A109.5
C14—C11—P5113.4 (4)C15—C17—H17B109.5
C13—C11—P5112.9 (4)H17A—C17—H17B109.5
C11—C14—H14A109.5C15—C17—H17C109.5
C11—C14—H14B109.5H17A—C17—H17C109.5
H14A—C14—H14B109.5H17B—C17—H17C109.5
C11—C14—H14C109.5C15—C16—H16A109.5
H14A—C14—H14C109.5C15—C16—H16B109.5
H14B—C14—H14C109.5H16A—C16—H16B109.5
C11—C13—H13A109.5C15—C16—H16C109.5
C11—C13—H13B109.5H16A—C16—H16C109.5
H13A—C13—H13B109.5H16B—C16—H16C109.5
C11—C13—H13C109.5C3—C5—H5A109.5
H13A—C13—H13C109.5C3—C5—H5B109.5
H13B—C13—H13C109.5H5A—C5—H5B109.5
C11—C12—H12A109.5C3—C5—H5C109.5
C11—C12—H12B109.5H5A—C5—H5C109.5
H12A—C12—H12B109.5H5B—C5—H5C109.5
C11—C12—H12C109.5C3—C4—H4A109.5
H12A—C12—H12C109.5C3—C4—H4B109.5
H12B—C12—H12C109.5H4A—C4—H4B109.5
C7—C10—H10A109.5C3—C4—H4C109.5
C7—C10—H10B109.5H4A—C4—H4C109.5
H10A—C10—H10B109.5H4B—C4—H4C109.5
P5—Ni3—P4—C18.1 (2)C11—P5—C2—C188.6 (5)
Br2—Ni3—P4—C1104.3 (3)C15—P5—C2—C1156.4 (4)
Br1—Ni3—P4—C1157.9 (2)Ni3—P5—C2—C126.2 (5)
P5—Ni3—P4—C3124.2 (2)C2—P5—C11—C1264.1 (5)
Br2—Ni3—P4—C3139.5 (3)C15—P5—C11—C12172.6 (4)
Br1—Ni3—P4—C341.8 (2)Ni3—P5—C11—C1250.2 (5)
P5—Ni3—P4—C7106.09 (19)C2—P5—C11—C14179.3 (4)
Br2—Ni3—P4—C79.8 (3)C15—P5—C11—C1470.7 (5)
Br1—Ni3—P4—C787.90 (19)Ni3—P5—C11—C1466.5 (5)
P4—Ni3—P5—C27.7 (2)C2—P5—C11—C1354.5 (6)
Br2—Ni3—P5—C2159.0 (2)C15—P5—C11—C1354.0 (6)
Br1—Ni3—P5—C2106.3 (3)Ni3—P5—C11—C13168.8 (5)
P4—Ni3—P5—C11106.7 (2)C1—P4—C7—C1056.1 (5)
Br2—Ni3—P5—C1186.5 (2)C3—P4—C7—C10163.8 (4)
Br1—Ni3—P5—C118.1 (3)Ni3—P4—C7—C1059.0 (5)
P4—Ni3—P5—C15123.4 (2)C1—P4—C7—C962.9 (5)
Br2—Ni3—P5—C1543.4 (2)C3—P4—C7—C944.8 (5)
Br1—Ni3—P5—C15138.0 (3)Ni3—P4—C7—C9178.0 (4)
C3—P4—C1—C2156.4 (4)C1—P4—C7—C8172.7 (4)
C7—P4—C1—C289.8 (4)C3—P4—C7—C879.6 (5)
Ni3—P4—C1—C226.0 (5)Ni3—P4—C7—C857.6 (5)
C1—P4—C3—C634.3 (5)C2—P5—C15—C1784.2 (5)
C7—P4—C3—C677.0 (5)C11—P5—C15—C17163.2 (5)
Ni3—P4—C3—C6153.7 (3)Ni3—P5—C15—C1734.3 (6)
C1—P4—C3—C484.0 (4)C2—P5—C15—C16155.6 (5)
C7—P4—C3—C4164.7 (4)C11—P5—C15—C1643.0 (5)
Ni3—P4—C3—C435.4 (5)Ni3—P5—C15—C1685.8 (5)
C1—P4—C3—C5157.2 (4)C2—P5—C15—C1834.9 (5)
C7—P4—C3—C545.9 (5)C11—P5—C15—C1877.7 (5)
Ni3—P4—C3—C583.4 (4)Ni3—P5—C15—C18153.5 (4)
P4—C1—C2—P534.1 (6)
(lw23) [1,2-Bis(di-tert-butylphosphanyl)ethane-κ2P,P']diiodidonickel(II) top
Crystal data top
[NiI2(C18H40P2)]F(000) = 1248
Mr = 630.95Dx = 1.766 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 20.4783 (9) ÅCell parameters from 8357 reflections
b = 8.3037 (4) Åθ = 2.7–27.1°
c = 14.9472 (7) ŵ = 3.55 mm1
β = 110.999 (1)°T = 200 K
V = 2372.90 (19) Å3Plate, green
Z = 40.12 × 0.08 × 0.05 mm
Data collection top
Bruker APEXII Quazar
diffractometer
4689 independent reflections
Radiation source: ImuS microsource4404 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
ϕ and ω scansθmax = 27.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2625
Tmin = 0.675, Tmax = 0.842k = 1010
12902 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0211P)2 + 0.1993P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
4689 reflectionsΔρmax = 0.51 e Å3
221 parametersΔρmin = 0.48 e Å3
2 restraintsAbsolute structure: Flack (1983), ???? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.115 (14)
Crystal data top
[NiI2(C18H40P2)]V = 2372.90 (19) Å3
Mr = 630.95Z = 4
Monoclinic, CcMo Kα radiation
a = 20.4783 (9) ŵ = 3.55 mm1
b = 8.3037 (4) ÅT = 200 K
c = 14.9472 (7) Å0.12 × 0.08 × 0.05 mm
β = 110.999 (1)°
Data collection top
Bruker APEXII Quazar
diffractometer
4689 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
4404 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.842Rint = 0.024
12902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.048Δρmax = 0.51 e Å3
S = 1.05Δρmin = 0.48 e Å3
4689 reflectionsAbsolute structure: Flack (1983), ???? Friedel pairs
221 parametersAbsolute structure parameter: 0.115 (14)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.26145 (3)0.33973 (5)0.47078 (3)0.01521 (11)
I10.172476 (12)0.21579 (3)0.535269 (14)0.02594 (7)
I20.358381 (14)0.22306 (4)0.614557 (17)0.03692 (9)
P10.33593 (5)0.38903 (12)0.39516 (7)0.0174 (2)
P20.18075 (5)0.49559 (11)0.36569 (7)0.0145 (2)
C90.2951 (2)0.5450 (5)0.3053 (3)0.0231 (9)
H9A0.31310.65170.33280.028*
H9B0.30900.52770.24910.028*
C100.21552 (19)0.5465 (5)0.2721 (3)0.0204 (9)
H10A0.19670.46890.21870.024*
H10B0.19850.65490.24690.024*
C110.3405 (2)0.2015 (5)0.3244 (3)0.0250 (9)
C120.3784 (3)0.2315 (5)0.2547 (4)0.0349 (12)
H12A0.42780.25460.29070.052*
H12B0.35700.32350.21360.052*
H12C0.37470.13560.21490.052*
C130.2653 (2)0.1525 (5)0.2663 (3)0.0361 (11)
H13A0.24290.23690.21950.054*
H13B0.23930.13780.30950.054*
H13C0.26530.05130.23250.054*
C140.3741 (2)0.0580 (5)0.3893 (3)0.0300 (10)
H14A0.37160.03760.34970.045*
H14B0.34900.03740.43290.045*
H14C0.42320.08260.42650.045*
C150.4278 (2)0.4799 (5)0.4544 (3)0.0273 (9)
C160.4505 (2)0.5723 (6)0.3813 (4)0.0441 (14)
H16A0.42080.66740.35910.066*
H16B0.44590.50220.32660.066*
H16C0.49940.60610.41160.066*
C170.4840 (2)0.3523 (5)0.5000 (3)0.0297 (10)
H17A0.52790.40540.53800.045*
H17B0.49120.28760.44950.045*
H17C0.46870.28220.54160.045*
C180.4263 (2)0.5994 (6)0.5310 (4)0.0402 (12)
H18A0.41060.54450.57780.060*
H18B0.39400.68740.50100.060*
H18C0.47330.64300.56350.060*
C210.0885 (2)0.4260 (5)0.2892 (3)0.0202 (9)
C220.03674 (19)0.4410 (5)0.3412 (3)0.0263 (9)
H22A0.00790.39160.30220.039*
H22B0.02930.55510.35140.039*
H22C0.05560.38600.40320.039*
C230.0589 (2)0.5204 (5)0.1948 (3)0.0286 (10)
H23A0.08770.49960.15590.043*
H23B0.05960.63580.20880.043*
H23C0.01070.48600.15960.043*
C240.0926 (2)0.2490 (4)0.2635 (3)0.0267 (10)
H24A0.11480.18650.32230.040*
H24B0.12030.23930.22220.040*
H24C0.04530.20770.22960.040*
C250.1756 (2)0.6925 (4)0.4262 (3)0.0202 (9)
C260.1255 (2)0.8147 (4)0.3598 (3)0.0302 (11)
H26A0.12640.91460.39520.045*
H26B0.07800.77060.33640.045*
H26C0.14000.83740.30540.045*
C270.2482 (2)0.7656 (5)0.4632 (4)0.0354 (11)
H27A0.26100.79980.40890.053*
H27B0.28180.68530.50100.053*
H27C0.24860.85890.50350.053*
C280.1551 (2)0.6634 (5)0.5137 (3)0.0267 (10)
H28A0.18900.59040.55820.040*
H28B0.10840.61500.49320.040*
H28C0.15480.76610.54580.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0166 (2)0.0164 (2)0.0130 (2)0.0028 (2)0.00576 (19)0.0025 (2)
I10.02948 (17)0.02720 (13)0.02349 (16)0.00220 (13)0.01234 (13)0.00151 (13)
I20.02744 (18)0.0586 (2)0.02348 (17)0.01514 (16)0.00762 (14)0.01616 (15)
P10.0153 (5)0.0195 (5)0.0184 (5)0.0025 (4)0.0072 (4)0.0026 (4)
P20.0143 (5)0.0150 (5)0.0142 (5)0.0008 (4)0.0052 (4)0.0002 (4)
C90.020 (2)0.027 (2)0.024 (2)0.0013 (18)0.0095 (18)0.0042 (17)
C100.025 (2)0.022 (2)0.013 (2)0.0081 (17)0.0059 (18)0.0080 (16)
C110.027 (2)0.024 (2)0.025 (2)0.0058 (18)0.0109 (19)0.0010 (17)
C120.039 (3)0.039 (3)0.037 (3)0.012 (2)0.027 (2)0.006 (2)
C130.035 (3)0.030 (2)0.037 (3)0.008 (2)0.005 (2)0.012 (2)
C140.031 (3)0.026 (2)0.036 (3)0.0072 (19)0.016 (2)0.0007 (19)
C150.016 (2)0.033 (2)0.032 (2)0.0011 (18)0.0072 (18)0.0027 (19)
C160.023 (3)0.041 (3)0.066 (4)0.006 (2)0.012 (3)0.014 (3)
C170.014 (2)0.044 (3)0.030 (2)0.0023 (19)0.0067 (18)0.005 (2)
C180.020 (2)0.039 (3)0.054 (3)0.007 (2)0.005 (2)0.018 (2)
C210.015 (2)0.028 (2)0.016 (2)0.0013 (17)0.0026 (17)0.0009 (17)
C220.014 (2)0.031 (2)0.031 (2)0.0003 (17)0.0050 (18)0.0021 (18)
C230.020 (2)0.034 (2)0.027 (2)0.0017 (18)0.0020 (19)0.0002 (19)
C240.027 (2)0.029 (2)0.020 (2)0.0053 (18)0.0028 (19)0.0076 (17)
C250.023 (2)0.014 (2)0.025 (2)0.0019 (16)0.0113 (19)0.0056 (15)
C260.034 (3)0.015 (2)0.038 (3)0.0093 (19)0.008 (2)0.0033 (18)
C270.030 (3)0.025 (2)0.050 (3)0.0039 (19)0.012 (2)0.009 (2)
C280.041 (3)0.0180 (19)0.023 (2)0.0030 (18)0.013 (2)0.0046 (17)
Geometric parameters (Å, º) top
Ni1—P12.2377 (11)C16—H16C0.9800
Ni1—P22.2389 (10)C17—H17A0.9800
Ni1—I22.5377 (5)C17—H17B0.9800
Ni1—I12.5626 (5)C17—H17C0.9800
P1—C91.837 (4)C18—H18A0.9800
P1—C111.904 (4)C18—H18B0.9800
P1—C151.923 (4)C18—H18C0.9800
P2—C101.832 (4)C21—C221.526 (5)
P2—C251.889 (4)C21—C241.529 (5)
P2—C211.914 (4)C21—C231.536 (5)
C9—C101.524 (5)C22—H22A0.9800
C9—H9A0.9900C22—H22B0.9800
C9—H9B0.9900C22—H22C0.9800
C10—H10A0.9900C23—H23A0.9800
C10—H10B0.9900C23—H23B0.9800
C11—C121.526 (6)C23—H23C0.9800
C11—C131.529 (6)C24—H24A0.9800
C11—C141.535 (5)C24—H24B0.9800
C12—H12A0.9800C24—H24C0.9800
C12—H12B0.9800C25—C271.514 (6)
C12—H12C0.9800C25—C261.529 (6)
C13—H13A0.9800C25—C281.530 (6)
C13—H13B0.9800C26—H26A0.9800
C13—H13C0.9800C26—H26B0.9800
C14—H14A0.9800C26—H26C0.9800
C14—H14B0.9800C27—H27A0.9800
C14—H14C0.9800C27—H27B0.9800
C15—C181.524 (6)C27—H27C0.9800
C15—C171.533 (6)C28—H28A0.9800
C15—C161.538 (6)C28—H28B0.9800
C16—H16A0.9800C28—H28C0.9800
C16—H16B0.9800
P1—Ni1—P290.30 (4)C15—C16—H16C109.5
P1—Ni1—I291.70 (3)H16A—C16—H16C109.5
P2—Ni1—I2166.29 (3)H16B—C16—H16C109.5
P1—Ni1—I1165.63 (3)C15—C17—H17A109.5
P2—Ni1—I192.90 (3)C15—C17—H17B109.5
I2—Ni1—I188.507 (16)H17A—C17—H17B109.5
C9—P1—C11105.72 (19)C15—C17—H17C109.5
C9—P1—C15100.02 (18)H17A—C17—H17C109.5
C11—P1—C15109.99 (18)H17B—C17—H17C109.5
C9—P1—Ni1106.49 (13)C15—C18—H18A109.5
C11—P1—Ni1108.02 (13)C15—C18—H18B109.5
C15—P1—Ni1124.78 (14)H18A—C18—H18B109.5
C10—P2—C25105.62 (18)C15—C18—H18C109.5
C10—P2—C21100.64 (17)H18A—C18—H18C109.5
C25—P2—C21109.55 (18)H18B—C18—H18C109.5
C10—P2—Ni1106.13 (12)C22—C21—C24108.5 (3)
C25—P2—Ni1108.55 (13)C22—C21—C23108.0 (3)
C21—P2—Ni1124.53 (13)C24—C21—C23107.4 (3)
C10—C9—P1113.4 (3)C22—C21—P2112.9 (3)
C10—C9—H9A108.9C24—C21—P2108.0 (3)
P1—C9—H9A108.9C23—C21—P2111.9 (3)
C10—C9—H9B108.9C21—C22—H22A109.5
P1—C9—H9B108.9C21—C22—H22B109.5
H9A—C9—H9B107.7H22A—C22—H22B109.5
C9—C10—P2114.3 (2)C21—C22—H22C109.5
C9—C10—H10A108.7H22A—C22—H22C109.5
P2—C10—H10A108.7H22B—C22—H22C109.5
C9—C10—H10B108.7C21—C23—H23A109.5
P2—C10—H10B108.7C21—C23—H23B109.5
H10A—C10—H10B107.6H23A—C23—H23B109.5
C12—C11—C13108.1 (4)C21—C23—H23C109.5
C12—C11—C14109.6 (3)H23A—C23—H23C109.5
C13—C11—C14106.5 (3)H23B—C23—H23C109.5
C12—C11—P1112.6 (3)C21—C24—H24A109.5
C13—C11—P1107.0 (3)C21—C24—H24B109.5
C14—C11—P1112.6 (3)H24A—C24—H24B109.5
C11—C12—H12A109.5C21—C24—H24C109.5
C11—C12—H12B109.5H24A—C24—H24C109.5
H12A—C12—H12B109.5H24B—C24—H24C109.5
C11—C12—H12C109.5C27—C25—C26108.3 (3)
H12A—C12—H12C109.5C27—C25—C28106.6 (3)
H12B—C12—H12C109.5C26—C25—C28109.5 (3)
C11—C13—H13A109.5C27—C25—P2107.8 (3)
C11—C13—H13B109.5C26—C25—P2113.8 (3)
H13A—C13—H13B109.5C28—C25—P2110.6 (3)
C11—C13—H13C109.5C25—C26—H26A109.5
H13A—C13—H13C109.5C25—C26—H26B109.5
H13B—C13—H13C109.5H26A—C26—H26B109.5
C11—C14—H14A109.5C25—C26—H26C109.5
C11—C14—H14B109.5H26A—C26—H26C109.5
H14A—C14—H14B109.5H26B—C26—H26C109.5
C11—C14—H14C109.5C25—C27—H27A109.5
H14A—C14—H14C109.5C25—C27—H27B109.5
H14B—C14—H14C109.5H27A—C27—H27B109.5
C18—C15—C17109.3 (4)C25—C27—H27C109.5
C18—C15—C16107.6 (4)H27A—C27—H27C109.5
C17—C15—C16106.9 (3)H27B—C27—H27C109.5
C18—C15—P1108.8 (3)C25—C28—H28A109.5
C17—C15—P1112.8 (3)C25—C28—H28B109.5
C16—C15—P1111.3 (3)H28A—C28—H28B109.5
C15—C16—H16A109.5C25—C28—H28C109.5
C15—C16—H16B109.5H28A—C28—H28C109.5
H16A—C16—H16B109.5H28B—C28—H28C109.5
P2—Ni1—P1—C97.78 (14)C9—P1—C11—C14179.7 (3)
I2—Ni1—P1—C9158.66 (14)C15—P1—C11—C1472.5 (3)
I1—Ni1—P1—C9110.72 (18)Ni1—P1—C11—C1466.6 (3)
P2—Ni1—P1—C11105.39 (14)C9—P1—C15—C1884.3 (3)
I2—Ni1—P1—C1188.17 (14)C11—P1—C15—C18164.8 (3)
I1—Ni1—P1—C112.4 (2)Ni1—P1—C15—C1834.0 (4)
P2—Ni1—P1—C15123.03 (16)C9—P1—C15—C17154.2 (3)
I2—Ni1—P1—C1543.41 (16)C11—P1—C15—C1743.3 (3)
I1—Ni1—P1—C15134.03 (18)Ni1—P1—C15—C1787.5 (3)
P1—Ni1—P2—C108.05 (14)C9—P1—C15—C1634.1 (3)
I2—Ni1—P2—C10106.49 (18)C11—P1—C15—C1676.9 (3)
I1—Ni1—P2—C10157.93 (14)Ni1—P1—C15—C16152.3 (3)
P1—Ni1—P2—C25105.07 (14)C10—P2—C21—C22156.1 (3)
I2—Ni1—P2—C256.6 (2)C25—P2—C21—C2245.2 (3)
I1—Ni1—P2—C2588.94 (14)Ni1—P2—C21—C2285.7 (3)
P1—Ni1—P2—C21123.67 (16)C10—P2—C21—C2483.9 (3)
I2—Ni1—P2—C21137.90 (18)C25—P2—C21—C24165.1 (3)
I1—Ni1—P2—C2142.32 (16)Ni1—P2—C21—C2434.3 (3)
C11—P1—C9—C1088.5 (3)C10—P2—C21—C2334.1 (3)
C15—P1—C9—C10157.2 (3)C25—P2—C21—C2376.9 (3)
Ni1—P1—C9—C1026.2 (3)Ni1—P2—C21—C23152.2 (2)
P1—C9—C10—P235.0 (4)C10—P2—C25—C2757.3 (3)
C25—P2—C10—C988.4 (3)C21—P2—C25—C27164.9 (3)
C21—P2—C10—C9157.6 (3)Ni1—P2—C25—C2756.1 (3)
Ni1—P2—C10—C926.7 (3)C10—P2—C25—C2662.8 (3)
C9—P1—C11—C1255.1 (4)C21—P2—C25—C2644.8 (4)
C15—P1—C11—C1252.0 (4)Ni1—P2—C25—C26176.3 (3)
Ni1—P1—C11—C12168.8 (3)C10—P2—C25—C28173.5 (3)
C9—P1—C11—C1363.6 (3)C21—P2—C25—C2878.9 (3)
C15—P1—C11—C13170.7 (3)Ni1—P2—C25—C2860.0 (3)
Ni1—P1—C11—C1350.1 (3)
(lw29) [1,2-Bis(diphenylphosphanyl)ethane-κ2P,P']diiodidonickel(II) dichloromethane monosolvate top
Crystal data top
[NiI2(C26H24P2)]·CH2Cl2Dx = 1.811 Mg m3
Mr = 795.83Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41cdCell parameters from 9238 reflections
a = 26.3705 (17) Åθ = 2.4–27.8°
c = 16.7900 (11) ŵ = 3.09 mm1
V = 11675.8 (17) Å3T = 200 K
Z = 16Needle, violet
F(000) = 61760.33 × 0.07 × 0.05 mm
Data collection top
Bruker APEX
diffractometer
7131 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.063
ϕ and ω scansθmax = 29.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 3636
Tmin = 0.652, Tmax = 0.850k = 3636
109821 measured reflectionsl = 2222
7839 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0204P)2 + 71.4066P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.002
S = 1.04Δρmax = 1.32 e Å3
7839 reflectionsΔρmin = 1.26 e Å3
307 parametersAbsolute structure: Flack x determined using 3206 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
5 restraintsAbsolute structure parameter: 0.004 (7)
Crystal data top
[NiI2(C26H24P2)]·CH2Cl2Z = 16
Mr = 795.83Mo Kα radiation
Tetragonal, I41cdµ = 3.09 mm1
a = 26.3705 (17) ÅT = 200 K
c = 16.7900 (11) Å0.33 × 0.07 × 0.05 mm
V = 11675.8 (17) Å3
Data collection top
Bruker APEX
diffractometer
7839 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
7131 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.850Rint = 0.063
109821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0204P)2 + 71.4066P]
where P = (Fo2 + 2Fc2)/3
S = 1.04Δρmax = 1.32 e Å3
7839 reflectionsΔρmin = 1.26 e Å3
307 parametersAbsolute structure: Flack x determined using 3206 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
5 restraintsAbsolute structure parameter: 0.004 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.28453 (3)1.00312 (3)0.32327 (5)0.02110 (15)
I10.23025 (2)1.05229 (2)0.42006 (3)0.03191 (10)
I20.34232 (2)0.96692 (2)0.42855 (3)0.03574 (11)
P10.33005 (6)0.96805 (6)0.23176 (10)0.0209 (3)
P20.23797 (6)1.03270 (6)0.22710 (10)0.0222 (3)
C90.2906 (3)0.9621 (3)0.1424 (4)0.0273 (14)
H9A0.31200.95390.09560.033*
H9B0.26550.93460.14950.033*
C100.2640 (3)1.0122 (3)0.1299 (4)0.0275 (14)
H10A0.23631.00830.09060.033*
H10B0.28831.03780.10960.033*
C110.3575 (3)0.9055 (2)0.2422 (4)0.0257 (13)
C120.4077 (3)0.8949 (3)0.2251 (4)0.0330 (15)
H120.43030.92170.21210.040*
C130.4251 (3)0.8453 (3)0.2269 (5)0.0416 (19)
H130.45940.83810.21360.050*
C140.3932 (4)0.8066 (3)0.2478 (5)0.046 (2)
H140.40540.77270.24900.055*
C150.3430 (4)0.8166 (3)0.2671 (6)0.052 (2)
H150.32080.78990.28190.062*
C160.3259 (3)0.8658 (3)0.2645 (5)0.0411 (18)
H160.29170.87290.27820.049*
C210.3806 (2)1.0109 (2)0.2024 (4)0.0246 (13)
C220.3958 (3)1.0497 (3)0.2528 (4)0.0345 (16)
H220.38141.05260.30440.041*
C230.4322 (3)1.0845 (3)0.2280 (5)0.044 (2)
H230.44231.11130.26230.053*
C240.4539 (3)1.0798 (3)0.1525 (5)0.045 (2)
H240.47911.10320.13550.053*
C250.4389 (3)1.0419 (3)0.1034 (5)0.0423 (19)
H250.45361.03910.05190.051*
C260.4023 (3)1.0069 (3)0.1275 (4)0.0331 (16)
H260.39230.98040.09260.040*
C310.1743 (3)1.0062 (3)0.2245 (4)0.0269 (13)
C320.1382 (3)1.0263 (3)0.1712 (5)0.0359 (15)
H320.14591.05560.14060.043*
C330.0915 (3)1.0027 (4)0.1641 (5)0.0436 (18)
H330.06681.01640.12890.052*
C340.0803 (3)0.9597 (3)0.2074 (5)0.045 (2)
H340.04850.94330.20120.054*
C350.1161 (3)0.9407 (3)0.2600 (5)0.0414 (19)
H350.10840.91160.29100.050*
C360.1624 (3)0.9638 (3)0.2676 (5)0.0323 (15)
H360.18670.95010.30340.039*
C410.2344 (3)1.1014 (3)0.2191 (4)0.0274 (14)
C420.1910 (3)1.1283 (3)0.2384 (5)0.0339 (16)
H420.16141.11160.25690.041*
C430.1923 (4)1.1809 (3)0.2297 (6)0.051 (2)
H430.16261.20000.24080.061*
C440.2351 (4)1.2059 (3)0.2057 (6)0.053 (2)
H440.23491.24180.20100.064*
C450.2784 (4)1.1790 (3)0.1885 (6)0.048 (2)
H450.30821.19620.17170.058*
C460.2782 (3)1.1266 (3)0.1957 (5)0.0362 (17)
H460.30811.10780.18460.043*
C510.1612 (7)0.8227 (5)0.1681 (10)0.154 (7)
H51A0.16510.78850.14450.184*
H51B0.12460.83090.16800.184*
Cl10.1907 (2)0.8642 (2)0.1089 (3)0.167 (3)
Cl20.18145 (19)0.81989 (16)0.2668 (4)0.144 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0225 (4)0.0240 (4)0.0168 (3)0.0008 (3)0.0018 (3)0.0008 (3)
I10.0372 (2)0.0334 (2)0.0251 (2)0.00113 (18)0.00645 (19)0.00370 (19)
I20.0360 (2)0.0478 (3)0.0234 (2)0.0068 (2)0.00453 (19)0.0015 (2)
P10.0208 (7)0.0214 (7)0.0204 (7)0.0004 (6)0.0019 (6)0.0012 (6)
P20.0230 (8)0.0241 (8)0.0194 (7)0.0016 (6)0.0007 (6)0.0006 (6)
C90.030 (3)0.029 (3)0.022 (3)0.000 (3)0.004 (3)0.007 (3)
C100.030 (3)0.037 (4)0.016 (3)0.002 (3)0.002 (3)0.002 (3)
C110.032 (3)0.021 (3)0.023 (3)0.001 (3)0.001 (3)0.001 (2)
C120.032 (4)0.031 (4)0.035 (4)0.008 (3)0.003 (3)0.004 (3)
C130.036 (4)0.044 (5)0.045 (4)0.015 (3)0.001 (3)0.001 (4)
C140.069 (6)0.026 (4)0.042 (4)0.006 (4)0.012 (4)0.000 (3)
C150.059 (6)0.029 (4)0.067 (6)0.001 (4)0.009 (5)0.001 (4)
C160.038 (4)0.027 (4)0.059 (5)0.007 (3)0.005 (4)0.001 (4)
C210.023 (3)0.024 (3)0.026 (3)0.001 (2)0.002 (2)0.002 (2)
C220.040 (4)0.036 (4)0.027 (3)0.012 (3)0.002 (3)0.001 (3)
C230.047 (5)0.043 (5)0.042 (4)0.023 (4)0.001 (4)0.003 (4)
C240.040 (4)0.048 (5)0.045 (5)0.013 (4)0.000 (3)0.015 (4)
C250.039 (4)0.052 (5)0.037 (4)0.011 (4)0.006 (3)0.010 (4)
C260.034 (4)0.038 (4)0.027 (3)0.008 (3)0.009 (3)0.003 (3)
C310.028 (3)0.029 (3)0.024 (3)0.001 (3)0.005 (3)0.004 (3)
C320.030 (3)0.044 (4)0.034 (4)0.002 (3)0.004 (3)0.004 (4)
C330.029 (3)0.064 (5)0.038 (4)0.000 (4)0.006 (3)0.009 (4)
C340.036 (4)0.051 (5)0.048 (5)0.013 (4)0.009 (4)0.022 (4)
C350.044 (5)0.039 (4)0.041 (4)0.016 (4)0.009 (4)0.006 (3)
C360.029 (4)0.033 (4)0.035 (4)0.002 (3)0.004 (3)0.001 (3)
C410.034 (4)0.026 (3)0.022 (3)0.000 (3)0.005 (3)0.002 (3)
C420.038 (4)0.026 (3)0.038 (4)0.003 (3)0.002 (3)0.001 (3)
C430.057 (6)0.031 (4)0.065 (6)0.006 (4)0.007 (5)0.004 (4)
C440.066 (6)0.027 (4)0.067 (6)0.003 (4)0.009 (5)0.002 (4)
C450.055 (5)0.034 (4)0.056 (6)0.010 (4)0.004 (4)0.001 (4)
C460.035 (4)0.028 (4)0.046 (5)0.001 (3)0.003 (3)0.003 (3)
C510.142 (15)0.051 (8)0.268 (16)0.020 (8)0.074 (16)0.017 (12)
Cl10.154 (4)0.197 (5)0.151 (4)0.114 (4)0.066 (3)0.106 (4)
Cl20.106 (3)0.076 (3)0.250 (6)0.015 (2)0.009 (4)0.053 (3)
Geometric parameters (Å, º) top
Ni1—P12.1582 (18)C24—C251.353 (12)
Ni1—P22.1733 (18)C24—H240.9500
Ni1—I22.5216 (9)C25—C261.395 (10)
Ni1—I12.5240 (9)C25—H250.9500
P1—C111.811 (7)C26—H260.9500
P1—C211.816 (7)C31—C361.368 (10)
P1—C91.832 (7)C31—C321.408 (10)
P2—C411.818 (7)C32—C331.385 (10)
P2—C311.820 (7)C32—H320.9500
P2—C101.851 (6)C33—C341.379 (13)
C9—C101.512 (9)C33—H330.9500
C9—H9A0.9900C34—C351.385 (13)
C9—H9B0.9900C34—H340.9500
C10—H10A0.9900C35—C361.372 (10)
C10—H10B0.9900C35—H350.9500
C11—C121.383 (10)C36—H360.9500
C11—C161.387 (10)C41—C421.385 (10)
C12—C131.388 (10)C41—C461.389 (10)
C12—H120.9500C42—C431.394 (11)
C13—C141.370 (12)C42—H420.9500
C13—H130.9500C43—C441.365 (13)
C14—C151.387 (13)C43—H430.9500
C14—H140.9500C44—C451.375 (13)
C15—C161.375 (11)C44—H440.9500
C15—H150.9500C45—C461.387 (11)
C16—H160.9500C45—H450.9500
C21—C261.385 (9)C46—H460.9500
C21—C221.388 (10)C51—Cl11.670 (14)
C22—C231.390 (10)C51—Cl21.743 (15)
C22—H220.9500C51—H51A0.9900
C23—C241.397 (12)C51—H51B0.9900
C23—H230.9500
P1—Ni1—P286.51 (7)C22—C23—C24119.7 (8)
P1—Ni1—I290.04 (5)C22—C23—H23120.1
P2—Ni1—I2176.51 (6)C24—C23—H23120.1
P1—Ni1—I1173.72 (6)C25—C24—C23119.9 (8)
P2—Ni1—I188.49 (5)C25—C24—H24120.0
I2—Ni1—I194.93 (3)C23—C24—H24120.0
C11—P1—C21107.5 (3)C24—C25—C26120.9 (8)
C11—P1—C9103.1 (3)C24—C25—H25119.6
C21—P1—C9104.3 (3)C26—C25—H25119.6
C11—P1—Ni1123.0 (2)C21—C26—C25120.0 (7)
C21—P1—Ni1109.6 (2)C21—C26—H26120.0
C9—P1—Ni1107.7 (2)C25—C26—H26120.0
C41—P2—C31109.4 (3)C36—C31—C32119.3 (7)
C41—P2—C10104.2 (3)C36—C31—P2120.8 (6)
C31—P2—C10102.1 (3)C32—C31—P2119.6 (5)
C41—P2—Ni1116.2 (2)C33—C32—C31119.1 (8)
C31—P2—Ni1113.7 (2)C33—C32—H32120.4
C10—P2—Ni1109.9 (2)C31—C32—H32120.4
C10—C9—P1107.5 (4)C34—C33—C32120.9 (8)
C10—C9—H9A110.2C34—C33—H33119.5
P1—C9—H9A110.2C32—C33—H33119.5
C10—C9—H9B110.2C33—C34—C35119.1 (7)
P1—C9—H9B110.2C33—C34—H34120.4
H9A—C9—H9B108.5C35—C34—H34120.4
C9—C10—P2107.8 (4)C36—C35—C34120.4 (8)
C9—C10—H10A110.1C36—C35—H35119.8
P2—C10—H10A110.1C34—C35—H35119.8
C9—C10—H10B110.1C31—C36—C35121.1 (7)
P2—C10—H10B110.1C31—C36—H36119.4
H10A—C10—H10B108.5C35—C36—H36119.4
C12—C11—C16118.6 (7)C42—C41—C46120.4 (7)
C12—C11—P1123.1 (5)C42—C41—P2122.5 (6)
C16—C11—P1118.2 (6)C46—C41—P2117.0 (5)
C11—C12—C13120.1 (7)C41—C42—C43117.8 (8)
C11—C12—H12119.9C41—C42—H42121.1
C13—C12—H12119.9C43—C42—H42121.1
C14—C13—C12120.3 (8)C44—C43—C42122.0 (9)
C14—C13—H13119.8C44—C43—H43119.0
C12—C13—H13119.8C42—C43—H43119.0
C13—C14—C15120.3 (8)C43—C44—C45119.9 (8)
C13—C14—H14119.9C43—C44—H44120.0
C15—C14—H14119.9C45—C44—H44120.0
C16—C15—C14119.1 (8)C44—C45—C46119.4 (8)
C16—C15—H15120.5C44—C45—H45120.3
C14—C15—H15120.5C46—C45—H45120.3
C15—C16—C11121.5 (8)C45—C46—C41120.3 (8)
C15—C16—H16119.2C45—C46—H46119.8
C11—C16—H16119.2C41—C46—H46119.8
C26—C21—C22119.3 (7)Cl1—C51—Cl2116.9 (9)
C26—C21—P1120.2 (5)Cl1—C51—H51A108.1
C22—C21—P1120.4 (5)Cl2—C51—H51A108.1
C21—C22—C23120.3 (7)Cl1—C51—H51B108.1
C21—C22—H22119.9Cl2—C51—H51B108.1
C23—C22—H22119.9H51A—C51—H51B107.3
C11—P1—C9—C10177.8 (5)C22—C21—C26—C250.2 (11)
C21—P1—C9—C1070.0 (5)P1—C21—C26—C25176.0 (6)
Ni1—P1—C9—C1046.4 (5)C24—C25—C26—C210.3 (13)
P1—C9—C10—P246.2 (5)C41—P2—C31—C36146.0 (6)
C41—P2—C10—C9154.2 (5)C10—P2—C31—C36104.1 (6)
C31—P2—C10—C992.0 (5)Ni1—P2—C31—C3614.2 (6)
Ni1—P2—C10—C929.0 (5)C41—P2—C31—C3240.9 (7)
C21—P1—C11—C123.4 (7)C10—P2—C31—C3269.1 (6)
C9—P1—C11—C12106.5 (6)Ni1—P2—C31—C32172.6 (5)
Ni1—P1—C11—C12131.9 (5)C36—C31—C32—C330.4 (11)
C21—P1—C11—C16180.0 (6)P2—C31—C32—C33173.7 (6)
C9—P1—C11—C1670.1 (6)C31—C32—C33—C341.0 (12)
Ni1—P1—C11—C1651.5 (7)C32—C33—C34—C351.5 (13)
C16—C11—C12—C132.9 (11)C33—C34—C35—C361.4 (12)
P1—C11—C12—C13173.7 (6)C32—C31—C36—C350.3 (11)
C11—C12—C13—C141.8 (13)P2—C31—C36—C35173.5 (6)
C12—C13—C14—C150.2 (13)C34—C35—C36—C310.8 (12)
C13—C14—C15—C160.4 (14)C31—P2—C41—C4222.0 (7)
C14—C15—C16—C110.7 (14)C10—P2—C41—C42130.5 (6)
C12—C11—C16—C152.3 (13)Ni1—P2—C41—C42108.4 (6)
P1—C11—C16—C15174.4 (7)C31—P2—C41—C46160.8 (5)
C11—P1—C21—C2668.9 (6)C10—P2—C41—C4652.3 (6)
C9—P1—C21—C2640.2 (6)Ni1—P2—C41—C4668.8 (6)
Ni1—P1—C21—C26155.3 (5)C46—C41—C42—C433.1 (11)
C11—P1—C21—C22114.9 (6)P2—C41—C42—C43179.7 (6)
C9—P1—C21—C22136.0 (6)C41—C42—C43—C442.3 (14)
Ni1—P1—C21—C2220.9 (6)C42—C43—C44—C450.8 (16)
C26—C21—C22—C230.5 (12)C43—C44—C45—C460.1 (15)
P1—C21—C22—C23175.8 (6)C44—C45—C46—C410.9 (13)
C21—C22—C23—C240.8 (13)C42—C41—C46—C452.5 (11)
C22—C23—C24—C250.8 (14)P2—C41—C46—C45179.8 (6)
C23—C24—C25—C260.6 (14)

Experimental details

(msc6)(lw27)(msc11)(lw23)
Crystal data
Chemical formula[NiCl2(C18H40P2)]·2CHCl3[NiCl2(C18H40P2)][NiBr2(C18H40P2)][NiI2(C18H40P2)]
Mr686.78448.05536.97630.95
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21Monoclinic, CcMonoclinic, Cc
Temperature (K)200200200200
a, b, c (Å)17.2040 (3), 18.2618 (3), 20.2538 (4)11.1034 (7), 15.1216 (9), 14.5301 (9)20.3765 (14), 8.1817 (6), 14.7392 (10)20.4783 (9), 8.3037 (4), 14.9472 (7)
α, β, γ (°)90, 94.572 (1), 9090, 109.965 (1), 9090, 112.272 (1), 9090, 110.999 (1), 90
V3)6343.0 (2)2293.0 (2)2273.9 (3)2372.90 (19)
Z8444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.401.224.513.55
Crystal size (mm)0.42 × 0.40 × 0.150.20 × 0.08 × 0.070.22 × 0.16 × 0.120.12 × 0.08 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker APEXII Quazar
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker APEXII Quazar
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.61, 0.830.793, 0.9200.42, 0.670.675, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
32371, 7308, 5638 30373, 11668, 9616 3740, 3024, 2676 12902, 4689, 4404
Rint0.0470.0370.0320.024
(sin θ/λ)max1)0.6500.6760.6490.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.129, 1.09 0.045, 0.096, 1.03 0.034, 0.079, 0.99 0.024, 0.048, 1.05
No. of reflections73081166830244689
No. of parameters326479220221
No. of restraints1326722
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0417P)2 + 25.352P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0328P)2 + 1.7022P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0502P)2]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0211P)2 + 0.1993P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.20, 0.640.51, 0.430.58, 0.500.51, 0.48
Absolute structure?Flack (1983), ???? Friedel pairsFlack (1983), ???? Friedel pairsFlack (1983), ???? Friedel pairs
Absolute structure parameter?0.497 (11)0.033 (12)0.115 (14)


(lw29)
Crystal data
Chemical formula[NiI2(C26H24P2)]·CH2Cl2
Mr795.83
Crystal system, space groupTetragonal, I41cd
Temperature (K)200
a, b, c (Å)26.3705 (17), 26.3705 (17), 16.7900 (11)
α, β, γ (°)90, 90, 90
V3)11675.8 (17)
Z16
Radiation typeMo Kα
µ (mm1)3.09
Crystal size (mm)0.33 × 0.07 × 0.05
Data collection
DiffractometerBruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.652, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
109821, 7839, 7131
Rint0.063
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.075, 1.04
No. of reflections7839
No. of parameters307
No. of restraints5
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0204P)2 + 71.4066P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.32, 1.26
Absolute structureFlack x determined using 3206 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Absolute structure parameter0.004 (7)

Computer programs: SMART (Bruker, 2001), APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Important bond lengths (Å) and angles (°) for (dtbpe-κ2P)NiX2 and (dppe-κ2P)NiI2.2H2O. Computed values (BP86/def2-TZVP) are given in italics. The calculated values are for the P conformation in all cases although for the dtbpe diiodide this is not the global minimum, as described in the text. top
LigandsdtbpeCl (with CHCl3)dtbpeCl (solvent-free)adtbpeCldtbpeBrdtbpeBrdtbpeIdtbpeIdppeIdppeI
Ni—P1 (Å)2.205 (1)2.197 (1); 2.197 (1)2.1912.237 (2)2.2062.238 (1)2.2252.160 (2)2.163
Ni—P2 (Å)2.199 (1)2.202 (1); 2.204 (1)2.1912.211 (2)2.2062.239 (1)2.2252.173 (2)2.163
Ni—X1 (Å)2.215 (1)2.194 (1); 2.202 (1)2.2162.363 (1)2.3682.563 (1)2.5642.5243 (9)2.542
Ni—X2 (Å)2.200 (1)2.209 (1); 2.212 (1)2.2162.357 (1)2.3682.538 (1)2.5642.522 (1)2.542
P1—Ni—P2 (°)90.95 (4)90.95 (4); 90.82 (4)92.990.01 (6)92.790.3 (1)91.986.49 (7)89.2
X1—Ni—X2 (°)89.47 (4)90.47 (4); 91.16 (4)91.289.76 (4)89.888.51 (2)88.894.93 (3)94.9
Mean of P···P···X···X torsion angles (°)2.39.5; -5.74.719.29.019.724.32.22.8
Note: (a) data for two chemically equivalent but crystallographically unique molecules in the asymmetric unit.
λmax values for (dtbpe-κ2P)NiX2 (X = Cl, Br, I) in solution and the solid state (nm). Extinction coefficients (M-1 cm-1) for the solution spectra are provided in parentheses. top
CompoundFormλmax (ε)λmax (ε)Colour
(dtbpe-κ2P)NiCl2solution351 (1800)495 (790)bright red
(dtbpe-κ2P)NiCl2solid323491bright red
(dtbpe-κ2P)NiBr2solution417 (340)523 (420)maroon
(dtbpe-κ2P)NiBr2solid425550maroon
(dtbpe-κ2P)NiI2solution391 (3050)606 (817)blue-green
(dtbpe-κ2P)NiI2solid396602deep green
31P{1H} chemical shift and ν1/2 as a function of temperature. top
(dtbpe-κ2P)NiCl2 in CDCl2CDCl2
Temperature (K)243298313333353
Peak position (δ)868892103123
Peak width at half height (Hz)20120210300480
(dtbpe-κ2P)NiBr2 in CD2Cl2
Temperature (K)223253273298313
Peak position (δ)93.494.297.5109124
Peak width at half height (Hz)30120230480700
Comparison of calculated and observed λmax values to which the colour of the complex is attributed (nm). The calculated absorption for a molecule that is restricted to a planar geometry is given in parentheses. top
(dtbpe-κ2P)NiCl2(dtbpe-κ2P)NiBr2(dtbpe-κ2P)NiI2
Calculated P505 (505)530 (529)582 (562)
Calculated O506 (505)535 (527)580 (559)
Observed (solution)495523606
Comparison of reported solution λmax and calculated (B3LYP/def2-TVPP//BP86/def2-TZVP) values for nickel halide complexes bearing phenyl-substituted bis(phosphine) ligands. Values for which the ground-state structure has been optimized with Grimme's empirical dispersion correction are given in parentheses. top
ComplexReported (van Hecke & Horrocks, 19669997)Calculated
(dppe-κ2P)NiCl2463488 (459)
(dppe-κ2P)NiBr2481506 (493)
(dppe-κ2P)NiI2521536 (529)
(dppp-κ2P)NiCl2470490
(dppp-κ2P)NiBr2490515
(dppp-κ2P)NiI2559a550
Note: (a) in solution, this complex undergoes a square-planar–tetrahedral equilibrium so the observed value for the square-planar complex as a Nujol mull has been used (van Hecke & Horrocks, 19667).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds