Download citation
Download citation
link to html
FT–IR spectroscopy and single-crystal X-ray structure analysis were used to characterize the discrete neutral compound di­aqua­dioxidobis(n-valerato-κ2O,O′)uranium(VI), [UO2(C4H9COO)2(H2O)2], (I), and the ionic compound potassium dioxidotris(n-valerato-κ2O,O′)uranium(VI), K[UO2(C4H9COO)3], (II). The UVI cation in neutral (I) is at a site of 2/m symmetry. Potassium salt (II) has two U centres and two K+ cations residing on twofold axes, while a third independent formula unit is on a general position. The ligands in both compounds were found to suffer severe disorder. The FT–IR spectroscopic results agree with the X-ray data. The composition and structure of the ionic potassium uranyl valerate are similar to those of previously reported potassium uranyl complexes with acetate, propionate and butyrate ligands. Progressive lengthening of the alkyl groups in these otherwise similar compounds was found to have an impact on their structures, including on the number of independent U and K+ sites, on the coordination modes of some of the K+ centres and on the minimum distances between U atoms. The evolution of the KUO6 frameworks in the four homologous compounds is analysed in detail, revealing a new example of three-dimensional topological isomerism in coordination com­pounds of UVI.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113014832/fa3320sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113014832/fa3320Isup2.hkl
Contains datablock I

mol

MDL mol file https://doi.org/10.1107/S0108270113014832/fa3320Isup4.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113014832/fa3320IIsup3.hkl
Contains datablock II

mol

MDL mol file https://doi.org/10.1107/S0108270113014832/fa3320IIsup5.mol
Supplementary material

CCDC references: 956984; 956985

Comment top

Uranyl carboxylates are used in the nuclear industry for decontamination of uranium (Haas & Northup, 2004). They occur in nature (Lenhart et al., 2000; Rosberg et al., 2000) and affect biological systems (Miller, 2009). In addition, uranyl complexes with organic ions can be used for the construction of uranyl–organic frameworks (Wang & Chen, 2011). To date, the structures of about 70 uranyl complexes with short monocarboxylates (formate, acetate, propionate, isobutyrate and crotonate) have been reported. Uranyl carboxylates with longer hydrocarbon chains are less well studied (Leciejewicz et al., 1995). In particular, the structures of valerate-containing uranyl complexes have not previously been analysed. However, the existence of several uranium(VI) compounds with n-valerate anions (n-C4H9COO) has been reported. Courtois (1914) described needle-like crystals formulated as [UO2(n-C4H9COO)2(H2O)2], which can release water molecules in dry air under heating. Rimbach (1904) synthesized K[UO2(n-C4H9COO)3(H2O)2] by the reaction of potassium diuranate and valeric acid in water. Here, we report the structures of two uranyl complexes with n-valerate anions, viz. [UO2(n-C4H9COO)2(H2O)2], (I), and K[UO2(n-C4H9COO)3], (II).

FT–IR spectroscopy reveals the presence of uranyl, bidentate–chelating carboxylate and alkyl groups in both compounds, as well as terminally coordinated water molecules in (I). The X-ray structure analyses show that (I) and (II) have one and three crystallographically independent UVI cations, respectively. In both complexes, the UVI cations adopt hexagonal–bipyramidal geometry, with the O atoms of the uranyl cations situated in the axial positions.

In (I), a number of atoms lie on symmetry elements: atom U1 is on a site of 2/m symmetry, water atom O1 lies on a twofold axis, and uranyl atoms O2 and O3, as well as atoms C1, C2 and C6, are on mirror planes. Most of the atoms in (I) are disordered, as shown in Fig. 1. We interpret the disorder assembly as consisting of two disorder groups, with atom O2 and its centrosymmetrically related congener belonging to one disorder group, and atom O3 and its symmetry relative to the other. The uranyl fragment UO2 in (I) is symmetrical [U1—O2 = 1.752 (9) Å and U1—O3 = 1.746 (11) Å] and linear. The equatorial plane consists of four O atoms from two chelating valerate anions and two aqua ligands, which are trans to each other. The discrete [UO2(C4H9COO)2(H2O)2] molecules in (I) form two-dimensional hydrogen-bonded motifs. Each of the two disordered congeners forms one hydrogen bond, O1—H1···O4(x + 1/2, y + 1/2, z) (H···O = 1.93 Å and O—H···O = 180°) and O1—H1···O5(-x + 5/2, -y + 1/2, -z + 2) (H···O = 2.20 Å and O—H···O = 129°). According to the criteria of Steiner (2002), these hydrogen bonds are of average strength.

In (II), only two of the three independent uranyl cations, U1O22+ and U2O22+ (Figs. 2a and 2b), which lie on twofold axes, are symmetrical [U1—O1 = 1.775 (12) Å, U2—O5 = 1.716 (11) Å, and O—U—O = 179.1 (10) and 180.0 (8)°, respectively]. Atom U3 occupies a general position (Fig. 2c), with a less symmetric U3O22+ cation [U3—O9 = 1.719 (12) Å, U3—O10 = 1.757 (12) Å and O9—U3—O10 = 179.2 (6)°]. In the equatorial plane of the uranyl cations in (II), there are six O atoms from three chelating valerate anions. The main structural unit of (II) is the anionic mononuclear complex [UO2(C4H9COO)3]-, which forms a three-dimensional framework by means of electrostatic interactions with the K+ cations (Fig. 3).

The Cambridge Structural Database (CSD, Version?; Allen, 2002) includes three anionic uranyl complexes K[UO2L3] which, like (II), possess alkyl monocarboxylate ligands L-. These are orthorhombic K[UO2(C3H7COO)3] [(III); Pushkin et al., 2012], cubic K[UO2(C2H5COO)3] [(IV); Serezhkina et al., 2013] and tetragonal K[UO2(CH3COO)3] [(V); Serezhkina et al., 2010]. Compounds (III)–(V) have bidentate–chelating n-butyrate, propionate and acetate ligands, respectively. The structure of (III) contains four independent U atoms (and K+ cations), whereas (IV) and (V) contain one independent U atom (and K+ cation) each. All K+ cations in (II)–(V) adopt distorted octahedral coordinations, except for one trigonal prismatic K+ cation in (III) (Pushkin et al., 2012). The three-dimensional frameworks in (II)–(V), which consist of K, U and O atoms, can be examined in a simple fashion by omitting from consideration the terminal groups (the hydrocarbon chains and the O atoms of the uranyl cations). The four frameworks in (II)–(V), of composition KUO6, have each U (K) atom connected to three K (U) atoms by double –O– bridges (Fig. 4). The bulky carboxylate anions fill the voids in these frameworks (Fig. 5). The peculiarities of the three-dimensional frameworks are then differentiated only by the steric characteristics and dispositions of the hydrocarbon residues and the manner in which the frameworks accommodate them.

It might be reasonable to expect that the minimum distance between U atoms in one of these structures, dUU, would become greater as the alkyl side chain progresses from shorter to longer. The minimum dUU does at first increase, from 6.53 to 7.38 Å, on going from acetate (V) to propionate (IV), but it then decreases to 6.41 Å in the butyrate compound (III) and further to 6.24 Å for valerate (II). We can understand this with reference to the concept of coordination spheres (CS) and coordination sequences. The CS's are successive neighbourhoods of topologically relevant atoms (U and K) around a central atom, here U. For example, in Fig. 4, R0 is the central atom, and the atoms labelled R1 are those of its first CS. The O atoms are bridges and, for the present purposes, are not counted as a CS. The CS's are compared using the further concept of coordination sequences CPN (O'Keeffe, 1995), which gives the number of atoms in the Nth CS around the central atom. We take U as the central atom for (II)–(V), so odd CS's consist only of K and even CS's are all U. Thus, CP shows the number of R atoms (R = K or U) of the Nth coordination shell which are connected to the central U atom through the R—(O—R—)N chains. If each R atom were connected to three other R atoms through O-atom bridges (Fig. 4), the number of atoms would double in successive CS's. The theoretical population of CS's for (II)–(V) would then be 3, 6, 12, 24, 48, 96, 192 etc. However, this avalanche-like increase of CPN is obviated by a steric factor. What actually occurs is that at some point two adjacent R—(O—R—)N chains share a common R atom (Fig. 6) to form a cyclic pattern. As a result, as linkages appear, the CPN values for (II)–(V) become smaller than the theoretically possible values. For acetate (V), this decrease starts from the fourth CS (Fig. 7, curve a) and eight-membered rings are formed; these would be 16-membered rings if O atoms were counted. From a topological point of view, the KUO6 framework in (V) represents a three-coordinated uninodal net of a rare 3/8/t7 type (Alexandrov et al., 2011). In cubic (IV) (propionate), the linkage of adjacent chains starts only in the fifth CS (Fig. 7, curve b). Accordingly, the cycles in the structure of (IV) contain at least ten atoms. The KUO6 framework in (IV) also represents a three-coordinated uninodal net, but of one of the most common topological types, srs (Hyde et al., 2008). In contrast with the uninodal nets in (IV) and (V), the KUO6 frameworks for valerate (II) and butyrate (III) represent more complicated three-coordinated 6-nodal nets. For the U1 atoms in (II) and (III), the linkage of chains starts from the fourth CS (Fig. 7, curve c), as in (V). But for atoms U2, U3 and U4 in (II) and (III), chain linkage begins in the third CS (Fig. 7, curves d and e), so that six-membered rings can also be found in the structures of these complexes. Evidently, the KUO6 frameworks in (II)–(V) are similar in the first CS, but rearrange and distort in subsequent CS's.

These differences in successive CS's allow the KUO6 frameworks to accommodate more or less voluminous groups. Since the voids in these structures are continuous and unbounded, it is not possible to determine their volumes. Instead, one can estimate the size of the largest sphere that can fit in the largest cavity in the KUO6 framework. For (II)–(V), the volumes of these spheres are 1062, 873, 312 and 349 Å3, respectively. Thus, the KUO6 frameworks in (II) and (III) provide more space for the voluminous valerate and butyrate anions through the formation of smaller six-membered rings in earlier CS's.

It is noteworthy that the propionate complex, (IV), which has the largest minimum rings (ten-membered) of all compounds (II)–(V), has the highest possible symmetry, cubic. It could be that, even in the absence of hydrocarbon chains, the KUO6 framework can not be constructed with larger minimum rings because it reaches the steric hindrance limit. Potassium uranyl propionate, (IV), may be an example of a system in which the hydrocarbon chains (–C3H5) fit well in the voids of such a highly symmetric three-dimensional framework. Smaller hydrocarbon chains [–C2H3 in (V)] require adjacent R—(O—R—)N chains to link earlier in order to approach one another. This could cause the lowering of the symmetry to tetragonal. Longer hydrocarbon chains [–C4H7 and –C5H9 in (III) and (II), respectively] do not fit the voids of such a symmetric framework, and it distorts to accommodate them. The distortion is manifested in the alternating interatomic U···U distances, an increase in the number of independent U atoms and K+ cations and even a change in coordination geometry around some of the K+ centres. The symmetry of (II) and (III) is lowered to orthorhombic. The variation of the KUO6 frameworks in these four compounds provides a new example of three-dimensional topological isomerism in coordination compounds of UVI.

The effect of alkyl group length in the K[UO2L3] homologous series on the characteristics of noncovalent interactions was analysed by means of a stereoatomic model of crystal structure (Serezhkin, 2007), based on Voronoi–Dirichlet polyhedra (VDP) descriptors (Blatov et al., 1995). This approach allows one to describe all types of interatomic interactions from a single point of view without using any system of crystal–chemical radii (Serezhkin et al., 2012). The VDP of a point – an atom in the present context – is a convex polyhedron of minimum volume, containing this atom and bounded by planes which are perpendicular bisectors of the line segments connecting this atom to all other atoms. Thus, each face of a VDP in a crystal structure belongs to two atoms A and B, and can be characterized by its `rank of interatomic contact' (RC) (Shevchenko & Serezhkin, 2004), which is the number of chemical bonds in the shortest chain connecting A and B. Thus, RC = 1 for all covalent bonds, and RC = 2 for A and B atoms in the chain ADB. If a face of the VDP of atom A is generated with atom B from another molecule (or chain or layer), the rank of the A···B contact is set to zero, because there is no bonding chain connecting A and B. According to this approach, all faces with RC 2 correspond to different types of non-covalent intramolecular interactions, and the partial contributions of each type can be unambiguously estimated by calculating the relative surface areas of the corresponding faces of the VDP. Our calculations on (II)–(V) showed that the partial contribution of the H···H dispersion interactions increases significantly through the series from the acetate to the valerate derivatives (Fig. 8). Thus, in acetate (V), only 28.5% of noncovalent interactions correspond to H···H contacts, whereas for (IV), (III) and (II) these valuee are 42.6, 57.6 and 60.5%, respectively. On the other hand, the surface areas corresponding to H···O hydrogen bonds and O···O dispersion interactions decrease in this sequence. The respective partial contributions for H···O and O···O contacts are 41.3 and 15.8% in (V), 35.2 and 9.8% in (IV), 22.0 and 9.1% in (III), and 19.6 and 7.7% in (II). The partial contributions of noncovalent H···C interactions in (II)–(V) are almost the same (8.7% on average) and those of the remaining types of contacts (C···C, C···O etc.) do not exceed 4%.

Related literature top

For related literature, see: Alexandrov et al. (2011); Allen (2002); Blatov (2012); Blatov et al. (1995); Courtois (1914); Flack (1983); Haas & Northup (2004); Hyde et al. (2008); Leciejewicz et al. (1995); Lenhart et al. (2000); Miller (2009); Moita et al. (1994); O'Keeffe (1995); Pushkin et al. (2012); Rimbach (1904); Rosberg et al. (2000); Serezhkin (2007); Serezhkin et al. (2012); Serezhkina et al. (2010, 2013); Shevchenko & Serezhkin (2004); Steiner (2002); Wang & Chen (2011).

Experimental top

UO2(NO3)2.6H2O (0.2 mmol), valeric acid (0.6 mmol) and NaOH (0.6 mmol) were dissolved in water (6 ml). Yellow prismatic crystals of (I) formed upon isothermal evaporation of the reaction mixture. The same procedure with KOH instead of NaOH afforded plate-like crystals of (II). It is noteworthy that, under the conditions described, Na+, in contrast with K+, did not enter into the structure. Absorption bands in the FT–IR spectra of (I) and (II) correspond to vibrations of the UO22+ and C4H9COO- ions, and for (I) to H2O molecules. Full assignment of absorption bands was made according to Moita et al. (1994) and is provided as Supplementary materials.

Refinement top

Refinement of (I) using the space group C2 gave large correlations and an absolute structure parameter of 0.38 (8) (Flack, 1983), and moreover gave the same disordered structural model as was found when the space group C2/m was used. The final refinement used C2/m, which did not produce a correlation problem. The uranyl O atoms and the valerate unit are disordered over two sites across the mirror plane. In (II), three of the seven independent carboxylate anions are disordered, each over two sites with equal occupancies. One of these was refined isotropically (C1–C5A,B). The lengths of 24 C—C bonds and nine 1,3-distances in (II) were restrained. A common set of anisotropic displacement parameters was refined for the last four C atoms of each valerate ligand. In addition, restraints to isotropic behaviour were applied to the anisotropic displacement parameters of two O and four C atoms. H atoms were placed in calculated positions and refined as riding, with C—H = 0.96, 0.98 or 0.99 Å and O—H = 0.85 Å [Please check added text], and with Uiso(H) = 1.5Ueq(C,O) for methyl groups and water molecules or 1.2Ueq(C) for other C atoms. Calculations of coordination sequences and noncovalent interactions were carried out with the program package TOPOS (Blatov, 2012).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The molecule is disordered in such a way that the central UO2(C4H9COO)2 fragment is disordered over two sites (O2/O4/C1–C5 and O3/O5/C6/C2iv–C5iv) and each of these fragments has its terminal –C3H7 group symmetrically disordered over two sites. The butyl fragments on atoms C6 and C6i are depicted without H atoms and without ellipsoids. Second congeners of symmetrically disordered fragments are shown as dashed lines. [Symmetry codes: (i) -x + 2, -y, -z + 2; (ii) x, -y, z; (iii) -x + 2, y, -z + 2; (iv) x + 1, -y, z; (v) x + 1, y, z; (vi) -x + 1, -y, -z + 2; (vii) -x + 1, y, -z + 2.]
[Figure 2] Fig. 2. The structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Three of the seven independent carboxylate groups are equiprobably [equally?] disordered over two sites: (a) molecule 1, atoms C2A–C5A and C2B–C5B, and C6–C10 and C6i–C10i; (b) molecule 2, atoms C18–C20 and C18ii–C20ii. One of each pair of disordered positions is depicted with dashed lines. (c) A view of molecule 3, shown without disorder. [Symmetry codes: (i) -x, y, -z + 3/2; (ii) x, -y, -z + 2.]
[Figure 3] Fig. 3. The asymmetric unit of (II). Only one disorder group is depicted for each disorder assembly [dashed lines?].
[Figure 4] Fig. 4. The bonding in the first coordination sphere of a central atom R0 in the KUO6 framework. Each R atom (R = K or U) is connected to three other R atoms by double –O– bridges. Superscripts indicate the number of the coordination sphere.
[Figure 5] Fig. 5. The KUO6 framework in (II) in polyhedral representation. The voids are occupied by carboxylate ligands.
[Figure 6] Fig. 6. Three R—(O—R—)N chains (solid, dashed and dot-and-dashed lines) start from the basic atom R0. Two of them link in the third coordination sphere through the common atom R3, forming a six-membered ring. Superscripts indicate the number of the coordination sphere.
[Figure 7] Fig. 7. Coordination sequences (CP7) from the central U atoms in (a) K[UO2(CH3COO)3], (V); (b) K[UO2(C2H5COO)3], (IV); (c) U1 in K[UO2(C3H7COO)3], (III), and K[UO2(C4H9COO)3], (II); (d,e) U2, U3 and U4 in K[UO2(C3H7COO)3], (III), and K[UO2(C4H9COO)3], (II). The heavy line indicates the largest theoretically possible values. The values of CP are: (a) 3, 6, 12, 21, 34, 52, 71; (b) 3, 6, 12, 24, 35, 48, 69; (c) 3, 6, 12, 20, 30, 44, 63; (d) 3, 6, 10, 17, 30, 45, 60; (e) 3, 6, 10, 16, 29, 44, 59.
[Figure 8] Fig. 8. Partial contributions (Δ) of several types of non-covalent interactions in (a) K[UO2(C4H9COO)3], (II); (b) K[UO2(C3H7COO)3], (III); (c) K[UO2(C2H5COO)3], (IV); (d) K[UO2(CH3COO)3],(V). The values of Δ are: (a) 60, 20, 8, 9; (b) 58, 22, 9, 8; (c) 43, 35, 10, 9; (d) 28, 41, 16, 9.
(I) Diaquadioxidobis(n-valerato-κ2O,O')uranium(VI) top
Crystal data top
[U(C5H9O2)2O2(H2O)2]F(000) = 476
Mr = 508.31Dx = 2.185 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 125 reflections
a = 7.782 (4) Åθ = 2.5–26.8°
b = 10.802 (5) ŵ = 10.53 mm1
c = 9.512 (5) ÅT = 100 K
β = 104.885 (9)°Prism, yellow
V = 772.7 (7) Å30.21 × 0.11 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1187 independent reflections
Radiation source: fine-focus sealed tube1187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1010
Tmin = 0.261, Tmax = 0.430k = 1515
4876 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
1187 reflections(Δ/σ)max < 0.001
85 parametersΔρmax = 2.06 e Å3
0 restraintsΔρmin = 2.05 e Å3
Crystal data top
[U(C5H9O2)2O2(H2O)2]V = 772.7 (7) Å3
Mr = 508.31Z = 2
Monoclinic, C2/mMo Kα radiation
a = 7.782 (4) ŵ = 10.53 mm1
b = 10.802 (5) ÅT = 100 K
c = 9.512 (5) Å0.21 × 0.11 × 0.08 mm
β = 104.885 (9)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1187 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1187 reflections with I > 2σ(I)
Tmin = 0.261, Tmax = 0.430Rint = 0.068
4876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.00Δρmax = 2.06 e Å3
1187 reflectionsΔρmin = 2.05 e Å3
85 parameters
Special details top

Experimental. FT–IR spectra were measured using a Perkin–Elmer Spectrum 100 FT–IR spectrometer, using pressed KBr pellets.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U11.00000.00001.00000.00883 (9)
O11.00000.2248 (5)1.00000.0481 (18)
H11.06280.27820.97040.072*
O21.0290 (12)0.00000.8233 (10)0.026 (2)0.5
O31.1439 (13)0.00001.1743 (11)0.042 (3)0.5
O40.7057 (7)0.1000 (6)0.9038 (7)0.0189 (12)0.5
O51.2305 (8)0.0995 (6)0.8998 (8)0.0209 (13)0.5
C10.6208 (15)0.00000.8634 (12)0.013 (2)0.5
C20.4305 (8)0.00000.7720 (7)0.0239 (13)
H20.35070.00950.83330.029*0.5
H30.40480.07750.72150.029*0.5
C30.4012 (14)0.1116 (9)0.6565 (10)0.0246 (19)0.5
H40.40990.19160.70870.029*0.5
H50.49600.10950.60430.029*0.5
C40.2191 (14)0.1023 (10)0.5463 (11)0.028 (2)0.5
H60.20840.02030.49850.033*0.5
H70.12470.10860.59860.033*0.5
C50.1909 (16)0.2019 (11)0.4314 (12)0.033 (2)0.5
H80.07560.19200.36540.050*0.5
H90.19850.28170.47690.050*0.5
H100.28060.19520.37880.050*0.5
C61.2869 (14)0.00000.8611 (13)0.014 (2)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.00675 (13)0.00607 (13)0.01403 (15)0.0000.00333 (10)0.000
O10.033 (3)0.009 (2)0.115 (6)0.0000.043 (3)0.000
O20.020 (4)0.043 (6)0.016 (4)0.0000.009 (4)0.000
O30.016 (5)0.097 (11)0.018 (5)0.0000.010 (4)0.000
O40.009 (3)0.011 (3)0.035 (4)0.001 (2)0.003 (2)0.001 (2)
O50.017 (3)0.009 (3)0.039 (4)0.003 (2)0.013 (3)0.004 (2)
C10.017 (5)0.011 (5)0.014 (5)0.0000.011 (4)0.000
C20.014 (3)0.034 (4)0.023 (3)0.0000.002 (2)0.000
C30.032 (5)0.022 (4)0.020 (4)0.006 (4)0.006 (4)0.002 (4)
C40.027 (5)0.030 (5)0.024 (5)0.004 (4)0.003 (4)0.006 (4)
C50.040 (6)0.031 (6)0.030 (5)0.005 (4)0.011 (5)0.009 (4)
C60.007 (4)0.021 (6)0.015 (5)0.0000.005 (4)0.000
Geometric parameters (Å, º) top
U1—O31.746 (11)C1—O4ii1.273 (9)
U1—O3i1.746 (11)C1—C21.512 (13)
U1—O2i1.752 (9)C2—C6iv1.567 (12)
U1—O21.752 (9)C2—C3ii1.608 (10)
U1—O1i2.428 (5)C2—C31.608 (10)
U1—O12.428 (5)C2—H20.9599
U1—O5i2.482 (6)C2—H30.9600
U1—O5ii2.482 (6)C3—C41.534 (14)
U1—O5iii2.482 (6)C3—H40.9900
U1—O52.482 (6)C3—H50.9900
U1—O42.485 (6)C4—C51.508 (14)
U1—O4i2.485 (6)C4—H60.9900
O1—H10.8500C4—H70.9900
O2—O3i1.351 (13)C5—H80.9600
O3—O2i1.351 (13)C5—H90.9599
O4—C11.273 (9)C5—H100.9601
O4—O5i1.806 (10)C6—O5ii1.251 (8)
O5—C61.251 (8)C6—C2v1.567 (12)
O5—O4i1.806 (10)
O3—U1—O3i180O5i—U1—O4i137.4 (2)
O3—U1—O2i45.4 (4)O5ii—U1—O4i68.9 (2)
O3i—U1—O2i134.6 (4)O5iii—U1—O4i111.1 (2)
O3—U1—O2134.5 (4)O5—U1—O4i42.6 (2)
O3i—U1—O245.4 (4)O4—U1—O4i180
O2i—U1—O2180U1—O1—H1132.8
O3—U1—O1i90O3i—O2—U167.0 (6)
O3i—U1—O1i90O2i—O3—U167.5 (6)
O2i—U1—O1i90C1—O4—O5i107.1 (7)
O2—U1—O1i90C1—O4—U195.8 (5)
O3—U1—O190O5i—O4—U168.6 (3)
O3i—U1—O190C6—O5—O4i106.4 (7)
O2i—U1—O190C6—O5—U194.8 (5)
O2—U1—O190O4i—O5—U168.8 (3)
O1i—U1—O1180O4ii—C1—O4116.1 (11)
O3—U1—O5i89.2 (3)O4ii—C1—C2122.0 (5)
O3i—U1—O5i90.8 (3)O4—C1—C2122.0 (5)
O2i—U1—O5i49.3 (3)O4ii—C1—U158.4 (5)
O2—U1—O5i130.7 (3)O4—C1—U158.4 (5)
O1i—U1—O5i64.34 (14)C2—C1—U1171.9 (7)
O1—U1—O5i115.66 (14)C1—C2—C6iv114.8 (7)
O3—U1—O5ii90.8 (3)C1—C2—C3ii109.8 (5)
O3i—U1—O5ii89.2 (3)C6iv—C2—C3ii111.9 (5)
O2i—U1—O5ii130.7 (3)C1—C2—C3109.8 (5)
O2—U1—O5ii49.3 (3)C6iv—C2—C3111.9 (5)
O1i—U1—O5ii64.34 (14)C3ii—C2—C397.2 (8)
O1—U1—O5ii115.66 (14)C1—C2—H2110.0
O5i—U1—O5ii128.7 (3)C3ii—C2—H2119.6
O3—U1—O5iii89.2 (3)C3—C2—H2109.5
O3i—U1—O5iii90.8 (3)C1—C2—H3109.6
O2i—U1—O5iii49.3 (3)C6iv—C2—H3100.6
O2—U1—O5iii130.7 (3)C3—C2—H3109.7
O1i—U1—O5iii115.66 (14)H2—C2—H3108.2
O1—U1—O5iii64.34 (14)C4—C3—C2111.2 (7)
O5i—U1—O5iii51.3 (3)C4—C3—H4109.4
O5ii—U1—O5iii180C2—C3—H4109.4
O3—U1—O590.8 (3)C4—C3—H5109.4
O3i—U1—O589.2 (3)C2—C3—H5109.4
O2i—U1—O5130.7 (3)H4—C3—H5108.0
O2—U1—O549.3 (3)C5—C4—C3112.7 (9)
O1i—U1—O5115.66 (14)C5—C4—H6109.1
O1—U1—O564.34 (14)C3—C4—H6109.1
O5i—U1—O5180C5—C4—H7109.1
O5ii—U1—O551.3 (3)C3—C4—H7109.1
O5iii—U1—O5128.7 (3)H6—C4—H7107.8
O3—U1—O4131.0 (3)C4—C5—C5vi86.1 (9)
O3i—U1—O449.0 (3)C4—C5—H8109.5
O2i—U1—O491.1 (3)C5vi—C5—H8141.6
O2—U1—O488.9 (3)C4—C5—H9109.5
O1i—U1—O464.24 (14)H8—C5—H9109.5
O1—U1—O4115.76 (14)C4—C5—H10109.5
O5i—U1—O442.6 (2)C5vi—C5—H1096.9
O5ii—U1—O4111.1 (2)H8—C5—H10109.5
O5iii—U1—O468.9 (2)H9—C5—H10109.5
O5—U1—O4137.3 (2)O5—C6—O5ii118.4 (10)
O3—U1—O4i49.0 (3)O5—C6—C2v120.8 (5)
O3i—U1—O4i131.0 (3)O5ii—C6—C2v120.8 (5)
O2i—U1—O4i88.9 (3)O5—C6—U159.5 (5)
O2—U1—O4i91.1 (3)O5ii—C6—U159.5 (5)
O1i—U1—O4i115.76 (14)C2v—C6—U1174.9 (7)
O1—U1—O4i64.24 (14)
Symmetry codes: (i) x+2, y, z+2; (ii) x, y, z; (iii) x+2, y, z+2; (iv) x1, y, z; (v) x+1, y, z; (vi) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4vii0.851.932.781 (7)180
O1—H1···O5viii0.852.202.808 (8)128
Symmetry codes: (vii) x+1/2, y+1/2, z; (viii) x+5/2, y+1/2, z+2.
(II) Potassium dioxidotris(n-valerato-κ2O,O')uranium(VI) top
Crystal data top
K[U(C5H9O2)3O2]F(000) = 4672
Mr = 612.50Dx = 1.927 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 1355 reflections
a = 17.294 (3) Åθ = 2.6–22.2°
b = 23.405 (4) ŵ = 7.92 mm1
c = 20.862 (3) ÅT = 100 K
V = 8444 (2) Å3Plate, yellow
Z = 160.24 × 0.15 × 0.03 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10209 independent reflections
Radiation source: fine-focus sealed tube8322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1822
Tmin = 0.252, Tmax = 0.797k = 3030
37788 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max = 0.008
10209 reflectionsΔρmax = 2.77 e Å3
366 parametersΔρmin = 1.85 e Å3
63 restraintsAbsolute structure: Flack (1983), with 4677 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.061 (16)
Crystal data top
K[U(C5H9O2)3O2]V = 8444 (2) Å3
Mr = 612.50Z = 16
Orthorhombic, C2221Mo Kα radiation
a = 17.294 (3) ŵ = 7.92 mm1
b = 23.405 (4) ÅT = 100 K
c = 20.862 (3) Å0.24 × 0.15 × 0.03 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10209 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
8322 reflections with I > 2σ(I)
Tmin = 0.252, Tmax = 0.797Rint = 0.072
37788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.193Δρmax = 2.77 e Å3
S = 1.25Δρmin = 1.85 e Å3
10209 reflectionsAbsolute structure: Flack (1983), with 4677 Friedel pairs
366 parametersAbsolute structure parameter: 0.061 (16)
63 restraints
Special details top

Experimental. FT–IR spectra were measured using a Perkin–Elmer Spectrum 100 FT–IR spectrometer, using pressed KBr pellets.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U10.00000.10330 (3)0.75000.03262 (18)
U20.32439 (4)0.00001.00000.0370 (2)
U30.34413 (3)0.08589 (3)0.67491 (3)0.03730 (16)
K10.4201 (3)0.00000.50000.0403 (10)
K20.00000.29034 (19)0.75000.0474 (12)
K30.20505 (19)0.01060 (15)0.81415 (15)0.0379 (7)
O10.0331 (9)0.1027 (7)0.8305 (6)0.069 (4)
O20.0726 (9)0.1921 (7)0.7716 (8)0.072 (4)
O30.1384 (8)0.1109 (6)0.7845 (7)0.060 (3)
O40.0563 (8)0.0102 (5)0.7711 (9)0.075 (5)
O50.3244 (7)0.0717 (5)1.0172 (5)0.046 (3)
O60.4421 (6)0.0165 (6)0.9372 (5)0.052 (3)
O70.3337 (7)0.0246 (6)0.8848 (5)0.053 (3)
O80.1958 (6)0.0060 (7)0.9489 (6)0.054 (3)
O90.2687 (7)0.1247 (6)0.6436 (6)0.053 (3)
O100.4212 (7)0.0468 (5)0.7079 (6)0.048 (3)
O110.4406 (10)0.1623 (6)0.6445 (6)0.070 (4)
O120.4146 (6)0.0952 (5)0.5728 (5)0.042 (2)
O130.3180 (7)0.0077 (5)0.5969 (6)0.050 (3)
O140.2630 (7)0.0011 (6)0.6940 (5)0.054 (3)
O150.2761 (7)0.0914 (5)0.7815 (5)0.044 (3)
O160.3585 (7)0.1560 (5)0.7607 (5)0.046 (3)
C10.1340 (17)0.1637 (14)0.7807 (15)0.103 (9)*
C2A0.170 (3)0.2166 (18)0.809 (3)0.152 (12)*0.50
H2AA0.14390.22580.84980.183*0.50
H2AB0.16160.24900.77920.183*0.50
C3A0.255 (3)0.210 (3)0.821 (3)0.152 (12)*0.50
H3AA0.28080.24700.81560.183*0.50
H3AB0.27670.18320.78820.183*0.50
C4A0.272 (5)0.186 (3)0.887 (3)0.152 (12)*0.50
H4AA0.24770.14820.89090.183*0.50
H4AB0.32830.18180.89160.183*0.50
C5A0.242 (6)0.225 (3)0.939 (3)0.152 (12)*0.50
H5AA0.24820.20600.98020.228*0.50
H5AB0.18680.23260.93120.228*0.50
H5AC0.27070.26080.93830.228*0.50
C2B0.207 (3)0.195 (3)0.762 (3)0.152 (12)*0.50
H2BA0.21710.20090.71740.228*0.50
H2BC0.18700.22980.78040.228*0.50
C3B0.2763 (18)0.173 (3)0.797 (3)0.152 (12)*0.50
H3BA0.32120.19770.78790.183*0.50
H3BB0.28850.13400.78130.183*0.50
C4B0.264 (3)0.170 (4)0.869 (3)0.152 (12)*0.50
H4BA0.21340.18720.87910.183*0.50
H4BB0.26360.12990.88240.183*0.50
C5B0.326 (5)0.202 (4)0.905 (3)0.152 (12)*0.50
H5BA0.31930.19570.95070.228*0.50
H5BB0.32300.24260.89500.228*0.50
H5BC0.37720.18730.89160.228*0.50
C60.000 (4)0.0145 (13)0.7371 (17)0.062 (10)0.50
C70.010 (7)0.0762 (17)0.755 (4)0.141 (14)0.50
H7A0.06250.08960.75360.170*0.50
H7B0.01550.08960.71690.170*0.50
C80.035 (5)0.093 (2)0.813 (3)0.141 (14)0.50
H8A0.02930.13300.80520.170*0.50
H8B0.08860.08530.80330.170*0.50
C90.034 (5)0.097 (2)0.885 (2)0.141 (14)0.50
H9A0.07160.06920.90290.170*0.50
H9B0.01800.08570.90050.170*0.50
C100.053 (5)0.155 (3)0.910 (3)0.141 (14)0.50
H10A0.05450.15460.95660.170*0.50
H10B0.01300.18230.89550.170*0.50
H10C0.10320.16730.89300.170*0.50
C110.4070 (11)0.0303 (11)0.8873 (8)0.061 (6)
C120.4497 (19)0.0480 (13)0.8273 (15)0.104 (5)
H12A0.41320.06740.79800.125*
H12B0.46890.01330.80530.125*
C130.5187 (19)0.0882 (10)0.8408 (14)0.104 (5)
H13A0.55140.08890.80190.125*
H13B0.54990.07070.87540.125*
C140.5028 (16)0.1494 (10)0.8598 (14)0.104 (5)
H14A0.47270.16840.82550.125*
H14B0.47150.15010.89950.125*
C150.5772 (16)0.1816 (13)0.8707 (15)0.104 (5)
H15A0.56570.22210.87820.125*
H15B0.61030.17790.83280.125*
H15C0.60390.16580.90810.125*
C160.1622 (10)0.00001.00000.048 (5)
C170.0757 (10)0.00001.00000.069 (5)
H17A0.05980.03500.98950.082*0.50
H17B0.05980.02640.96320.082*0.50
C180.0330 (16)0.0213 (19)1.057 (3)0.069 (5)0.50
H18A0.05390.05731.07000.082*0.50
H18B0.04290.00541.09060.082*0.50
C190.0542 (16)0.0226 (18)1.053 (2)0.069 (5)0.50
H19A0.06920.04311.01360.082*0.50
H19B0.07290.01721.04900.082*0.50
C200.096 (2)0.0498 (17)1.108 (2)0.069 (5)0.50
H20A0.15100.05191.09900.082*0.50
H20B0.07530.08841.11530.082*0.50
H20C0.08740.02691.14720.082*0.50
C210.4524 (12)0.1406 (10)0.5877 (10)0.066 (6)
C220.5108 (19)0.1678 (11)0.5443 (15)0.122 (6)
H22A0.56300.15400.55630.146*
H22B0.50060.15540.49970.146*
C230.510 (2)0.2323 (12)0.5468 (18)0.122 (6)
H23A0.53130.24410.58890.146*
H23B0.54630.24650.51370.146*
C240.4340 (19)0.2626 (15)0.5376 (18)0.122 (6)
H24A0.40770.25000.49790.146*
H24B0.39910.25670.57460.146*
C250.460 (2)0.3233 (15)0.5330 (16)0.122 (6)
H25A0.41490.34810.52620.146*
H25B0.48600.33430.57280.146*
H25C0.49570.32750.49690.146*
C260.2732 (13)0.0181 (8)0.6360 (10)0.061 (6)
C270.231 (3)0.0714 (13)0.6171 (16)0.137 (7)
H27A0.17560.06610.62860.164*
H27B0.25070.10320.64360.164*
C280.234 (3)0.0898 (9)0.5486 (14)0.137 (7)
H28A0.21260.05840.52210.164*
H28B0.28890.09430.53670.164*
C290.192 (2)0.1441 (10)0.5305 (13)0.137 (7)
H29A0.20490.15400.48560.164*
H29B0.13570.13750.53300.164*
C300.213 (3)0.1931 (8)0.5730 (15)0.137 (7)
H30A0.17970.22580.56330.164*
H30B0.26720.20370.56570.164*
H30C0.20610.18200.61790.164*
C310.3111 (11)0.1346 (6)0.7976 (8)0.041 (4)
C320.2879 (17)0.1604 (15)0.8567 (15)0.102 (5)
H32A0.31940.14300.89120.122*
H32B0.30240.20130.85460.122*
C330.2067 (16)0.1577 (13)0.8771 (13)0.102 (5)
H33A0.19000.11730.88040.122*
H33B0.20080.17570.91980.122*
C340.1576 (13)0.1884 (12)0.8291 (12)0.102 (5)
H34A0.15460.23000.83720.122*
H34B0.17410.18120.78430.122*
C350.0841 (15)0.1576 (13)0.8462 (14)0.102 (5)
H35A0.04190.17150.81900.122*
H35B0.09100.11650.83950.122*
H35C0.07150.16480.89130.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0222 (4)0.0287 (3)0.0469 (4)0.0000.0068 (3)0.000
U20.0215 (4)0.0604 (5)0.0291 (3)0.0000.0000.0013 (3)
U30.0305 (3)0.0432 (3)0.0382 (3)0.0000 (2)0.0049 (2)0.0012 (2)
K10.031 (2)0.063 (3)0.0266 (19)0.0000.0000.000 (2)
K20.050 (3)0.025 (2)0.067 (3)0.0000.010 (3)0.000
K30.0304 (16)0.0468 (19)0.0364 (15)0.0076 (14)0.0041 (12)0.0042 (13)
O10.081 (10)0.091 (10)0.034 (6)0.009 (8)0.008 (6)0.018 (6)
O20.065 (6)0.066 (5)0.085 (6)0.005 (4)0.003 (4)0.002 (4)
O30.048 (5)0.059 (5)0.072 (5)0.002 (4)0.008 (4)0.003 (4)
O40.044 (8)0.033 (6)0.147 (15)0.004 (6)0.040 (9)0.009 (7)
O50.043 (7)0.046 (6)0.048 (6)0.006 (5)0.000 (5)0.005 (5)
O60.017 (5)0.107 (11)0.033 (5)0.007 (6)0.001 (4)0.001 (6)
O70.032 (7)0.095 (10)0.032 (5)0.003 (6)0.001 (5)0.011 (5)
O80.022 (5)0.092 (10)0.050 (6)0.013 (6)0.006 (5)0.020 (6)
O90.037 (7)0.067 (8)0.055 (7)0.012 (6)0.000 (5)0.013 (6)
O100.035 (7)0.057 (8)0.050 (6)0.010 (5)0.003 (5)0.009 (5)
O110.109 (13)0.053 (8)0.047 (7)0.041 (8)0.014 (7)0.011 (6)
O120.034 (6)0.048 (7)0.044 (5)0.003 (5)0.002 (4)0.001 (5)
O130.049 (7)0.046 (7)0.055 (7)0.017 (6)0.014 (5)0.023 (5)
O140.034 (6)0.073 (8)0.054 (7)0.027 (6)0.017 (5)0.034 (6)
O150.045 (7)0.048 (7)0.040 (5)0.002 (5)0.007 (5)0.004 (5)
O160.053 (8)0.046 (6)0.039 (6)0.006 (5)0.005 (5)0.001 (5)
C60.061 (11)0.062 (11)0.062 (12)0.002 (5)0.000 (5)0.003 (5)
C70.139 (15)0.140 (15)0.145 (15)0.001 (5)0.001 (5)0.002 (5)
C80.139 (15)0.140 (15)0.145 (15)0.001 (5)0.001 (5)0.002 (5)
C90.139 (15)0.140 (15)0.145 (15)0.001 (5)0.001 (5)0.002 (5)
C100.139 (15)0.140 (15)0.145 (15)0.001 (5)0.001 (5)0.002 (5)
C110.041 (11)0.110 (17)0.034 (8)0.021 (11)0.008 (7)0.005 (9)
C120.112 (13)0.098 (11)0.103 (10)0.014 (9)0.045 (10)0.003 (8)
C130.112 (13)0.098 (11)0.103 (10)0.014 (9)0.045 (10)0.003 (8)
C140.112 (13)0.098 (11)0.103 (10)0.014 (9)0.045 (10)0.003 (8)
C150.112 (13)0.098 (11)0.103 (10)0.014 (9)0.045 (10)0.003 (8)
C160.026 (11)0.070 (15)0.048 (12)0.0000.0000.011 (11)
C170.024 (9)0.057 (11)0.125 (17)0.0000.0000.016 (10)
C180.024 (9)0.057 (11)0.125 (17)0.0000.0000.016 (10)
C190.024 (9)0.057 (11)0.125 (17)0.0000.0000.016 (10)
C200.024 (9)0.057 (11)0.125 (17)0.0000.0000.016 (10)
C210.051 (12)0.078 (14)0.069 (13)0.028 (11)0.017 (10)0.024 (11)
C220.128 (7)0.119 (7)0.118 (7)0.009 (5)0.001 (5)0.002 (5)
C230.128 (7)0.119 (7)0.118 (7)0.009 (5)0.001 (5)0.002 (5)
C240.128 (7)0.119 (7)0.118 (7)0.009 (5)0.001 (5)0.002 (5)
C250.128 (7)0.119 (7)0.118 (7)0.009 (5)0.001 (5)0.002 (5)
C260.073 (14)0.041 (10)0.070 (12)0.026 (9)0.031 (10)0.014 (8)
C270.23 (2)0.064 (9)0.116 (12)0.035 (12)0.027 (14)0.027 (8)
C280.23 (2)0.064 (9)0.116 (12)0.035 (12)0.027 (14)0.027 (8)
C290.23 (2)0.064 (9)0.116 (12)0.035 (12)0.027 (14)0.027 (8)
C300.23 (2)0.064 (9)0.116 (12)0.035 (12)0.027 (14)0.027 (8)
C310.055 (11)0.024 (7)0.044 (8)0.007 (7)0.020 (8)0.005 (6)
C320.077 (10)0.123 (12)0.104 (10)0.034 (9)0.013 (7)0.035 (9)
C330.077 (10)0.123 (12)0.104 (10)0.034 (9)0.013 (7)0.035 (9)
C340.077 (10)0.123 (12)0.104 (10)0.034 (9)0.013 (7)0.035 (9)
C350.077 (10)0.123 (12)0.104 (10)0.034 (9)0.013 (7)0.035 (9)
Geometric parameters (Å, º) top
U1—O11.775 (12)C5B—H5BC0.9800
U1—O1i1.775 (12)C6—O4i1.14 (6)
U1—O4i2.426 (12)C6—C71.502 (11)
U1—O42.426 (12)C7—C81.502 (10)
U1—O22.470 (15)C7—H7A0.9601
U1—O2i2.470 (15)C7—H7B0.9600
U1—O32.505 (13)C8—C91.500 (11)
U1—O3i2.505 (13)C8—H8A0.9600
U2—O51.716 (11)C8—H8B0.9700
U2—O5ii1.716 (11)C9—C101.498 (10)
U2—O6ii2.451 (10)C9—H9A0.9900
U2—O62.451 (10)C9—H9B0.9900
U2—O82.470 (10)C10—H10A0.9800
U2—O8ii2.470 (10)C10—H10B0.9800
U2—O72.476 (10)C10—H10C0.9800
U2—O7ii2.476 (10)C11—C121.51 (3)
U3—O91.719 (12)C12—C131.55 (4)
U3—O101.757 (12)C12—H12A0.9900
U3—O162.441 (11)C12—H12B0.9900
U3—O142.462 (12)C13—C141.512 (10)
U3—O122.464 (11)C13—H13A0.9900
U3—O132.491 (10)C13—H13B0.9900
U3—O152.520 (10)C14—C151.508 (10)
U3—O112.526 (13)C14—H14A0.9900
K1—O13iii2.690 (11)C14—H14B0.9900
K1—O132.690 (11)C15—H15A0.9800
K1—O122.698 (11)C15—H15B0.9800
K1—O12iii2.698 (11)C15—H15C0.9800
K1—O6iv2.747 (11)C16—O8ii1.223 (15)
K1—O6v2.747 (11)C16—C171.496 (10)
K2—O2i2.657 (17)C17—C181.48 (5)
K2—O22.657 (16)C17—C18ii1.48 (5)
K2—O11vi2.670 (13)C17—H17A0.8924
K2—O11vii2.670 (13)C17—H17B1.0234
K2—O16vi2.759 (13)C18—C191.510 (10)
K2—O16vii2.759 (13)C18—H18A0.9603
K3—O32.688 (14)C18—H18B0.9599
K3—O72.688 (12)C19—C201.498 (10)
K3—O142.713 (11)C19—H19A0.9900
K3—O42.724 (13)C19—H19B0.9900
K3—O152.769 (12)C20—H20A0.9800
K3—O82.817 (12)C20—H20B0.9800
O2—C11.27 (3)C20—H20C0.9800
O3—C11.24 (3)C21—C221.498 (10)
O4—C6i1.14 (6)C22—C231.511 (10)
O4—C61.34 (5)C22—H22A0.9900
O6—C111.25 (2)C22—H22B0.9900
O6—K1viii2.747 (11)C23—C241.509 (10)
O7—C111.28 (2)C23—H23A0.9900
O8—C161.223 (15)C23—H23B0.9900
O11—C211.31 (3)C24—C251.49 (4)
O11—K2ix2.670 (13)C24—H24A0.9900
O12—C211.29 (2)C24—H24B0.9900
O13—C261.28 (2)C25—H25A0.9800
O14—C261.30 (2)C25—H25B0.9800
O15—C311.227 (19)C25—H25C0.9800
O16—C311.23 (2)C26—C271.50 (4)
O16—K2ix2.759 (12)C27—C281.49 (4)
C1—C2A1.504 (10)C27—H27A0.9900
C2A—C3A1.501 (10)C27—H27B0.9900
C2A—H2AA0.9900C28—C291.509 (10)
C2A—H2AB0.9900C28—H28A0.9900
C2A—H2BC0.7316C28—H28B0.9900
C3A—C4A1.505 (10)C29—C301.495 (10)
C3A—H3AA0.9900C29—H29A0.9900
C3A—H3AB0.9900C29—H29B0.9900
C4A—C5A1.502 (10)C30—H30A0.9800
C4A—H4AA0.9900C30—H30B0.9800
C4A—H4AB0.9900C30—H30C0.9800
C5A—H5AA0.9800C31—C321.43 (3)
C5A—H5AB0.9800C32—C331.47 (4)
C5A—H5AC0.9800C32—H32A0.9900
C2B—C3B1.500 (10)C32—H32B0.9900
C2B—H2BA0.9600C33—C341.497 (10)
C2B—H2BC0.9600C33—H33A0.9900
C3B—C4B1.502 (10)C33—H33B0.9900
C3B—H3BA0.9900C34—C351.504 (10)
C3B—H3BB0.9900C34—H34A0.9900
C4B—C5B1.503 (10)C34—H34B0.9900
C4B—H4BA0.9900C35—H35A0.9800
C4B—H4BB0.9900C35—H35B0.9800
C5B—H5BA0.9800C35—H35C0.9800
C5B—H5BB0.9800
O1—U1—O1i179.1 (10)O3—K3—U3122.1 (3)
O1—U1—O4i92.0 (7)O7—K3—U388.4 (3)
O1i—U1—O4i87.1 (7)O14—K3—U330.2 (2)
O1—U1—O487.1 (7)O4—K3—U3107.3 (4)
O1i—U1—O492.0 (7)O15—K3—U332.0 (2)
O4i—U1—O452.3 (6)O8—K3—U3132.1 (3)
O1—U1—O289.9 (6)U1—K3—U3119.80 (7)
O1i—U1—O290.9 (6)O3—K3—U2117.0 (3)
O4i—U1—O2173.1 (5)O7—K3—U230.2 (2)
O4—U1—O2121.2 (5)O14—K3—U2129.4 (3)
O1—U1—O2i90.9 (6)O4—K3—U2137.1 (4)
O1i—U1—O2i89.9 (6)O15—K3—U287.7 (2)
O4i—U1—O2i121.2 (5)O8—K3—U231.3 (2)
O4—U1—O2i173.1 (5)U1—K3—U2132.77 (8)
O2—U1—O2i65.4 (8)U3—K3—U2107.26 (7)
O1—U1—O392.1 (6)C1—O2—U190.6 (16)
O1i—U1—O387.9 (6)C1—O2—K2151.1 (18)
O4i—U1—O3120.0 (4)U1—O2—K2117.2 (6)
O4—U1—O368.2 (4)C1—O3—U189.7 (16)
O2—U1—O353.3 (5)C1—O3—K3155.6 (17)
O2i—U1—O3118.6 (5)U1—O3—K3114.4 (5)
O1—U1—O3i87.9 (6)C6i—O4—U195 (2)
O1i—U1—O3i92.1 (6)C6—O4—U189.9 (18)
O4i—U1—O3i68.2 (4)C6i—O4—K3149 (2)
O4—U1—O3i120.0 (4)C6—O4—K3150 (2)
O2—U1—O3i118.6 (5)U1—O4—K3115.9 (5)
O2i—U1—O3i53.3 (5)C11—O6—U294.8 (10)
O3—U1—O3i171.8 (6)C11—O6—K1viii148.9 (11)
O1—U1—C694.8 (9)U2—O6—K1viii116.3 (4)
O1i—U1—C684.3 (9)C11—O7—U292.9 (10)
O4i—U1—C624.3 (13)C11—O7—K3149.0 (10)
O4—U1—C628.9 (12)U2—O7—K3116.8 (5)
O2—U1—C6148.8 (13)C16—O8—U292.6 (9)
O2i—U1—C6145.1 (13)C16—O8—K3154.3 (11)
O3—U1—C695.7 (13)U2—O8—K3112.5 (4)
O3i—U1—C692.4 (13)C21—O11—U393.2 (10)
O1—U1—C6i84.3 (9)C21—O11—K2ix148.1 (14)
O1i—U1—C6i94.8 (9)U3—O11—K2ix110.0 (5)
O4i—U1—C6i28.9 (12)C21—O12—U396.6 (12)
O4—U1—C6i24.3 (13)C21—O12—K1143.2 (13)
O2—U1—C6i145.1 (13)U3—O12—K1115.5 (4)
O2i—U1—C6i148.8 (13)C26—O13—U392.3 (10)
O3—U1—C6i92.4 (13)C26—O13—K1147.8 (11)
O3i—U1—C6i95.7 (13)U3—O13—K1114.9 (4)
C6—U1—C6i11.1 (15)C26—O14—U393.0 (10)
O1—U1—C193.2 (8)C26—O14—K3150.7 (11)
O1i—U1—C187.3 (9)U3—O14—K3116.2 (4)
O4i—U1—C1146.1 (8)C31—O15—U393.0 (10)
O4—U1—C194.6 (8)C31—O15—K3149.7 (10)
O2—U1—C127.0 (7)U3—O15—K3112.4 (4)
O2i—U1—C192.2 (9)C31—O16—U396.7 (9)
O3—U1—C126.4 (7)C31—O16—K2ix145.7 (10)
O3i—U1—C1145.5 (8)U3—O16—K2ix109.7 (4)
C6—U1—C1121.8 (15)O3—C1—O2126 (3)
C6i—U1—C1118.8 (14)O3—C1—C2A140 (3)
O1—U1—C1i87.3 (9)O2—C1—C2A88 (3)
O1i—U1—C1i93.2 (8)O3—C1—U163.9 (14)
O4i—U1—C1i94.6 (8)O2—C1—U162.3 (14)
O4—U1—C1i146.1 (8)C2A—C1—U1148 (3)
O2—U1—C1i92.2 (9)C1—C2A—C3A112.2 (11)
O2i—U1—C1i27.0 (7)C1—C2A—H2AA108.8
O3—U1—C1i145.5 (8)C3A—C2A—H2AA109.1
O3i—U1—C1i26.4 (7)C1—C2A—H2AB109.6
C6—U1—C1i118.8 (14)C3A—C2A—H2AB109.1
C6i—U1—C1i121.8 (15)H2AA—C2A—H2AB107.9
C1—U1—C1i119.1 (14)C1—C2A—H2BC101.4
O5—U2—O5ii180.0 (8)C3A—C2A—H2BC77.5
O5—U2—O6ii92.4 (5)H2AA—C2A—H2BC142.9
O5ii—U2—O6ii87.6 (5)C2A—C3A—C4A112.2 (11)
O5—U2—O687.6 (5)C2A—C3A—H3AA109.1
O5ii—U2—O692.4 (5)C4A—C3A—H3AA109.4
O6ii—U2—O667.7 (5)C2A—C3A—H3AB109.1
O5—U2—O892.0 (5)C4A—C3A—H3AB109.0
O5ii—U2—O888.0 (5)H3AA—C3A—H3AB107.9
O6ii—U2—O8170.9 (4)C5A—C4A—C3A112.3 (11)
O6—U2—O8120.5 (4)C5A—C4A—H4AA109.4
O5—U2—O8ii88.0 (5)C3A—C4A—H4AA109.4
O5ii—U2—O8ii92.0 (5)C5A—C4A—H4AB108.8
O6ii—U2—O8ii120.5 (4)C3A—C4A—H4AB109.0
O6—U2—O8ii170.9 (4)H4AA—C4A—H4AB109.0
O8—U2—O8ii51.6 (5)C4A—C5A—H5AA109.5
O5—U2—O788.6 (5)C4A—C5A—H5AB109.1
O5ii—U2—O791.4 (5)H5AA—C5A—H5AB109.5
O6ii—U2—O7120.1 (4)C4A—C5A—H5AC109.8
O6—U2—O752.5 (4)H5AA—C5A—H5AC109.5
O8—U2—O768.0 (4)H5AB—C5A—H5AC109.5
O8ii—U2—O7119.4 (4)C3B—C2B—H2BA112.0
O5—U2—O7ii91.4 (5)C3B—C2B—H2BC112.8
O5ii—U2—O7ii88.6 (5)H2BA—C2B—H2BC109.5
O6ii—U2—O7ii52.5 (4)C2B—C3B—C4B112.6 (11)
O6—U2—O7ii120.1 (4)C2B—C3B—H3BA110.0
O8—U2—O7ii119.4 (4)C4B—C3B—H3BA108.7
O8ii—U2—O7ii68.0 (4)C2B—C3B—H3BB109.2
O7—U2—O7ii172.6 (6)C4B—C3B—H3BB108.0
O5—U2—C1690.0 (4)H3BA—C3B—H3BB107.8
O5ii—U2—C1690.0 (4)C5B—C4B—C3B112.2 (11)
O6ii—U2—C16146.2 (2)C5B—C4B—H4BA109.5
O6—U2—C16146.2 (2)C3B—C4B—H4BA108.0
O8—U2—C1625.8 (3)C5B—C4B—H4BB109.2
O8ii—U2—C1625.8 (3)C3B—C4B—H4BB108.7
O7—U2—C1693.7 (3)H4BA—C4B—H4BB109.0
O7ii—U2—C1693.7 (3)C4B—C5B—H5BA109.1
O5—U2—C11ii94.1 (6)C4B—C5B—H5BB109.5
O5ii—U2—C11ii85.9 (6)H5BA—C5B—H5BB111.0
O6ii—U2—C11ii26.0 (5)C4B—C5B—H5BC109.8
O6—U2—C11ii93.7 (5)H5BA—C5B—H5BC109.5
O8—U2—C11ii145.5 (5)H5BB—C5B—H5BC109.5
O8ii—U2—C11ii94.6 (5)O4i—C6—O4119 (3)
O7—U2—C11ii146.0 (5)O4i—C6—C7128 (6)
O7ii—U2—C11ii26.6 (5)O4—C6—C7102 (6)
C16—U2—C11ii120.2 (4)O4i—C6—U160.8 (15)
O5—U2—C1185.9 (6)O4—C6—U161.2 (13)
O5ii—U2—C1194.1 (6)C7—C6—U1159 (5)
O6ii—U2—C1193.7 (5)C6—C7—C8112.9 (11)
O6—U2—C1126.0 (5)C6—C7—H7A114.6
O8—U2—C1194.6 (5)C8—C7—H7A115.7
O8ii—U2—C11145.5 (5)C6—C7—H7B93.2
O7—U2—C1126.6 (5)C8—C7—H7B110.1
O7ii—U2—C11146.0 (5)H7A—C7—H7B107.8
C16—U2—C11120.2 (4)C9—C8—C7145 (9)
C11ii—U2—C11119.6 (8)C9—C8—H8A96.6
O5—U2—K397.4 (4)C7—C8—H8A93.0
O5ii—U2—K382.6 (4)C9—C8—H8B103.0
O6ii—U2—K3150.4 (2)C7—C8—H8B106.1
O6—U2—K384.8 (2)H8A—C8—H8B104.4
O8—U2—K336.3 (3)C8—C9—C10113.2 (11)
O8ii—U2—K387.8 (3)C8—C9—H9A108.0
O7—U2—K333.1 (3)C10—C9—H9A108.1
O7ii—U2—K3154.0 (3)C8—C9—H9B109.9
C16—U2—K362.02 (4)C10—C9—H9B109.7
C11ii—U2—K3168.3 (5)H9A—C9—H9B107.7
C11—U2—K359.5 (4)C9—C10—H10A109.6
O9—U3—O10179.2 (6)C9—C10—H10B108.6
O9—U3—O1690.0 (5)H10A—C10—H10B109.5
O10—U3—O1689.2 (5)C9—C10—H10C110.3
O9—U3—O1493.2 (6)H10A—C10—H10C109.5
O10—U3—O1487.1 (5)H10B—C10—H10C109.5
O16—U3—O14118.8 (4)O6—C11—O7119.3 (16)
O9—U3—O1290.0 (5)O6—C11—C12122 (2)
O10—U3—O1290.5 (5)O7—C11—C12119 (2)
O16—U3—O12121.6 (4)O6—C11—U259.3 (9)
O14—U3—O12119.5 (4)O7—C11—U260.5 (8)
O9—U3—O1390.2 (6)C12—C11—U2178.4 (18)
O10—U3—O1390.6 (5)C11—C12—C13113 (3)
O16—U3—O13172.6 (4)C11—C12—H12A109.0
O14—U3—O1353.9 (4)C13—C12—H12A109.2
O12—U3—O1365.8 (4)C11—C12—H12B109.0
O9—U3—O1587.4 (5)C13—C12—H12B108.7
O10—U3—O1592.0 (5)H12A—C12—H12B107.7
O16—U3—O1550.7 (4)C12—C13—C14119 (2)
O14—U3—O1568.4 (4)C12—C13—H13A107.5
O12—U3—O15171.8 (4)C14—C13—H13A107.7
O13—U3—O15122.0 (4)C12—C13—H13B107.8
O9—U3—O1191.8 (6)C14—C13—H13B107.2
O10—U3—O1188.0 (6)H13A—C13—H13B107.0
O16—U3—O1168.9 (4)C15—C14—C13111 (2)
O14—U3—O11170.8 (5)C15—C14—H14A109.6
O12—U3—O1152.7 (4)C13—C14—H14A109.2
O13—U3—O11118.4 (4)C15—C14—H14B109.3
O15—U3—O11119.6 (4)C13—C14—H14B109.7
O9—U3—C2691.0 (7)H14A—C14—H14B108.1
O10—U3—C2689.6 (7)C14—C15—H15A109.6
O16—U3—C26146.0 (5)C14—C15—H15B109.2
O14—U3—C2627.2 (4)H15A—C15—H15B109.5
O12—U3—C2692.4 (5)C14—C15—H15C109.6
O13—U3—C2626.6 (5)H15A—C15—H15C109.5
O15—U3—C2695.4 (5)H15B—C15—H15C109.5
O11—U3—C26145.0 (5)O8ii—C16—O8123.2 (18)
O9—U3—C3188.7 (5)O8ii—C16—C17118.4 (9)
O10—U3—C3190.5 (5)O8—C16—C17118.4 (9)
O16—U3—C3125.3 (4)O8ii—C16—U261.6 (9)
O14—U3—C3193.6 (4)O8—C16—U261.6 (9)
O12—U3—C31146.9 (4)C17—C16—U2180.000 (3)
O13—U3—C31147.3 (4)C18—C17—C18ii120 (3)
O15—U3—C3125.4 (4)C18—C17—C16120.0 (15)
O11—U3—C3194.2 (5)C18ii—C17—C16120.0 (15)
C26—U3—C31120.7 (5)C18—C17—H17A110.5
O9—U3—C2191.0 (6)C18ii—C17—H17A48.7
O10—U3—C2189.2 (6)C16—C17—H17A108.0
O16—U3—C2195.5 (6)C18—C17—H17B105.1
O14—U3—C21145.4 (5)C18ii—C17—H17B58.0
O12—U3—C2126.1 (5)C16—C17—H17B105.7
O13—U3—C2191.8 (5)H17A—C17—H17B106.8
O15—U3—C21146.2 (5)C17—C18—C19118 (4)
O11—U3—C2126.6 (6)C17—C18—H18A109.9
C26—U3—C21118.4 (6)C19—C18—H18A111.8
C31—U3—C21120.8 (6)C17—C18—H18B106.4
O9—U3—K2ix105.1 (5)C19—C18—H18B103.0
O10—U3—K2ix74.3 (4)C20—C19—C18117 (3)
O16—U3—K2ix37.6 (3)C20—C19—H19A108.1
O14—U3—K2ix148.2 (3)C18—C19—H19A108.1
O12—U3—K2ix86.8 (3)C20—C19—H19B108.1
O13—U3—K2ix148.8 (3)C18—C19—H19B108.3
O15—U3—K2ix86.3 (3)H19A—C19—H19B107.3
O11—U3—K2ix36.1 (3)C19—C20—H20A109.6
C26—U3—K2ix163.9 (5)C19—C20—H20B109.4
C31—U3—K2ix61.7 (4)H20A—C20—H20B109.5
C21—U3—K2ix61.5 (4)C19—C20—H20C109.4
O13iii—K1—O1398.0 (6)H20A—C20—H20C109.5
O13iii—K1—O12117.1 (3)H20B—C20—H20C108.0
O13—K1—O1259.9 (3)O11—C21—O12117.5 (16)
O13iii—K1—O12iii59.9 (3)O11—C21—C22119 (2)
O13—K1—O12iii117.1 (3)O12—C21—C22123 (2)
O12—K1—O12iii176.0 (5)O11—C21—U360.1 (9)
O13iii—K1—O6iv156.7 (4)O12—C21—U357.3 (9)
O13—K1—O6iv102.7 (4)C22—C21—U3177.7 (19)
O12—K1—O6iv83.0 (4)C21—C22—C23113 (3)
O12iii—K1—O6iv100.5 (4)C21—C22—H22A108.7
O13iii—K1—O6v102.7 (4)C23—C22—H22A108.9
O13—K1—O6v156.7 (4)C21—C22—H22B109.0
O12—K1—O6v100.5 (4)C23—C22—H22B108.9
O12iii—K1—O6v83.0 (4)H22A—C22—H22B107.7
O6iv—K1—O6v59.6 (4)C22—C23—C24118 (3)
O13iii—K1—U3117.5 (3)C22—C23—H23A107.7
O13—K1—U331.1 (2)C24—C23—H23A108.1
O12—K1—U330.6 (2)C22—C23—H23B107.7
O12iii—K1—U3147.1 (2)C24—C23—H23B107.6
O6iv—K1—U385.8 (2)H23A—C23—H23B107.1
O6v—K1—U3126.5 (3)C23—C24—C25101 (3)
O13iii—K1—U3iii31.1 (2)C23—C24—H24A111.9
O13—K1—U3iii117.5 (3)C25—C24—H24A111.6
O12—K1—U3iii147.1 (2)C23—C24—H24B111.3
O12iii—K1—U3iii30.6 (2)C25—C24—H24B111.5
O6iv—K1—U3iii126.5 (3)H24A—C24—H24B109.3
O6v—K1—U3iii85.8 (2)C24—C25—H25A109.4
U3—K1—U3iii145.01 (12)C24—C25—H25B109.6
O13iii—K1—U2v131.0 (3)H25A—C25—H25B109.5
O13—K1—U2v131.0 (3)C24—C25—H25C109.4
O12—K1—U2v92.0 (3)H25A—C25—H25C109.5
O12iii—K1—U2v92.0 (3)H25B—C25—H25C109.5
O6iv—K1—U2v29.8 (2)O13—C26—O14120.7 (16)
O6v—K1—U2v29.8 (2)O13—C26—C27122 (2)
U3—K1—U2v107.49 (6)O14—C26—C27117.8 (19)
U3iii—K1—U2v107.49 (6)O13—C26—U361.0 (8)
O2i—K2—O260.3 (7)O14—C26—U359.8 (9)
O2i—K2—O11vi132.9 (4)C27—C26—U3176 (2)
O2—K2—O11vi92.2 (5)C28—C27—C26118 (3)
O2i—K2—O11vii92.2 (5)C28—C27—H27A108.0
O2—K2—O11vii132.9 (4)C26—C27—H27A108.0
O11vi—K2—O11vii130.9 (6)C28—C27—H27B107.5
O2i—K2—O16vi143.0 (4)C26—C27—H27B107.5
O2—K2—O16vi89.3 (4)H27A—C27—H27B107.2
O11vi—K2—O16vi62.4 (4)C27—C28—C29118 (3)
O11vii—K2—O16vi94.9 (5)C27—C28—H28A107.6
O2i—K2—O16vii89.3 (4)C29—C28—H28A108.1
O2—K2—O16vii143.0 (4)C27—C28—H28B108.1
O11vi—K2—O16vii94.9 (5)C29—C28—H28B107.8
O11vii—K2—O16vii62.4 (4)H28A—C28—H28B107.2
O16vi—K2—O16vii125.9 (5)C30—C29—C28112.5 (10)
O2i—K2—U3vi161.9 (3)C30—C29—H29A109.5
O2—K2—U3vi103.1 (3)C28—C29—H29A109.1
O11vi—K2—U3vi33.9 (3)C30—C29—H29B108.9
O11vii—K2—U3vi105.3 (4)C28—C29—H29B108.9
O16vi—K2—U3vi32.7 (2)H29A—C29—H29B107.8
O16vii—K2—U3vi102.8 (3)C29—C30—H30A109.3
O2i—K2—U3vii103.1 (3)C29—C30—H30B109.2
O2—K2—U3vii161.9 (3)H30A—C30—H30B109.5
O11vi—K2—U3vii105.3 (4)C29—C30—H30C109.9
O11vii—K2—U3vii33.9 (3)H30A—C30—H30C109.5
O16vi—K2—U3vii102.8 (3)H30B—C30—H30C109.5
O16vii—K2—U3vii32.7 (2)O15—C31—O16119.6 (15)
U3vi—K2—U3vii94.21 (9)O15—C31—C32116 (2)
O2i—K2—U130.1 (3)O16—C31—C32123.7 (18)
O2—K2—U130.1 (3)O15—C31—U361.6 (8)
O11vi—K2—U1114.5 (3)O16—C31—U357.9 (8)
O11vii—K2—U1114.5 (3)C32—C31—U3174.8 (17)
O16vi—K2—U1117.1 (3)C31—C32—C33120 (2)
O16vii—K2—U1117.1 (3)C31—C32—H32A107.5
U3vi—K2—U1132.90 (4)C33—C32—H32A107.6
U3vii—K2—U1132.90 (4)C31—C32—H32B107.3
O3—K3—O7112.0 (4)C33—C32—H32B107.0
O3—K3—O1492.0 (4)H32A—C32—H32B106.9
O7—K3—O14102.3 (4)C32—C33—C34109 (3)
O3—K3—O461.4 (4)C32—C33—H33A109.4
O7—K3—O4164.2 (5)C34—C33—H33A109.7
O14—K3—O492.5 (5)C32—C33—H33B109.9
O3—K3—O15152.4 (4)C34—C33—H33B110.4
O7—K3—O1582.7 (4)H33A—C33—H33B108.3
O14—K3—O1561.4 (3)C33—C34—C3595 (2)
O4—K3—O15109.6 (4)C33—C34—H34A112.1
O3—K3—O8103.8 (4)C35—C34—H34A113.4
O7—K3—O860.3 (3)C33—C34—H34B113.1
O14—K3—O8159.8 (3)C35—C34—H34B112.3
O4—K3—O8106.0 (5)H34A—C34—H34B110.0
O15—K3—O8103.7 (4)C34—C35—H35A108.8
O3—K3—U131.5 (3)C34—C35—H35B110.3
O7—K3—U1141.2 (3)H35A—C35—H35B109.5
O14—K3—U193.9 (2)C34—C35—H35C109.3
O4—K3—U130.0 (3)H35A—C35—H35C109.5
O15—K3—U1135.5 (3)H35B—C35—H35C109.5
O8—K3—U1106.2 (2)
Symmetry codes: (i) x, y, z+3/2; (ii) x, y, z+2; (iii) x, y, z+1; (iv) x+1, y, z+3/2; (v) x+1, y, z1/2; (vi) x+1/2, y+1/2, z+3/2; (vii) x1/2, y+1/2, z; (viii) x+1, y, z+1/2; (ix) x+1/2, y1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[U(C5H9O2)2O2(H2O)2]K[U(C5H9O2)3O2]
Mr508.31612.50
Crystal system, space groupMonoclinic, C2/mOrthorhombic, C2221
Temperature (K)100100
a, b, c (Å)7.782 (4), 10.802 (5), 9.512 (5)17.294 (3), 23.405 (4), 20.862 (3)
α, β, γ (°)90, 104.885 (9), 9090, 90, 90
V3)772.7 (7)8444 (2)
Z216
Radiation typeMo KαMo Kα
µ (mm1)10.537.92
Crystal size (mm)0.21 × 0.11 × 0.080.24 × 0.15 × 0.03
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Multi-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.261, 0.4300.252, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
4876, 1187, 1187 37788, 10209, 8322
Rint0.0680.072
(sin θ/λ)max1)0.7030.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 1.00 0.066, 0.193, 1.25
No. of reflections118710209
No. of parameters85366
No. of restraints063
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.06, 2.052.77, 1.85
Absolute structure?Flack (1983), with 4677 Friedel pairs
Absolute structure parameter?0.061 (16)

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Assignment of absorption bands (wave numbers, cm-1) in the FT–IR spectra of (I) and (II) top
(I)(II)Assignment
3374 (s, br)νs(H2O), νas(H2O)
2960 (s)2960 sνas(CH3)
2933 (s)2935 sνs(CH3)
2873 (m)2873 mνs(CH3)
1634 (m)δ(H2O)
1530 (sh)1534 vsνas(COO)
1501 (vs)1464 vsδas(CH3)
1468 (vs)δas(CH3)
1426 (sh)1429 sνs(COO)
1412 (sh)1413 sδ(CαH2)
1381 (w)1379 wδs(CH3)
1364 (w)1361 wω(CαH2)
1323 (m)1319 mω(CβH2)
1300 (w)1297 wω(CβH2)
1246 (w)1241 wtw(CαH2)
1204 (w)1199 wtw(CβH2)
1106 (m)1099 wν(CβCα)
951 (vs)927 vsνas(UO2)
942 (sh)νas(UO2)
868 (w)867 wν(CαC)
761 (w)762 wγ(CβH2)
731 (w)720 wγ(CβH2)
685 (w)669 wδ(COO)
648 (w)649 wδ(COO)
Notes: vs = very strong, s = strong, m = medium, w = weak, br = broad and sh = shoulder.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds