Download citation
Download citation
link to html
The title complex, trans-bis­(dimethyl­formamide-κO)bis{­N,N′-N′′,N′′′-tetra-tert-butyl[­oxybis(phosphonic diamide-κO)]}man­ganese(II) dichloride dihydrate, [Mn(C16H40N4O3P2)2(C3H7NO)2]Cl2·2H2O, is the first example of a bis-chelate amido–pyrophosphate (pyro­phosphor­amide) complex containing an O[P(O)(NH)2]2 fragment. Its asymmetric unit contains half of the complex dication, one chloride anion and one water mol­ecule. The MnII atom, located on an inversion centre, is octa­hedrally coordinated, with a slight elongation towards the mono­dentate dimethyl­formamide ligand. Structural features of the title complex, such as the P=O bond lengths and the planarity of the chelate ring, are compared with those of previously reported complexes with six-membered chelates involving the fragments C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2 and P(O)] and O[P(O)(N)2]2. This analysis shows that the six-membered chelate rings are less puckered in pyrophosphor­amide complexes containing a P(O)OP(O) skeleton, such as the title compound. The extended structure of the title complex involves a linear aggregate mediated by N—H...O and N—H...Cl hydrogen bonds, in which the chloride anion is an acceptor in two additional O—H...Cl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113000814/fa3292sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113000814/fa3292Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270113000814/fa3292sup3.pdf
Supplementary material

CCDC reference: 905960

Comment top

Phosphoramidate complexes are characterized by phosphoryl (PO) donor ligands containing the N—PO group. A scarcely studied class of these compounds, the pyrophosphoramide complexes, of which only four chelate complexes of octamethylpyrophosphoramide (OMPA) are known, have an (N)2P(O)OP(O)(N)2 skeleton, where (N)2 denotes two tertiary N atoms belonging to an amide group (Joesten et al., 1970; Hussain et al., 1970). The geometries of the six-membered pyrophosphate–metal chelate rings in the OMPA complexes are comparable with those observed for complexes of β-ketoenolates having the (O)C—C—C(O) skeleton (Hussain et al., 1970).

In the present study, a novel pyrophosphoramide ligand with the fragment (NH)2P(O)OP(O)(NH)2 was used for the first time to synthesize the title chelate complex, denoted [Mn(L)2{OC(H)N(CH3)2}2]Cl2.2H2O, (I). Its structural features are compared in what follows with those of phosphoramidate complexes with chelating ligands having the C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2 and P(O)] and O[P(O)(N)2]2 fragments, in which six-membered chelate rings are found. The structures of 36 such phosphoramidate complexes, found in the Cambridge Structural Database (CSD, Version 5.32, May 2011 update; Allen, 2002), as well as four structures published recently in IUCr journals (Trush et al., 2011; Amirkhanov et al., 2010; Shatrava et al., 2010; Litsis et al., 2010), were used in the comparison.

The asymmetric unit of (I) (Fig. 1) contains half of the [Mn(L)2{OC(H)N(CH3)2}2]2+ dication, which sits on an inversion centre, one chloride anion and one water molecule. The coordination geometry at the MnII centre is octahedral, with a slight elongation towards the dimethylformamide ligand (Table 1). The carbonyl group of dimethylformamide is tilted some 53° from the Mn—O axis [Mn1—O4—C17 = 127.2 (1)°].

The PO, P—O and P—N bond lengths (Table 1) are within the expected ranges for bis- and tris-OMPA complexes (Joesten et al., 1970; Hussain et al., 1970). Fig. 2 shows a histogram of the PO bond lengths for previously reported complexes with phosphoramide ligands having C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2 and P(O)] and O[P(O)(N)2]2 skeletons. Disordered PO groups were excluded, as were complexes with an (OR)2P(O)N-P(O)(OR)2 skeleton and Cs+ and K+ metal ions. Moreover, the PO groups of one complicated complex were excluded. The data show that the maximum population of the distribution is found in the range 1.46–1.50 Å and, as expected, the PO bonds in complexes tend to be longer than the unligated PO double bond (1.45 Å; Corbridge, 1995).

The shortest PO bonds are found in a complex of lanthanum with a P(O)NP(O) skeleton, viz. [La2{(C2H5O)2P(O)NP(O)(OC2H5)2}6] [P O = 1.43 (1) Å; CSD refcode KOKKEA; Dvorkin et al., 1990], and in a complex of zinc with a C(S)NP(O) skeleton, [Zn{C10H15NHC(S)NP(O)(OC3H7)2}2] [PO = 1.426 (3) °; AAQEBEE; Safin et al., 2010]. The longest PO bond [1.5203 (4) Å] occurs in [Co{O4C10H20NC(S)NP(O)(OC3H7)2}2] (UKOXIC; Babashkina et al., 2010), where C(S)NP(O) is the chelating fragment.

The Mn—O(P) bonds in (I) (Table 1) are, as expected, somewhat longer than the M—O(P) bonds in OMPA complexes of Cu, Co and Mg. For example, in [Cu{[(CH3)2N]2P(O)OP(O)[N(CH3)2]2}2](ClO4)2 (OMPOCU), the Cu—O(P) bond lengths are 1.936 (2) and 1.946 (1) Å.

Both the PO [1.4783 (9) and 1.4779 (9) Å] and P—O [1.6082 (10) and 1.6110 (8) Å] bond lengths are nearly identical in (I) and in the free ligand [PO = 1.4791 (12) and 1.4806 (12) Å; P—O = 1.6191 (17) and 1.6194 (16) Å; Pourayoubi et al., 2012]. In the free ligand, the two phosphoryl groups have a relative gauche disposition [O—P—O—P torsion angles = 57.79 (11) and 59.76 (11)°]; when coordinated to MnII, they adopt a syn disposition [O1—P1—O2—P2 = -5.78 (12)° and O3—P2—O2—P1 = -3.77 (12)°]. The P—O—P bond angle of (I) [135.55 (6)°] is more open than that in the free ligand [126.85 (8)°].

For comparative purposes, we note that only one complex of MnII containing a monodentate phosphoric triamide ligand has been reported to date, namely [MnCl2{P(O)[N(CH3)2]3}2] (VAYWEY; Jin et al., 2005). In that complex, the MnII atom is bonded to two O atoms from two hexamethylphosphoramide (HMPA) ligands and two Cl atoms, with a distorted tetrahedral coordination. In VAYWEY, the PO bond [1.489 (1) Å] is slightly longer and Mn—O(P) [2.047 (1) Å] is shorter than those of (I).

Similar to what was found for other pyrophosphate chelate complexes, in (I) the pyrophosphate chelate ring, including its OP—O—PO fragment, is almost planar (see Table S1 in the Supplementary materials). The notable difference between the PO bond lengths [1.4783 (9) and 1.4779 (9) Å] and the P—O bond lengths [1.608 (1) and 1.6110 (9) Å] reflects the absence of appreciable electron delocalization in the ring. Thus, the planarity cannot be attributed to dπ-pπ delocalization.

The degree of planarity of the chelate ring in previously reported phosphoramidate complexes with ligands containing the C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2 and P(O)] and O[P(O)(N)2]2 fragments was surveyed by calculating the least-squares plane containing the metal atom, the two atoms coordinated to the metal atom and the N atom {for the C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2, P(O)] skeleton} or O atom [in the (N)2P(O)OP(O)(N)2 skeleton] (see Table S1 in the Supplementary materials). The minimum deviation from planarity occurs in complexes with a P(O)OP(O) skeleton, i.e. containing O, P and M atoms. The maximum deviation is found in complexes with a C(S)NP(O) skeleton, having six different O, P, N, C, S and M atoms. For example, in the cobalt complex with a C(S)NP(O) skeleton, [Co{C6H5C(S)NP(O)(OC3H7)2}2{C6H5C(S)NHP(O)(OC3H7)2}2] (BERNIW; Sokolov et al., 2004), the distances from the plane through the chelate are 0.012 (2) for P, 0.091 (8) for C and 0.356 Å for Co, while for the Mg complex of Mg with a P(O)OP(O) skeleton, [Mg{[(CH3)2N]2P(O)OP(O)[N(CH3)2]2}3](ClO4)2 (MEPOMG; Joesten et al., 1970), the distances from the plane through the chelate are 0.047 Å for two P atoms and 0.00 Å for Mg.

Crystals of the free ligand, [(CH3)3CNH]2P(O)OP(O)[NHC(CH3)3]2 (Pourayoubi et al., 2012), possess [N—H][N—H]···O(P) hydrogen bonds. These are replaced, after coordination of the ligand to the MnII centre, by Mn—OP bonds. In (I), since the O atoms of two phosphoryl groups are involved in the Mn—OP bonds, the two N—H units in each [(CH3)3CNH]2P(O) fragment take part separately in hydrogen bonding with the chloride anion and with the water O atom, forming two N—H···Cl and two N—H···O hydrogen bonds for each ligand (Table 2). The water O atom interacts with two N—H units. These hydrogen bonds lead to a linear aggregate along [011] (Fig. 3). The chloride anion also receives two weak O—H···Cl hydrogen bonds.

In summary, the structure of the first pyrophosphoramide complex containing an (NH)2P(O)OP(O)(NH)2 skeleton has been analysed and compared with four analogous bis- and tris-OMPA complexes. Characteristic features of analogous phosphoramidate complexes with C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2 and P(O)] and O[P(O)(N)2]2 skeletons, including the PO bond lengths and the planarity of the chelate rings, have also been examined.

Related literature top

For related literature, see: Allen (2002); Amirkhanov et al. (2010); Babashkina et al. (2010); Corbridge (1995); Dvorkin et al. (1990); Hussain et al. (1970); Jin et al. (2005); Joesten et al. (1970); Litsis et al. (2010); Pourayoubi et al. (2012); Safin et al. (2010); Shatrava et al. (2010); Sokolov et al. (2004); Trush et al. (2011).

Experimental top

[(CH3)3CNH]2P(O)OP(O)[NHC(CH3)3]2 (L) was prepared according to the literature method of Pourayoubi et al. (2012). To a solution of MnCl2.4H2O (2 mmol) in CH3OH (5 ml), a solution of L (2 mmol) in CH3OH–DMF (5 ml; Solvent ratio?) was added and the mixture was refluxed for 48 h. Crystals of (I) were obtained from the reaction solution by slow evaporation at room temperature.

Refinement top

H atoms attached to C atoms were placed at calculated positions (C—H = 0.96 Å) and refined as riding. N-bound and water H atoms were found in difference Fourier maps and their coordinates were refined with distance restraints of 0.87 (1) and 0.84 (1) Å for N—H and O—H bonds, respectively. H atoms were refined with Uiso(H) = 1.5Ueq(C,O) for the methyl groups and water molecules, or 1.2Ueq(N,C) for the NH and CH2 groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006), enCIFer (Allen, et al., 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level and H atoms omitted for clarity. [Symmetry code: (i) -x, -y, -z + 1.]
[Figure 2] Fig. 2. A histogram of PO bond lengths in phosphoramidate complexes containing six-membered chelate rings having the C(O)NHP(O), C(O)NP(O), C(S)NP(O), S(O)2NP(O), P(O)NP(O) and P(O)OP(O) skeletons.
[Figure 3] Fig. 3. The linear aggregate of (I), mediated by N—H···O, N—H···Cl and O—H···Cl hydrogen bonds involving the pyrophosphoramide complex, chloride anion and water molecules, viewed along the a axis. Hydrogen bonds are drawn as dashed lines and only N- and O-bound H atoms are shown.
trans-Bis(dimethylformamide-κO)bis[N,N'-N'',N'''-tetra-tert-butyloxybis(phosphonic diamide-κO)]manganese(II) dichloride dihydrate top
Crystal data top
[Mn(C16H40N4O3P2)2(C3H7NO)2]Cl2·2H2OZ = 1
Mr = 1105F(000) = 595
Triclinic, P1Dx = 1.241 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.5418 Å
a = 10.9780 (3) ÅCell parameters from 22455 reflections
b = 12.7452 (3) Åθ = 3.9–67.0°
c = 12.7755 (3) ŵ = 4.12 mm1
α = 63.131 (2)°T = 120 K
β = 68.173 (2)°Prism, colourless
γ = 83.141 (2)°0.31 × 0.21 × 0.14 mm
V = 1477.67 (7) Å3
Data collection top
Agilent Xcalibur Gemini
diffractometer with Atlas CCD area detector
5236 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source5047 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.3784 pixels mm-1θmax = 67.2°, θmin = 3.9°
Rotation method data acquisition using ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1515
Tmin = 0.4, Tmax = 1l = 1515
34111 measured reflections
Refinement top
Refinement on F2178 constraints
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.71(Δ/σ)max = 0.001
5236 reflectionsΔρmax = 0.29 e Å3
313 parametersΔρmin = 0.19 e Å3
6 restraints
Crystal data top
[Mn(C16H40N4O3P2)2(C3H7NO)2]Cl2·2H2Oγ = 83.141 (2)°
Mr = 1105V = 1477.67 (7) Å3
Triclinic, P1Z = 1
a = 10.9780 (3) ÅCu Kα radiation
b = 12.7452 (3) ŵ = 4.12 mm1
c = 12.7755 (3) ÅT = 120 K
α = 63.131 (2)°0.31 × 0.21 × 0.14 mm
β = 68.173 (2)°
Data collection top
Agilent Xcalibur Gemini
diffractometer with Atlas CCD area detector
5236 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
5047 reflections with I > 2σ(I)
Tmin = 0.4, Tmax = 1Rint = 0.025
34111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0276 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.71Δρmax = 0.29 e Å3
5236 reflectionsΔρmin = 0.19 e Å3
313 parameters
Special details top

Experimental. IR (KBr, ν, cm-1): 3385, 3228, 2959, 1665, 1417, 1220, 1062, 940. Diffractometer: Agilent Xcalibur diffractometer Gemini: CCD detector Atlas, collimator Ultra Cu with mirrors.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, JANA2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn1000.50.01406 (14)
Cl30.05750 (4)0.60632 (3)0.12953 (3)0.02734 (17)
P10.15121 (3)0.22242 (3)0.21148 (3)0.01501 (16)
P20.13996 (3)0.22446 (3)0.32386 (3)0.01521 (16)
O10.14859 (9)0.11383 (8)0.32508 (9)0.0179 (4)
O20.00683 (9)0.27075 (8)0.22353 (9)0.0184 (4)
O30.14244 (9)0.10609 (8)0.42604 (9)0.0189 (4)
O40.01874 (10)0.11446 (9)0.58018 (10)0.0232 (5)
O50.19480 (11)0.52830 (10)0.03968 (11)0.0281 (5)
N10.18812 (11)0.20774 (10)0.08315 (11)0.0175 (5)
N20.24943 (12)0.32713 (11)0.18038 (11)0.0192 (5)
N30.23336 (11)0.22640 (11)0.24976 (11)0.0191 (5)
N40.17621 (11)0.33175 (10)0.36368 (11)0.0193 (5)
N50.04955 (14)0.19954 (12)0.71258 (12)0.0284 (6)
C10.31684 (14)0.17805 (13)0.01130 (13)0.0213 (6)
C20.40984 (17)0.28773 (16)0.07706 (17)0.0379 (8)
C30.28792 (18)0.12668 (18)0.06488 (18)0.0395 (9)
C40.38036 (15)0.08784 (14)0.09991 (15)0.0277 (7)
C50.26973 (14)0.36444 (13)0.26833 (13)0.0211 (6)
C60.37160 (17)0.46815 (15)0.18549 (16)0.0321 (8)
C70.14121 (15)0.40380 (14)0.33907 (15)0.0261 (7)
C80.32208 (15)0.26422 (14)0.36036 (14)0.0253 (7)
C90.25505 (14)0.13216 (13)0.21864 (14)0.0219 (6)
C100.32477 (15)0.18935 (15)0.12432 (15)0.0286 (7)
C110.34230 (18)0.03219 (15)0.33743 (16)0.0352 (8)
C120.12470 (15)0.08829 (15)0.15808 (16)0.0274 (7)
C130.30457 (14)0.34725 (14)0.44969 (14)0.0248 (7)
C140.38653 (17)0.42674 (17)0.37363 (18)0.0363 (8)
C150.27235 (18)0.40683 (17)0.51746 (17)0.0364 (9)
C160.37995 (16)0.22940 (16)0.54432 (16)0.0355 (8)
C170.06868 (15)0.13880 (13)0.65793 (14)0.0238 (7)
C180.0814 (2)0.24002 (19)0.6854 (2)0.0473 (10)
C190.1570 (2)0.22430 (18)0.80495 (19)0.0484 (10)
H2A0.4883110.268150.1293210.0569*
H2B0.367520.3473660.1288950.0569*
H2C0.4322140.3166710.0285670.0569*
H3A0.3684630.1054160.1129370.0592*
H3B0.229020.0579810.0088670.0592*
H3C0.24810.1843410.1207380.0592*
H4A0.4616040.0673330.051980.0416*
H4B0.3973160.1205970.147980.0416*
H4C0.3222760.018580.1557430.0416*
H6A0.3857660.4986880.2365910.0482*
H6B0.4527630.4422530.1438640.0482*
H6C0.3403980.5287710.1238670.0482*
H7A0.1572750.4320390.3911220.0392*
H7B0.1084670.4657510.2796910.0392*
H7C0.0774170.3382490.3906790.0392*
H8A0.3398890.2905890.4130160.038*
H8B0.2577560.1990710.4115380.038*
H8C0.4016190.2397590.3145990.038*
H10A0.3432780.1319140.1022270.0428*
H10B0.4055880.2189920.1611650.0428*
H10C0.2693250.2531220.0502060.0428*
H11A0.3594280.0273480.3174210.0528*
H11B0.2988090.0012270.3972310.0528*
H11C0.4238270.0619470.3727310.0528*
H12A0.1415550.0272640.1399750.041*
H12B0.0732160.1524350.0814620.041*
H12C0.0774420.0576130.2147780.041*
H14A0.4686520.4376090.4294260.0544*
H14B0.3396710.5017770.3156910.0544*
H14C0.4028890.3909130.3278690.0544*
H15A0.3523180.4176460.575710.0546*
H15B0.2173990.3582050.5621990.0546*
H15C0.2270870.4820520.4570090.0546*
H16A0.4589620.2414740.6025870.0533*
H16B0.4021410.1941020.5009040.0533*
H16C0.3263340.1782530.5891950.0533*
H170.1571690.1121360.680980.0285*
H18A0.0895790.2299130.7616250.071*
H18B0.1450290.1951030.6501480.071*
H18C0.0965240.3218740.6263860.071*
H19A0.1588040.3078530.7780150.0727*
H19B0.2385650.194910.8137040.0727*
H19C0.1450120.186550.8843720.0727*
H1N0.1430 (15)0.2450 (13)0.0368 (14)0.021*
H2N0.2521 (17)0.3861 (11)0.1105 (11)0.0231*
H3N0.2348 (17)0.2942 (10)0.1913 (13)0.023*
H4N0.1290 (15)0.3968 (10)0.3108 (13)0.0232*
H5O0.1610 (19)0.4923 (16)0.0632 (19)0.0421*
H5P0.1242 (14)0.5424 (19)0.0081 (17)0.0421*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01810 (16)0.01246 (16)0.01237 (16)0.00084 (11)0.00539 (12)0.00615 (13)
Cl30.0359 (2)0.0236 (2)0.0267 (2)0.00375 (15)0.01539 (16)0.01184 (16)
P10.01486 (17)0.01498 (19)0.01430 (19)0.00015 (13)0.00446 (13)0.00618 (15)
P20.01485 (17)0.01630 (19)0.01460 (18)0.00184 (13)0.00496 (14)0.00741 (15)
O10.0177 (4)0.0171 (5)0.0155 (5)0.0009 (4)0.0055 (4)0.0048 (4)
O20.0164 (5)0.0173 (5)0.0164 (5)0.0024 (4)0.0039 (4)0.0051 (4)
O30.0179 (4)0.0184 (5)0.0177 (5)0.0015 (4)0.0060 (4)0.0062 (4)
O40.0292 (5)0.0231 (5)0.0214 (5)0.0012 (4)0.0065 (4)0.0145 (5)
O50.0351 (6)0.0247 (6)0.0268 (6)0.0018 (5)0.0133 (5)0.0116 (5)
N10.0167 (5)0.0198 (6)0.0165 (6)0.0032 (4)0.0068 (5)0.0082 (5)
N20.0231 (6)0.0177 (6)0.0160 (6)0.0026 (5)0.0068 (5)0.0061 (5)
N30.0216 (6)0.0195 (6)0.0183 (6)0.0024 (5)0.0093 (5)0.0086 (5)
N40.0175 (6)0.0198 (6)0.0207 (6)0.0020 (5)0.0045 (5)0.0110 (5)
N50.0412 (8)0.0237 (7)0.0226 (7)0.0012 (6)0.0082 (6)0.0146 (6)
C10.0206 (7)0.0244 (8)0.0206 (7)0.0043 (6)0.0051 (6)0.0140 (6)
C20.0268 (8)0.0334 (9)0.0324 (9)0.0010 (7)0.0056 (7)0.0094 (8)
C30.0393 (9)0.0586 (12)0.0449 (11)0.0178 (8)0.0211 (8)0.0417 (10)
C40.0232 (7)0.0307 (8)0.0309 (8)0.0089 (6)0.0104 (7)0.0162 (7)
C50.0229 (7)0.0226 (7)0.0216 (7)0.0018 (6)0.0091 (6)0.0113 (6)
C60.0364 (9)0.0309 (9)0.0292 (9)0.0122 (7)0.0121 (7)0.0098 (7)
C70.0288 (8)0.0272 (8)0.0307 (8)0.0053 (6)0.0129 (7)0.0188 (7)
C80.0246 (7)0.0308 (8)0.0236 (8)0.0023 (6)0.0115 (6)0.0124 (7)
C90.0211 (7)0.0253 (8)0.0236 (8)0.0008 (6)0.0076 (6)0.0140 (7)
C100.0246 (7)0.0409 (9)0.0296 (8)0.0043 (7)0.0126 (7)0.0216 (8)
C110.0421 (9)0.0315 (9)0.0296 (9)0.0128 (7)0.0076 (8)0.0121 (8)
C120.0269 (8)0.0310 (8)0.0349 (9)0.0068 (6)0.0137 (7)0.0225 (7)
C130.0227 (7)0.0303 (8)0.0248 (8)0.0086 (6)0.0061 (6)0.0184 (7)
C140.0283 (8)0.0473 (11)0.0403 (10)0.0178 (8)0.0159 (7)0.0260 (9)
C150.0407 (9)0.0435 (10)0.0380 (10)0.0108 (8)0.0146 (8)0.0301 (9)
C160.0287 (8)0.0400 (10)0.0286 (9)0.0007 (7)0.0025 (7)0.0174 (8)
C170.0276 (8)0.0197 (7)0.0233 (8)0.0010 (6)0.0082 (6)0.0095 (6)
C180.0541 (12)0.0545 (13)0.0495 (12)0.0099 (9)0.0152 (10)0.0359 (11)
C190.0592 (12)0.0476 (12)0.0403 (11)0.0046 (9)0.0033 (9)0.0327 (10)
Geometric parameters (Å, º) top
Mn1—O12.1642 (8)C5—C81.521 (2)
Mn1—O1i2.1642 (8)C6—H6A0.96
Mn1—O32.1459 (10)C6—H6B0.96
Mn1—O3i2.1459 (10)C6—H6C0.96
Mn1—O42.1906 (15)C7—H7A0.96
Mn1—O4i2.1906 (15)C7—H7B0.96
P1—O11.4783 (9)C7—H7C0.96
P1—O21.6082 (10)C8—H8A0.96
P1—N11.6287 (16)C8—H8B0.96
P1—N21.6271 (15)C8—H8C0.96
P2—O21.6110 (8)C9—C101.526 (3)
P2—O31.4779 (9)C9—C111.5189 (18)
P2—N31.6256 (17)C9—C121.528 (2)
P2—N41.6235 (16)C10—H10A0.96
O4—C171.2258 (19)C10—H10B0.96
O5—H5O0.83 (3)C10—H10C0.96
O5—H5P0.848 (17)C11—H11A0.96
N1—C11.4847 (18)C11—H11B0.96
N1—H1N0.854 (17)C11—H11C0.96
N2—C51.494 (3)C12—H12A0.96
N2—H2N0.862 (12)C12—H12B0.96
N3—C91.493 (3)C12—H12C0.96
N3—H3N0.853 (11)C13—C141.524 (3)
N4—C131.4867 (18)C13—C151.529 (4)
N4—H4N0.865 (12)C13—C161.521 (2)
N5—C171.329 (3)C14—H14A0.96
N5—C181.449 (3)C14—H14B0.96
N5—C191.448 (3)C14—H14C0.96
C1—C21.526 (2)C15—H15A0.96
C1—C31.527 (4)C15—H15B0.96
C1—C41.519 (2)C15—H15C0.96
C2—H2A0.96C16—H16A0.96
C2—H2B0.96C16—H16B0.96
C2—H2C0.96C16—H16C0.96
C3—H3A0.96C17—H170.96
C3—H3B0.96C18—H18A0.96
C3—H3C0.96C18—H18B0.96
C4—H4A0.96C18—H18C0.96
C4—H4B0.96C19—H19A0.96
C4—H4C0.96C19—H19B0.96
C5—C61.525 (2)C19—H19C0.96
C5—C71.534 (2)
O1—Mn1—O1i180C5—C7—H7B109.4711
O1—Mn1—O386.84 (3)C5—C7—H7C109.4718
O1—Mn1—O3i93.16 (3)H7A—C7—H7B109.471
O1—Mn1—O488.41 (4)H7A—C7—H7C109.4714
O1—Mn1—O4i91.59 (4)H7B—C7—H7C109.4708
O1i—Mn1—O393.16 (3)C5—C8—H8A109.4716
O1i—Mn1—O3i86.84 (3)C5—C8—H8B109.4711
O1i—Mn1—O491.59 (4)C5—C8—H8C109.471
O1i—Mn1—O4i88.41 (4)H8A—C8—H8B109.472
O3—Mn1—O3i180H8A—C8—H8C109.471
O3—Mn1—O492.70 (5)H8B—C8—H8C109.4706
O3—Mn1—O4i87.30 (5)N3—C9—C10105.74 (13)
O3i—Mn1—O487.30 (5)N3—C9—C11109.08 (15)
O3i—Mn1—O4i92.70 (5)N3—C9—C12111.24 (14)
O4—Mn1—O4i180C10—C9—C11110.20 (14)
O1—P1—N1116.10 (7)C10—C9—C12109.19 (15)
O1—P1—N2112.68 (7)C11—C9—C12111.25 (13)
N1—P1—N2107.42 (7)C9—C10—H10A109.4713
O3—P2—N3111.71 (7)C9—C10—H10B109.4715
O3—P2—N4116.20 (7)C9—C10—H10C109.4714
N3—P2—N4108.59 (7)H10A—C10—H10B109.4707
Mn1—O1—P1136.46 (6)H10A—C10—H10C109.4707
Mn1—O3—P2135.47 (6)H10B—C10—H10C109.4717
Mn1—O4—C17127.17 (12)C9—C11—H11A109.4709
P1—O2—P2135.55 (6)C9—C11—H11B109.4717
H5O—O5—H5P98 (2)C9—C11—H11C109.4716
P1—N1—C1127.04 (12)H11A—C11—H11B109.4714
P1—N1—H1N116.8 (12)H11A—C11—H11C109.4704
C1—N1—H1N111.8 (10)H11B—C11—H11C109.4712
P1—N2—C5129.16 (8)C9—C12—H12A109.4717
P1—N2—H2N109.0 (13)C9—C12—H12B109.4718
C5—N2—H2N112.3 (12)C9—C12—H12C109.4713
P2—N3—C9127.64 (10)H12A—C12—H12B109.4712
P2—N3—H3N113.5 (14)H12A—C12—H12C109.4699
C9—N3—H3N110.2 (13)H12B—C12—H12C109.4713
P2—N4—C13126.80 (11)N4—C13—C14109.77 (13)
P2—N4—H4N115.3 (11)N4—C13—C15106.05 (14)
N1—C1—C2110.99 (13)N4—C13—C16111.30 (14)
N1—C1—C3106.17 (14)C14—C13—C15109.65 (16)
N1—C1—C4110.66 (12)C14—C13—C16109.74 (15)
C2—C1—C3109.83 (14)C15—C13—C16110.26 (15)
C2—C1—C4109.09 (14)C13—C14—H14A109.4716
C3—C1—C4110.07 (15)C13—C14—H14B109.4709
C1—C2—H2A109.4712C13—C14—H14C109.471
C1—C2—H2B109.4712H14A—C14—H14B109.4709
C1—C2—H2C109.4707H14A—C14—H14C109.4711
H2A—C2—H2B109.4709H14B—C14—H14C109.4718
H2A—C2—H2C109.4716C13—C15—H15A109.4711
H2B—C2—H2C109.4717C13—C15—H15B109.4712
C1—C3—H3A109.4714C13—C15—H15C109.4708
C1—C3—H3B109.4713H15A—C15—H15B109.4715
C1—C3—H3C109.4707H15A—C15—H15C109.4718
H3A—C3—H3B109.4718H15B—C15—H15C109.471
H3A—C3—H3C109.4707C13—C16—H16A109.4715
H3B—C3—H3C109.4715C13—C16—H16B109.4708
C1—C4—H4A109.471C13—C16—H16C109.4718
C1—C4—H4B109.471H16A—C16—H16B109.4711
C1—C4—H4C109.4714H16A—C16—H16C109.4711
H4A—C4—H4B109.472H16B—C16—H16C109.4711
H4A—C4—H4C109.4713O4—C17—N5124.59 (16)
H4B—C4—H4C109.4706O4—C17—H17117.7053
N2—C5—C6105.54 (13)N5—C17—H17117.7035
N2—C5—C7110.63 (14)N5—C18—H18A109.4716
N2—C5—C8110.12 (14)N5—C18—H18B109.4705
C6—C5—C7109.90 (14)N5—C18—H18C109.4715
C6—C5—C8110.01 (14)H18A—C18—H18B109.471
C7—C5—C8110.53 (12)H18A—C18—H18C109.472
C5—C6—H6A109.4715H18B—C18—H18C109.4707
C5—C6—H6B109.4711N5—C19—H19A109.4713
C5—C6—H6C109.4714N5—C19—H19B109.4701
H6A—C6—H6B109.4707N5—C19—H19C109.4716
H6A—C6—H6C109.4712H19A—C19—H19B109.4714
H6B—C6—H6C109.4714H19A—C19—H19C109.4721
C5—C7—H7A109.4712H19B—C19—H19C109.4709
O3—Mn1—O1—P15.26 (10)N4—P2—O2—P1119.27 (10)
O4—Mn1—O1—P187.53 (10)O2—P2—O3—Mn118.90 (11)
O3i—Mn1—O1—P1174.74 (10)N3—P2—O3—Mn1140.86 (9)
O4i—Mn1—O1—P192.47 (10)N4—P2—O3—Mn193.81 (10)
O1—Mn1—O3—P218.05 (9)O2—P2—N3—C986.70 (13)
O4—Mn1—O3—P270.21 (9)O3—P2—N3—C937.02 (14)
O1i—Mn1—O3—P2161.95 (9)N4—P2—N3—C9166.47 (12)
O4i—Mn1—O3—P2109.79 (9)O2—P2—N4—C13175.77 (12)
O1—Mn1—O4—C17145.79 (13)O3—P2—N4—C1364.43 (14)
O3—Mn1—O4—C1759.03 (13)N3—P2—N4—C1362.47 (13)
O1i—Mn1—O4—C1734.21 (13)Mn1—O4—C17—N5173.10 (12)
O3i—Mn1—O4—C17120.97 (13)P1—N1—C1—C283.14 (16)
O2—P1—O1—Mn12.80 (12)P1—N1—C1—C3157.55 (13)
N1—P1—O1—Mn1110.00 (10)P1—N1—C1—C438.1 (2)
N2—P1—O1—Mn1125.52 (10)P1—N2—C5—C6179.01 (13)
O1—P1—O2—P25.78 (12)P1—N2—C5—C760.18 (19)
N1—P1—O2—P2117.20 (10)P1—N2—C5—C862.30 (19)
N2—P1—O2—P2130.69 (10)P2—N3—C9—C10167.37 (11)
O1—P1—N1—C167.63 (15)P2—N3—C9—C1174.13 (17)
O2—P1—N1—C1172.72 (13)P2—N3—C9—C1248.96 (17)
N2—P1—N1—C159.52 (15)P2—N4—C13—C1494.88 (17)
O1—P1—N2—C541.55 (17)P2—N4—C13—C15146.74 (13)
O2—P1—N2—C582.69 (15)P2—N4—C13—C1626.81 (19)
N1—P1—N2—C5170.67 (14)C18—N5—C17—O41.7 (3)
O3—P2—O2—P13.77 (12)C19—N5—C17—O4179.29 (17)
N3—P2—O2—P1127.47 (10)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl3ii0.85 (2)2.53 (2)3.3644 (13)166 (1)
N2—H2N···O50.86 (1)2.20 (1)3.0346 (16)163 (2)
N3—H3N···O5ii0.85 (1)2.17 (1)3.0072 (14)167 (2)
N4—H4N···Cl30.87 (1)2.58 (1)3.4090 (11)160 (2)
O5—H5O···Cl3ii0.83 (3)2.37 (3)3.1965 (17)178 (2)
O5—H5P···Cl30.85 (2)2.35 (2)3.1885 (12)172 (2)
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(C16H40N4O3P2)2(C3H7NO)2]Cl2·2H2O
Mr1105
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.9780 (3), 12.7452 (3), 12.7755 (3)
α, β, γ (°)63.131 (2), 68.173 (2), 83.141 (2)
V3)1477.67 (7)
Z1
Radiation typeCu Kα
µ (mm1)4.12
Crystal size (mm)0.31 × 0.21 × 0.14
Data collection
DiffractometerAgilent Xcalibur Gemini
diffractometer with Atlas CCD area detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.4, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
34111, 5236, 5047
Rint0.025
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.086, 1.71
No. of reflections5236
No. of parameters313
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.19

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), DIAMOND (Brandenburg & Putz, 2005), JANA2006 (Petříček et al., 2006), enCIFer (Allen, et al., 2004) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Mn1—O12.1642 (8)P1—N21.6271 (15)
Mn1—O32.1459 (10)P2—O21.6110 (8)
Mn1—O42.1906 (15)P2—O31.4779 (9)
P1—O11.4783 (9)P2—N31.6256 (17)
P1—O21.6082 (10)P2—N41.6235 (16)
P1—N11.6287 (16)
O1—Mn1—O386.84 (3)N1—P1—N2107.42 (7)
O1—Mn1—O3i93.16 (3)O3—P2—N3111.71 (7)
O1—Mn1—O488.41 (4)O3—P2—N4116.20 (7)
O1—Mn1—O4i91.59 (4)N3—P2—N4108.59 (7)
O3—Mn1—O492.70 (5)Mn1—O1—P1136.46 (6)
O3—Mn1—O4i87.30 (5)Mn1—O3—P2135.47 (6)
O1—P1—N1116.10 (7)Mn1—O4—C17127.17 (12)
O1—P1—N2112.68 (7)P1—O2—P2135.55 (6)
N1—P1—O1—Mn1110.00 (10)N3—P2—O3—Mn1140.86 (9)
N2—P1—O1—Mn1125.52 (10)N4—P2—O3—Mn193.81 (10)
O1—P1—O2—P25.78 (12)Mn1—O4—C17—N5173.10 (12)
O3—P2—O2—P13.77 (12)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl3ii0.854 (17)2.531 (16)3.3644 (13)165.5 (14)
N2—H2N···O50.862 (12)2.200 (14)3.0346 (16)162.9 (16)
N3—H3N···O5ii0.853 (11)2.170 (10)3.0072 (14)167.3 (18)
N4—H4N···Cl30.865 (12)2.583 (10)3.4090 (11)160.2 (16)
O5—H5O···Cl3ii0.83 (3)2.37 (3)3.1965 (17)177.9 (18)
O5—H5P···Cl30.848 (17)2.346 (19)3.1885 (12)172 (2)
Symmetry code: (ii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds