Download citation
Download citation
link to html
(2SR,4RS)-2-exo-Phenyl-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C16H15NO, (I), (2SR,4RS)-2-exo-(4-chloro­phen­yl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C16H14ClNO, (II), and (2SR,4RS)-2-exo-(3-methyl­phen­yl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C17H17NO, (III), all crystallize with Z′ = 2, in the space groups Cc, P21/n and P21/c, respectively. In each of (II) and (III), the conformations of the two independent mol­ecules are significantly different. The mol­ecules in (I) are linked by C—H...π(arene) hydrogen bonds to form two independent chains, each containing only one type of mol­ecule. The mol­ecules in (II) are linked into sheets by a combination of C—H...O, C—H...(N,O) and C—H...π(arene) hydrogen bonds, all of which link pairs of mol­ecules related by inversion, while in (III), the mol­ecules are linked into sheets by a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds. There are no direction-specific inter­molecular inter­actions of any kind in the structure of (2SR,4RS)-7-bromo-2-exo-phenyl-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C16H14BrNO, (IV), but in the structure of (2SR,4RS)-2-exo-(4-bromo­phen­yl)-7-chloro-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C16H13BrClNO, (V), a combination of one C—H...N hydrogen bond and one C—H...O hydrogen bond links the mol­ecules into sheets of alternating centrosymmetric R22(14) and R66(22) rings. Comparisons are made with the structures of a number of related compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110009662/fa3218sup1.cif
Contains datablocks global, I, II, III, IV, V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110009662/fa3218Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110009662/fa3218IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110009662/fa3218IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110009662/fa3218IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110009662/fa3218Vsup6.hkl
Contains datablock V

CCDC references: 774922; 774923; 774924; 774925; 774926

Comment top

We report here the structure of (2SR,4RS)-2-exo-phenyl-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine, (I) (Fig. 1), and those of four analogues, (II)–(V), (Figs. 2–5), each carrying no more than one substituent on each of the aryl rings. We compare these structures with those of several other analogues with similar substitution patterns, namely compounds (VI) and (IX) (Gómez et al., 2008) and compounds (VII) and (VIII) (Gómez et al., 2009). The work reported here is a continuation of a structural study of 2-substituted tetrahydro-1,4-epoxy-1-benzazepines (Acosta et al., 2008, 2010; Blanco et al., 2008; Gómez et al., 2008, 2009). These compounds are of potential importance in combating Trypanosoma cruzi and Leishmania chagasi parasites (Gómez Ayala et al., 2006; Yépez et al., 2006; Palma et al., 2009). The compounds reported here exhibit some unexpected crystallization characteristics and no two of the compounds (I)–(IX) show the same patterns of supramolecular aggregation. Compounds (I)–(V) were all prepared using the reaction of an appropriately substituted 2-allyl-N-benzylaniline with an excess of hydrogen peroxide solution in the presence of a catalytic quantity of sodium tungstate; the proposed mechanism involves oxidation of the starting amine to a nitrone intermediate, followed by a 1,3-dipolar cycloaddition step to give the products, which contain stereogenic centres at atoms C2 and C4 (Acosta et al., 2008).

Compounds (I)–(III) all crystallize as racemic mixtures of the (2S,4R) and (2R,4S) forms, each with Z' = 2 in space groups Cc, P21/n and P21/c, respectively. In each of these compounds it will be convenient to refer to the molecules containing atoms N11 and N21 (Figs. 1–3) as type 1 and type 2 molecules, respectively. The formation of racemic mixtures is to be expected as the synthetic procedure does not involve any reagent or solvent capable of imparting any enantiomeric bias to the product. The observation of Z' = 2 in space group Cc, as in (I), should always enjoin caution. Extensive scrutiny (Marsh, 1997, 2004, 2009) of the structures in this space group that have been deposited in the Cambridge Structural Database (Allen, 2002) has shown that over a long period the space-group assignments for some 10% of structures reported in space group Cc were, in fact, incorrect, although this proportion has been approximately halved for more recent depositions (Marsh, 2009). For compound (I), the ADDSYM routine in PLATON (Spek, 2009) gave no indication of any additional symmetry, a detailed comparison of the coordinates for corresponding pairs of atoms in the two independent molecules found no consistent relationships between them; and a projection of the structure down [010] showed no sign of any possible twofold rotation axis. We conclude that the space-group assignment for (I) is correct. Compound (IV) crystallizes with Z' = 1 in space group P212121, but as an inversion twin with twin fractions 0.497 (9) and 0.503 (9), rather than as a single enantiomer, so that this compound also appears to be a racemic mixture. Compound (V) crystallizes as a true racemic mixture with Z' = 1. In all cases the reference molecules were selected as those having the (2S,4R) configuration.

Compounds (VI) (Gómez et al., 2008) and (VII) (Gómez et al., 2009) both crystallize as racemic mixtures of the (2S,4R) and (2R,4S) forms in space groups Pna21 and P21/n, respectively. It was deduced that compound (VIII) (Gómez et al., 2009), which is isomeric with (II), but which crystallizes with Z' = 1 in space group P21, [cf. Z' = 2 in P21/n for (II)] probably crystallizes as a conglomerate, while compound (IX), where Z' = 1 in space group P212121 (Gómez et al., 2008), was refined as a single enantiomorph. However, the enantiomorph discriminating power (Flack & Bernardinelli, 2000) of the Flack (1983) x parameter [x = 0.01 (15)] was not high. Re-examination of the reflection data for compound (IX) has now permitted calculation of the Hooft y parameter [y = -0.02 (9)], which often provides more precise discrimination than x (Hooft et al., 2008), confirming the correctness of the original refinement. There is thus no reason to suppose that any of compounds (I)–(IX) has been synthesized as other than a racemic mixture, but it is not at all clear, therefore, why compounds (IV), (VIII) and (IX) all crystallize in space groups having neither reflection nor inversion operators. Compound (IV) is the only example in the series of 2-aryl derivatives (I)–(IX) that exhibits inversion twinning; on the other hand the two diastereoisomeric 2-styryl compounds (X) and (XI) both crystallize as inversion twins, in space groups P21 and P212121, respectively (Acosta et al., 2008).

The ring-puckering parameters (Cremer & Pople, 1975), which define the conformation of the fused bicyclic system, in compounds (I)–(V) all have similar values (Table 1i), showing that the shape of this ring system is largely unaffected by the nature of the substituents and the intermolecular interactions and confirming that, in each of compounds (I)–(III), the two independent molecules in the selected asymmetric unit are indeed of the same hand. Considerably more variation is found in the orientation of the pendent aryl ring relative to the heterocyclic system, which is conveniently specified by the torsion angles Nx1—Cx2—Cx21—Cx22 (x = 1 and 2) in compounds (I)–(III) or N1—C2—C21—C22 in compounds (IV) and (V) (Table 1ii). While the two independent values for compound (I) are nearly the same (Fig. 1), they are very different in both (II) and (III) (Figs. 2 and 3). The ring orientation is similar for the type 2 molecules of compounds (II) and (III), while the orientations in compounds (IV) and (V) are similar to that in the type 1 molecule of compound (II).

The supramolecular aggregation in compounds (I)–(V) is based on various combinations of C—H···N, C—H···O and C—H···π(arene) hydrogen bonds, with no two structures exhibiting the same range of interactions. There are neither C—H···N nor C—H···O hydrogen bonds in the structure of (I). Instead the molecules are linked into two types of chain by two independent C—H···π(arene) hydrogen bonds (Table 2). One of these hydrogen bonds links type 1 molecules that are related by the C-centring operation into a chain running parallel to the [110] direction, while the second hydrogen bond similarly links type 2 molecules into another chain parallel to [110] but running in the opposite sense (Table 2 and Fig. 6). However, there are no direction-specific interactions between a type 1 molecule and any type 2 molecule. Eight chains, four of each type, pass through each unit cell, but there are no direction-specific interactions between the chains: thus the hydrogen-bonded structure of (I) is one-dimensional.

The crystal structure of (II) contains two independent two-centre C—H···O hydrogen bonds, a three-centre C—H···(N,O) hydrogen bond and a C—H···π(arene) hydrogen bond, and the combination of these interactions links the molecules into a sheet of considerable complexity. However, the formation of the sheet is readily analysed using the substructure approach (Ferguson et al., 1998a,b; Gregson et al., 2000): one substructure is built using the C—H···O and C—H···(N,O) hydrogen bonds and the other is built using only the C—H···π(arene) hydrogen bond. In the first substructure, pairs of type 1 molecules related to one another by inversion are linked by pairs of symmetry-related C—H···O hydrogen bonds to form a series of R22(14) (Bernstein et al., 1995) rings centred at (n, 1/2 - n, 1/2), where n represents an integer. Pairs of type 2 molecules are similarly linked to form a second series of R22(14) rings centred at (1/2 - n, n, 1/2), where n again represents an integer. The two types of R22(14) dimer unit are linked by the three-centre C—H···(N,O) hydrogen bond, via an R21(3) ring motif, so forming a chain of rings running parallel to the [110] direction and containing three types of ring (Fig. 7). In the second substructure, pairs of molecules that are related by inversion and which lie in different [110] chains are linked by symmetry-related pairs of C—H···π(arene) hydrogen bonds (Fig. 8), and the effect of this motif is to link the chains along [110] into a complex sheet lying parallel to (001). Thus the overall two-dimensional hydrogen-bonded structure of (II) can be envisaged as constructed from two substructures which are zero- and one-dimensional, respectively.

The two independent molecules in the structure of (III) are linked within the selected asymmetric unit by an almost linear C—H···N hydrogen bond, weakly augmented by a C—H···π(arene) hydrogen bond (Table 2). The resulting bimolecular aggregates are linked into sheets by a combination of a C—H···O hydrogen bond and a second C—H···π(arene) hydrogen bond. Each of these interactions gives rise to a simple one-dimensional substructure, whose combination suffices to generate the sheet. In one substructure, type 1 molecules related by the c-glide plane at y = 0.25 are linked by a C—H···O hydrogen bond to form a C(6) chain running parallel to the [001] direction, with type 2 molecules pendent from it. In the second substructure, bimolecular aggregates which are related by translation are linked by the C—H···π(arene) hydrogen bond having the ring (C121—C126) as the acceptor to form a chain running parallel to [100]. The combination of the chains running parallel to [100] and [001] gives a sheet lying parallel to (010) (Fig. 9). Two sheets of this type pass through each unit cell, in the domains 0 < y < 0.5 and 0.5 < y < 1.0, respectively, but there are no direction-specific interactions between adjacent sheets.

In the crystal structure of compound (IV), there are no direction-specific intermolecular interactions of any kind: there are no hydrogen bonds or any aromatic ππ stacking interactions.

A combination of C—H···N and C—H···O hydrogen bonds, one of each type (Table 2), links the molecules of (V) into a sheet of centrosymmetric rings. Pairs of symmetry-related C—H···O hydrogen bonds link the molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) into a centrosymmetric R22(14) dimer unit centred at (1/2, 1/2, 1/2), and this substructural unit can conveniently be regarded as the key building block in the formation of the sheet. The C—H···N hydrogen bond directly links the reference dimer at (1/2, 1/2, 1/2) to four other dimers of this type, centred, respectively, at (1/2, 0, 0), (1/2, 0, 1), (1/2, 1, 0) and (1/2, 1, 1), so generating a sheet parallel to (100) and containing R22(14) and R66(22) rings, with both types centrosymmetric, alternating in chessboard fashion (Fig. 10). If the dimer units are regarded as the nodes of the resulting two-dimensional net, then this net is of (4,4) type. The crystal structure of (V) also contains a fairly short Br···Cl contact involving molecules related by the c-glide plane at y = 3/4 [Br···Cli = 3.4875 (12) Å, C—Br···Cli = 142.74 (10)° and Br···Cli—Ci = 144.98 (14)°; symmetry code: (i) 1 + x, 3/2 - y, 1/2 + z]. The Br···Cli distance is somewhat shorter than the sum of the van der Waals radii (3.61 Å; Bondi, 1964), and if this interaction is attractive (Ramasubbu et al., 1986), then it links molecules into a chain parallel to the [201] direction, and thereby links the hydrogen-bonded sheets into a continuous three-dimensional framework structure.

Thus, no two of compounds (I)–(V) show the same patterns of supramolecular aggregation, and no two structures exhibit the same range of intermolecular hydrogen bonds. In this connection it is therefore of interest briefly to compare the structures of compounds (I)–(V) with those of the close analogues (VI)–(IX) (Gómez et al., 2008, 2009) (see scheme).

In the structure of (VI) (Gómez et al., 2008), a combination of C—H···N and C—H···O hydrogen bonds, one of each type, links molecules related by a 21 screw axis in space group Pna21 into a chain of edge-fused R33(12) rings, in a motif entirely different from any of those found in the rest of this series. By contrast, in the structure of (VII) (Gómez et al., 2009), which might reasonably have been expected to be rather similar to that of (VI), or even to be isostructural with (VI), pairs of molecules are linked into centrosymmetric dimer units by pairs of symmetry-related C—H..π(arene) hydrogen bonds [cf. the dimer formation in (V) using C—H···O hydrogen bonds], and these dimer units in (VII) are linked into sheets by a C—H···N hydrogen bond, so forming a (4,4)-type net, as in (V). The hydrogen-bonded structures of (VIII) (Gómez et al., 2009) and (IX) (Gómez et al., 2008) are both three-dimensional: in (VIII) the hydrogen-bonded framework is built from one C—H···O hydrogen bond and three independent C—H···π(arene) hydrogen bonds, while that in (IX) is built from one C—H···O hydrogen bond and two independent C—H···π(arene) hydrogen bonds. These two compounds are the only ones in this series where the hydrogen-bonded structures are three dimensional.

Related literature top

For related literature, see: Acosta et al. (2008, 2010); Allen (2002); Bernstein et al. (1995); Blanco et al. (2008); Bondi (1964); Cremer & Pople (1975); Ferguson et al. (1998a, 1998b); Flack (1983); Flack & Bernardinelli (2000); Gómez et al. (2008, 2009); Gómez Ayala, Stashenko, Palma, Bahsas & Amaro-Luis (2006); Gregson et al. (2000); Hooft et al. (2008); Marsh (1997, 2004, 2009); Palma et al. (2009); Ramasubbu et al. (1986); Spek (2009); Yépez et al. (2006).

Experimental top

For the preparation of compounds (I)–(V), sodium tungstate dihydrate, (5–10 mol %), followed by 30% aqueous hydrogen peroxide solution (0.30 mol, added dropwise), were added to a stirred solution of the appropriately substituted 2-allyl-N-benzylaniline (0.10 mol) in methanol (30 ml). The resulting mixtures were then stirred at ambient temperature for periods ranging from 48 to 72 h. Each mixture was filtered and the solvent removed under reduced pressure. Toluene (40 ml) was added to the organic residues and the resulting solution was heated to ca 333 K for periods ranging from 6 to 8 h. After cooling of each solution to ambient temperature, the solvent was removed under reduced pressure and the crude product was purified by chromatography on silica gel using heptane–ethyl acetate (compositions ranged from 60:1 to 40:1 v/v) as eluant. Crystallization from heptane gave colourless crystals suitable for single-crystal X-ray diffraction. For (I) (yield 61%, m.p. 361–362 K), MS (70 eV) m/z (%): 237 (M+, 40), 220 (24), 208 (7), 194 (14), 130 (7), 104 (100), 91 (25), 77 (31). For (II) (yield 63%, m.p. 331–333 K), MS (70 eV) m/z (%): 271 [M+ (35Cl), 21], 254 (13), 242 (3), 228 (3), 130 (5), 104 (100), 91 (14), 77 (25). For (III) (yield 67%, m.p. 352–353 K), MS (70 eV) m/z (%): 251 (M+, 55), 234 (36), 222 (10), 208 (12), 130 (8), 104 (100), 91 (33), 77 (22). For (IV) (yield 63%, m.p. 356–358 K), MS (70 eV) m/z (%): 315 [M+ (79Br), 31], 298 (11), 286 (6), 208 (11), 184 (100), 132 (40), 104 (54), 77 (80). For (V) (yield 76%, m.p. 417–419 K), MS (70 eV) m/z (%): 349 [M+ (79Br, 35Cl), 20], 334 (10), 182 (13), 152 (13), 139 (100), 102 (23), 89 (30), 77 (30).

Refinement top

All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups in (III), which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. In this series, the reference molecules were all selected as those having the (2S,4R) configuration. Although each of the hydrogen bonds in (II) links a pair of molecules of the opposite hand, the selection of an asymmetric unit containing two molecules of the same hand, to be consistent with all the other compounds, was judged to be the more preferable choice. In the absence of significant resonant scattering in (I), the Friedel-equivalent reflections were merged prior to the final refinements; hence the correct orientation of the structure of (I) relative to the polar axis directions could not be established. A careful search for possible additional symmetry in (I) revealed none and, indeed, attempts to solve the structure of (I) in space group C2/c did not lead to any readily interpretable solutions. The refinement for compound (IV) was handled as an inversion twin in space group P212121, leading to twin fractions of 0.497 (9) and 0.503 (9) so that, within the experimental uncertainty, the crystal selected for data collection appears to contain a true racemic mixture.

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003). Program(s) used to solve structure: Sir2004 (Burla et al., 2005) for (I), (II), (IV); SHELXS97 (Sheldrick, 2008) for (III), (V). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The two independent molecules of (I), showing the atom-labelling scheme: (top) the type 1 molecule and (bottom) the type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The two independent molecules of (II), showing the atom-labelling scheme: (top) the type 1 molecule and (bottom) the type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The two independent molecules of (III), showing the atom-labelling scheme: (top) the type 1 molecule and (bottom) the type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The molecular structure of (IV), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. The molecular structure of (V), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (I) showing the formation of two independent hydrogen-bonded chains along [110], each containing only one type of molecule. For the sake of clarity the H atoms not involved in the motifs shown have been omitted.
[Figure 7] Fig. 7. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded chain of rings along [110], and containing R21(3) rings and two types of R22(14) ring. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 8] Fig. 8. Part of the crystal structure of (II), showing a pair of symmetry-related C—H···π(arene) hydrogen bonds which link the chains along [110] into a sheet parallel to (001). For the sake of clarity, the unit-cell outline and H atoms bonded to C atoms not involved in the motif shown have been omitted. The atom marked with an asterisk (*) is at the symmetry position (-x, -y, 1 - z).
[Figure 9] Fig. 9. A stereoview of part of the crystal structure of (III), showing the formation of a hydrogen-bonded sheet parallel to (010), and built from C—H···N, C—H···O and C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 10] Fig. 10. A stereoview of part of the crystal structure of (V), showing the formation of a hydrogen-bonded sheet parallel to (100) containing R22(14) and R66(22) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
(I) 2-exo-phenyl-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C16H15NOF(000) = 1008
Mr = 237.29Dx = 1.322 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5413 reflections
a = 10.7475 (7) Åθ = 2.7–27.5°
b = 10.7842 (12) ŵ = 0.08 mm1
c = 20.5812 (19) ÅT = 120 K
β = 91.688 (7)°Block, colourless
V = 2384.4 (4) Å30.51 × 0.33 × 0.18 mm
Z = 8
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2214 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1595 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.7°
ϕ & ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.952, Tmax = 0.985l = 2424
15795 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0723P)2]
where P = (Fo2 + 2Fc2)/3
2214 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H15NOV = 2384.4 (4) Å3
Mr = 237.29Z = 8
Monoclinic, CcMo Kα radiation
a = 10.7475 (7) ŵ = 0.08 mm1
b = 10.7842 (12) ÅT = 120 K
c = 20.5812 (19) Å0.51 × 0.33 × 0.18 mm
β = 91.688 (7)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2214 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1595 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.985Rint = 0.072
15795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.08Δρmax = 0.22 e Å3
2214 reflectionsΔρmin = 0.24 e Å3
325 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.5685 (3)0.7061 (3)0.60957 (17)0.0285 (9)
C120.6793 (4)0.7809 (4)0.6238 (2)0.0259 (10)
H120.68990.79220.67180.031*
C130.7874 (4)0.6991 (4)0.5985 (2)0.0335 (11)
H13A0.84720.74910.57390.040*
H13B0.83230.65650.63470.040*
C140.7179 (4)0.6062 (4)0.5541 (2)0.0314 (10)
H140.75870.59900.51120.038*
C150.7013 (4)0.4814 (4)0.5842 (2)0.0347 (11)
H15A0.78310.44900.59970.042*
H15B0.66640.42310.55130.042*
C15A0.6150 (4)0.4901 (4)0.6404 (2)0.0313 (11)
C160.5907 (4)0.3902 (4)0.6799 (2)0.0352 (11)
H160.62460.31110.67040.042*
C170.5174 (5)0.4047 (5)0.7331 (2)0.0421 (13)
H170.50130.33540.76010.051*
C180.4676 (4)0.5175 (5)0.7475 (2)0.0387 (12)
H180.41960.52720.78520.046*
C190.4870 (4)0.6166 (4)0.7076 (2)0.0327 (11)
H190.45190.69520.71710.039*
C19A0.5581 (4)0.6011 (4)0.6534 (2)0.0268 (10)
O1140.5946 (3)0.6593 (3)0.54637 (13)0.0317 (7)
C1210.6698 (4)0.9051 (4)0.5915 (2)0.0269 (10)
C1220.7662 (4)0.9894 (4)0.5998 (2)0.0300 (10)
H1220.83860.96650.62450.036*
C1230.7586 (4)1.1057 (4)0.5727 (2)0.0335 (11)
H1230.82451.16340.57950.040*
C1240.6541 (4)1.1382 (4)0.5355 (2)0.0341 (11)
H1240.64891.21820.51640.041*
C1250.5588 (4)1.0561 (4)0.5263 (2)0.0326 (11)
H1250.48781.07870.50030.039*
C1260.5655 (4)0.9403 (4)0.5545 (2)0.0294 (10)
H1260.49810.88400.54860.035*
N210.7876 (3)0.4263 (3)0.36684 (16)0.0288 (8)
C220.7110 (4)0.3170 (4)0.3524 (2)0.0274 (10)
H220.69950.30770.30430.033*
C230.7899 (4)0.2085 (4)0.3796 (2)0.0305 (11)
H23A0.73800.14890.40350.037*
H23B0.83230.16410.34440.037*
C240.8840 (4)0.2732 (4)0.4255 (2)0.0325 (11)
H240.88930.23050.46860.039*
C251.0120 (4)0.2883 (4)0.3977 (2)0.0323 (10)
H25A1.06990.32380.43110.039*
H25B1.04450.20640.38460.039*
C25A1.0035 (4)0.3721 (4)0.3402 (2)0.0280 (10)
C261.1023 (4)0.3900 (4)0.2996 (2)0.0360 (11)
H261.18050.35340.31060.043*
C271.0898 (5)0.4597 (4)0.2439 (2)0.0365 (12)
H271.15870.47060.21660.044*
C280.9769 (4)0.5135 (5)0.2278 (2)0.0353 (12)
H280.96700.55910.18850.042*
C290.8782 (4)0.5017 (4)0.2684 (2)0.0322 (11)
H290.80090.54040.25780.039*
C29A0.8925 (4)0.4332 (4)0.3247 (2)0.0277 (10)
O2140.8349 (3)0.3967 (3)0.43189 (14)0.0312 (7)
C2210.5851 (4)0.3272 (4)0.3831 (2)0.0284 (10)
C2220.4991 (4)0.2345 (4)0.3722 (2)0.0298 (10)
H2220.51970.16540.34600.036*
C2230.3836 (4)0.2410 (4)0.3990 (2)0.0324 (11)
H2230.32440.17710.39070.039*
C2240.3535 (4)0.3398 (4)0.4378 (2)0.0340 (11)
H2240.27400.34390.45670.041*
C2250.4393 (4)0.4324 (4)0.4491 (2)0.0321 (11)
H2250.41960.50040.47630.039*
C2260.5541 (4)0.4266 (4)0.4208 (2)0.0294 (10)
H2260.61210.49210.42760.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.034 (2)0.028 (2)0.023 (2)0.0042 (16)0.0016 (16)0.0016 (16)
C120.027 (2)0.027 (2)0.024 (2)0.0046 (18)0.0026 (18)0.0032 (18)
C130.034 (3)0.025 (2)0.041 (3)0.0016 (19)0.005 (2)0.002 (2)
C140.034 (3)0.033 (2)0.028 (2)0.003 (2)0.0060 (19)0.002 (2)
C150.043 (3)0.025 (2)0.036 (3)0.002 (2)0.001 (2)0.003 (2)
C15A0.032 (3)0.028 (2)0.034 (3)0.002 (2)0.002 (2)0.002 (2)
C160.038 (3)0.029 (2)0.039 (3)0.001 (2)0.004 (2)0.002 (2)
C170.048 (3)0.044 (3)0.034 (3)0.009 (2)0.004 (2)0.014 (2)
C180.042 (3)0.044 (3)0.030 (3)0.008 (2)0.004 (2)0.005 (2)
C190.038 (3)0.029 (2)0.031 (3)0.008 (2)0.002 (2)0.000 (2)
C19A0.026 (2)0.026 (2)0.028 (2)0.0073 (19)0.0061 (19)0.0010 (19)
O1140.0351 (18)0.0347 (17)0.0250 (17)0.0009 (14)0.0025 (13)0.0013 (14)
C1210.025 (2)0.029 (2)0.027 (2)0.0013 (19)0.0031 (18)0.0020 (19)
C1220.033 (2)0.030 (2)0.027 (2)0.001 (2)0.000 (2)0.000 (2)
C1230.035 (3)0.033 (3)0.033 (3)0.006 (2)0.006 (2)0.004 (2)
C1240.045 (3)0.027 (2)0.030 (3)0.002 (2)0.004 (2)0.005 (2)
C1250.033 (3)0.034 (3)0.031 (3)0.002 (2)0.001 (2)0.002 (2)
C1260.032 (2)0.029 (2)0.028 (2)0.0029 (19)0.000 (2)0.000 (2)
N210.029 (2)0.032 (2)0.025 (2)0.0041 (17)0.0017 (16)0.0018 (17)
C220.029 (2)0.029 (2)0.023 (2)0.0073 (19)0.0032 (19)0.0022 (19)
C230.027 (2)0.031 (2)0.033 (3)0.0027 (19)0.002 (2)0.002 (2)
C240.033 (2)0.034 (3)0.030 (3)0.000 (2)0.003 (2)0.003 (2)
C250.025 (2)0.038 (3)0.033 (3)0.0018 (19)0.0004 (19)0.004 (2)
C25A0.030 (2)0.031 (2)0.023 (2)0.0034 (19)0.0005 (19)0.0027 (19)
C260.036 (3)0.038 (3)0.034 (3)0.005 (2)0.007 (2)0.004 (2)
C270.043 (3)0.039 (3)0.028 (3)0.009 (2)0.010 (2)0.003 (2)
C280.043 (3)0.040 (3)0.022 (2)0.009 (2)0.002 (2)0.003 (2)
C290.029 (3)0.037 (3)0.031 (3)0.004 (2)0.005 (2)0.006 (2)
C29A0.031 (2)0.027 (2)0.026 (2)0.0065 (19)0.0033 (19)0.003 (2)
O2140.0352 (16)0.0360 (18)0.0224 (16)0.0018 (14)0.0002 (13)0.0009 (14)
C2210.032 (2)0.029 (2)0.024 (2)0.001 (2)0.0007 (19)0.0001 (19)
C2220.029 (3)0.033 (2)0.027 (2)0.005 (2)0.0023 (19)0.002 (2)
C2230.026 (2)0.034 (3)0.036 (3)0.006 (2)0.003 (2)0.005 (2)
C2240.024 (2)0.048 (3)0.030 (3)0.004 (2)0.0010 (19)0.000 (2)
C2250.030 (2)0.033 (3)0.033 (3)0.003 (2)0.001 (2)0.002 (2)
C2260.028 (2)0.027 (2)0.033 (3)0.0038 (18)0.003 (2)0.0006 (19)
Geometric parameters (Å, º) top
N11—O1141.430 (4)N21—C29A1.444 (5)
N11—C19A1.455 (5)N21—O2141.453 (5)
N11—C121.460 (5)N21—C221.463 (5)
C12—C1211.497 (6)C22—C2211.515 (6)
C12—C131.560 (6)C22—C231.541 (6)
C12—H121.0000C22—H221.0000
C13—C141.535 (6)C23—C241.531 (6)
C13—H13A0.9900C23—H23A0.9900
C13—H13B0.9900C23—H23B0.9900
C14—O1141.448 (5)C24—O2141.440 (5)
C14—C151.495 (6)C24—C251.514 (6)
C14—H141.0000C24—H241.0000
C15—C15A1.506 (7)C25—C25A1.490 (6)
C15—H15A0.9900C25—H25A0.9900
C15—H15B0.9900C25—H25B0.9900
C15A—C19A1.375 (6)C25A—C261.382 (6)
C15A—C161.379 (6)C25A—C29A1.392 (6)
C16—C171.376 (7)C26—C271.376 (7)
C16—H160.9500C26—H260.9500
C17—C181.366 (7)C27—C281.377 (7)
C17—H170.9500C27—H270.9500
C18—C191.367 (6)C28—C291.375 (6)
C18—H180.9500C28—H280.9500
C19—C19A1.380 (6)C29—C29A1.378 (6)
C19—H190.9500C29—H290.9500
C121—C1221.385 (6)C221—C2261.370 (6)
C121—C1261.389 (6)C221—C2221.375 (6)
C122—C1231.373 (6)C222—C2231.375 (6)
C122—H1220.9500C222—H2220.9500
C123—C1241.385 (7)C223—C2241.376 (7)
C123—H1230.9500C223—H2230.9500
C124—C1251.363 (7)C224—C2251.374 (6)
C124—H1240.9500C224—H2240.9500
C125—C1261.379 (6)C225—C2261.381 (6)
C125—H1250.9500C225—H2250.9500
C126—H1260.9500C226—H2260.9500
O114—N11—C19A108.1 (3)C29A—N21—O214107.9 (3)
O114—N11—C12101.3 (3)C29A—N21—C22111.4 (3)
C19A—N11—C12112.5 (3)O214—N21—C22100.9 (3)
N11—C12—C121111.2 (3)N21—C22—C221111.2 (3)
N11—C12—C13103.4 (3)N21—C22—C23103.8 (3)
C121—C12—C13113.6 (3)C221—C22—C23113.1 (3)
N11—C12—H12109.5N21—C22—H22109.5
C121—C12—H12109.5C221—C22—H22109.5
C13—C12—H12109.5C23—C22—H22109.5
C14—C13—C12102.3 (3)C24—C23—C22102.9 (3)
C14—C13—H13A111.3C24—C23—H23A111.2
C12—C13—H13A111.3C22—C23—H23A111.2
C14—C13—H13B111.3C24—C23—H23B111.2
C12—C13—H13B111.3C22—C23—H23B111.2
H13A—C13—H13B109.2H23A—C23—H23B109.1
O114—C14—C15106.4 (3)O214—C24—C25105.9 (4)
O114—C14—C13103.6 (3)O214—C24—C23104.0 (3)
C15—C14—C13113.8 (4)C25—C24—C23114.0 (4)
O114—C14—H14110.9O214—C24—H24110.9
C15—C14—H14110.9C25—C24—H24110.8
C13—C14—H14110.9C23—C24—H24110.9
C14—C15—C15A110.2 (4)C25A—C25—C24109.3 (4)
C14—C15—H15A109.6C25A—C25—H25A109.8
C15A—C15—H15A109.6C24—C25—H25A109.8
C14—C15—H15B109.6C25A—C25—H25B109.8
C15A—C15—H15B109.6C24—C25—H25B109.8
H15A—C15—H15B108.1H25A—C25—H25B108.3
C19A—C15A—C16118.2 (4)C26—C25A—C29A117.6 (4)
C19A—C15A—C15119.4 (4)C26—C25A—C25122.3 (4)
C16—C15A—C15122.4 (4)C29A—C25A—C25120.1 (4)
C17—C16—C15A120.2 (5)C27—C26—C25A121.5 (5)
C17—C16—H16119.9C27—C26—H26119.2
C15A—C16—H16119.9C25A—C26—H26119.2
C18—C17—C16120.8 (4)C26—C27—C28119.6 (4)
C18—C17—H17119.6C26—C27—H27120.2
C16—C17—H17119.6C28—C27—H27120.2
C17—C18—C19119.9 (5)C29—C28—C27120.3 (4)
C17—C18—H18120.1C29—C28—H28119.8
C19—C18—H18120.1C27—C28—H28119.8
C18—C19—C19A119.2 (4)C28—C29—C29A119.5 (4)
C18—C19—H19120.4C28—C29—H29120.3
C19A—C19—H19120.4C29A—C29—H29120.3
C15A—C19A—C19121.5 (4)C29—C29A—C25A121.3 (4)
C15A—C19A—N11120.9 (4)C29—C29A—N21117.6 (4)
C19—C19A—N11117.5 (4)C25A—C29A—N21121.1 (4)
N11—O114—C14104.0 (3)C24—O214—N21103.7 (3)
C122—C121—C126118.4 (4)C226—C221—C222119.2 (4)
C122—C121—C12119.5 (4)C226—C221—C22121.9 (4)
C126—C121—C12122.1 (4)C222—C221—C22118.9 (4)
C123—C122—C121121.0 (4)C221—C222—C223120.5 (4)
C123—C122—H122119.5C221—C222—H222119.7
C121—C122—H122119.5C223—C222—H222119.7
C122—C123—C124119.5 (4)C224—C223—C222120.2 (4)
C122—C123—H123120.3C224—C223—H223119.9
C124—C123—H123120.3C222—C223—H223119.9
C125—C124—C123120.4 (4)C225—C224—C223119.5 (4)
C125—C124—H124119.8C225—C224—H224120.3
C123—C124—H124119.8C223—C224—H224120.3
C124—C125—C126120.0 (4)C224—C225—C226120.0 (4)
C124—C125—H125120.0C224—C225—H225120.0
C126—C125—H125120.0C226—C225—H225120.0
C125—C126—C121120.7 (4)C221—C226—C225120.6 (4)
C125—C126—H126119.7C221—C226—H226119.7
C121—C126—H126119.7C225—C226—H226119.7
O114—N11—C12—C12180.8 (4)C29A—N21—C22—C221164.8 (3)
C19A—N11—C12—C121163.9 (3)O214—N21—C22—C22180.9 (4)
O114—N11—C12—C1341.4 (4)C29A—N21—C22—C2373.3 (4)
C19A—N11—C12—C1373.8 (4)O214—N21—C22—C2341.0 (4)
N11—C12—C13—C1417.1 (4)N21—C22—C23—C2417.4 (4)
C121—C12—C13—C14103.5 (4)C221—C22—C23—C24103.2 (4)
C12—C13—C14—O11413.0 (4)C22—C23—C24—O21412.8 (4)
C12—C13—C14—C15102.0 (4)C22—C23—C24—C25102.1 (4)
O114—C14—C15—C15A46.5 (5)O214—C24—C25—C25A49.2 (5)
C13—C14—C15—C15A66.9 (5)C23—C24—C25—C25A64.5 (5)
C14—C15—C15A—C19A4.7 (5)C24—C25—C25A—C26171.2 (4)
C14—C15—C15A—C16175.2 (4)C24—C25—C25A—C29A7.1 (6)
C19A—C15A—C16—C174.0 (7)C29A—C25A—C26—C273.7 (6)
C15—C15A—C16—C17175.9 (4)C25—C25A—C26—C27174.6 (4)
C15A—C16—C17—C180.1 (7)C25A—C26—C27—C280.3 (7)
C16—C17—C18—C192.2 (7)C26—C27—C28—C292.4 (7)
C17—C18—C19—C19A0.7 (7)C27—C28—C29—C29A1.4 (6)
C16—C15A—C19A—C195.6 (6)C28—C29—C29A—C25A2.2 (6)
C15—C15A—C19A—C19174.3 (4)C28—C29—C29A—N21178.2 (4)
C16—C15A—C19A—N11173.0 (4)C26—C25A—C29A—C294.7 (6)
C15—C15A—C19A—N117.1 (6)C25—C25A—C29A—C29173.7 (4)
C18—C19—C19A—C15A3.3 (6)C26—C25A—C29A—N21175.7 (4)
C18—C19—C19A—N11175.4 (4)C25—C25A—C29A—N215.9 (6)
O114—N11—C19A—C15A24.1 (5)O214—N21—C29A—C29157.0 (3)
C12—N11—C19A—C15A87.0 (5)C22—N21—C29A—C2993.1 (4)
O114—N11—C19A—C19154.6 (3)O214—N21—C29A—C25A23.4 (5)
C12—N11—C19A—C1994.3 (4)C22—N21—C29A—C25A86.5 (5)
C19A—N11—O114—C1466.7 (3)C25—C24—O214—N2181.4 (4)
C12—N11—O114—C1451.8 (3)C23—C24—O214—N2139.1 (4)
C15—C14—O114—N1180.3 (4)C29A—N21—O214—C2466.1 (4)
C13—C14—O114—N1139.9 (4)C22—N21—O214—C2450.8 (3)
N11—C12—C121—C122179.6 (4)N21—C22—C221—C2262.0 (6)
C13—C12—C121—C12264.3 (5)C23—C22—C221—C226114.3 (5)
N11—C12—C121—C1261.2 (5)N21—C22—C221—C222177.4 (4)
C13—C12—C121—C126117.3 (4)C23—C22—C221—C22266.3 (5)
C126—C121—C122—C1230.8 (6)C226—C221—C222—C2230.3 (6)
C12—C121—C122—C123177.8 (4)C22—C221—C222—C223179.6 (4)
C121—C122—C123—C1241.3 (6)C221—C222—C223—C2240.9 (7)
C122—C123—C124—C1250.6 (7)C222—C223—C224—C2250.7 (7)
C123—C124—C125—C1260.7 (7)C223—C224—C225—C2260.8 (7)
C124—C125—C126—C1211.3 (6)C222—C221—C226—C2251.7 (6)
C122—C121—C126—C1250.6 (6)C22—C221—C226—C225178.9 (4)
C12—C121—C126—C125179.0 (4)C224—C225—C226—C2212.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C122—H122···Cg1i0.952.583.469 (5)156
C222—H222···Cg2ii0.952.713.610 (5)158
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z.
(II) 2-exo-(4-chlorophenyl)-2,3,4,5-tetrahydro-1H- 1,4-epoxy-1-benzazepine top
Crystal data top
C16H14ClNOF(000) = 1136
Mr = 271.73Dx = 1.409 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5872 reflections
a = 8.2405 (14) Åθ = 2.9–27.5°
b = 11.5432 (16) ŵ = 0.29 mm1
c = 27.442 (2) ÅT = 120 K
β = 101.030 (13)°Plate, colourless
V = 2562.1 (6) Å30.46 × 0.26 × 0.10 mm
Z = 8
Data collection top
Bruker-Nonius KappaCCD
diffractometer
4745 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.9°
ϕ & ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.889, Tmax = 0.972l = 3333
33797 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.7145P]
where P = (Fo2 + 2Fc2)/3
4745 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H14ClNOV = 2562.1 (6) Å3
Mr = 271.73Z = 8
Monoclinic, P21/nMo Kα radiation
a = 8.2405 (14) ŵ = 0.29 mm1
b = 11.5432 (16) ÅT = 120 K
c = 27.442 (2) Å0.46 × 0.26 × 0.10 mm
β = 101.030 (13)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
4745 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2978 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.972Rint = 0.079
33797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
4745 reflectionsΔρmin = 0.26 e Å3
343 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.2494 (3)0.70287 (18)0.59772 (8)0.0216 (5)
C120.3759 (3)0.6277 (2)0.57911 (9)0.0236 (7)
H120.48780.66340.58940.028*
C130.3675 (3)0.5162 (2)0.60967 (10)0.0257 (7)
H13A0.46390.51110.63730.031*
H13B0.36600.44670.58840.031*
C140.2029 (3)0.5258 (2)0.63003 (10)0.0262 (7)
H140.13660.45300.62290.031*
C150.2153 (4)0.5608 (2)0.68353 (10)0.0306 (7)
H15A0.10450.56090.69250.037*
H15B0.28710.50620.70570.037*
C15A0.2875 (3)0.6796 (2)0.68854 (10)0.0265 (7)
C160.3425 (4)0.7268 (3)0.73445 (11)0.0357 (8)
H160.33200.68510.76350.043*
C170.4126 (4)0.8342 (3)0.73820 (11)0.0401 (9)
H170.45090.86660.77020.048*
C180.4295 (3)0.8975 (3)0.69640 (12)0.0375 (8)
H180.47940.97200.70000.045*
C190.3747 (3)0.8531 (2)0.65036 (11)0.0275 (7)
H190.38550.89540.62140.033*
C19A0.3035 (3)0.7454 (2)0.64698 (10)0.0213 (6)
O1140.1214 (2)0.61920 (15)0.60195 (7)0.0248 (5)
C1210.3386 (3)0.6157 (2)0.52387 (10)0.0232 (6)
C1220.3940 (3)0.7003 (3)0.49413 (10)0.0287 (7)
H1220.46100.76140.51010.034*
C1230.3564 (3)0.6991 (3)0.44350 (10)0.0292 (7)
H1230.39570.75720.42410.035*
C1240.2604 (3)0.6112 (2)0.42243 (9)0.0242 (7)
Cl140.20919 (9)0.61232 (7)0.35845 (3)0.0335 (2)
C1250.2041 (3)0.5247 (2)0.45053 (10)0.0284 (7)
H1250.13810.46330.43440.034*
C1260.2436 (3)0.5281 (2)0.50131 (10)0.0266 (7)
H1260.20470.46950.52050.032*
N210.2571 (3)0.14072 (18)0.39458 (8)0.0220 (5)
C220.1153 (3)0.1435 (2)0.42322 (9)0.0215 (6)
H220.04020.20930.41050.026*
C230.0233 (3)0.0300 (2)0.40910 (10)0.0270 (7)
H23A0.08750.04420.38860.032*
H23B0.01100.01470.43900.032*
C240.1377 (4)0.0348 (3)0.37870 (11)0.0329 (7)
H240.14450.11900.38750.039*
C250.0993 (4)0.0196 (3)0.32351 (11)0.0405 (8)
H25A0.01890.03710.31100.049*
H25B0.16600.07490.30800.049*
C25A0.1359 (3)0.1021 (3)0.30895 (10)0.0295 (7)
C260.0981 (4)0.1426 (3)0.26116 (11)0.0374 (8)
H260.05050.09090.23540.045*
C270.1268 (4)0.2555 (3)0.24918 (11)0.0376 (8)
H270.09920.28040.21560.045*
C280.1938 (3)0.3309 (3)0.28487 (10)0.0327 (7)
H280.21170.40950.27710.039*
C290.2353 (3)0.2915 (2)0.33250 (10)0.0260 (7)
H290.28390.34320.35810.031*
C29A0.2079 (3)0.1780 (2)0.34421 (9)0.0223 (7)
O2140.2948 (2)0.01854 (16)0.39317 (7)0.0305 (5)
C2210.1646 (3)0.1548 (2)0.47796 (9)0.0204 (6)
C2220.0808 (3)0.2300 (2)0.50528 (10)0.0233 (6)
H2220.00920.27400.48780.028*
C2230.1227 (3)0.2425 (2)0.55562 (10)0.0256 (7)
H2230.06370.29290.57340.031*
C2240.2515 (3)0.1799 (2)0.57845 (9)0.0243 (7)
Cl240.30581 (10)0.19796 (7)0.64167 (3)0.0369 (2)
C2250.3350 (3)0.1026 (2)0.55234 (10)0.0260 (7)
H2250.42440.05830.57000.031*
C2260.2910 (3)0.0899 (2)0.50248 (10)0.0235 (7)
H2260.34750.03680.48520.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0169 (12)0.0212 (13)0.0250 (12)0.0038 (10)0.0001 (9)0.0012 (11)
C120.0150 (14)0.0292 (17)0.0241 (15)0.0001 (12)0.0025 (11)0.0004 (13)
C130.0257 (16)0.0243 (16)0.0247 (15)0.0042 (13)0.0008 (12)0.0024 (13)
C140.0228 (16)0.0161 (15)0.0378 (17)0.0020 (12)0.0011 (13)0.0064 (14)
C150.0261 (16)0.0315 (18)0.0346 (17)0.0040 (14)0.0073 (13)0.0112 (15)
C15A0.0217 (16)0.0311 (18)0.0258 (16)0.0098 (13)0.0020 (12)0.0026 (14)
C160.0332 (18)0.047 (2)0.0244 (17)0.0182 (16)0.0001 (13)0.0008 (16)
C170.0362 (19)0.048 (2)0.0303 (18)0.0146 (16)0.0079 (14)0.0162 (17)
C180.0285 (17)0.0321 (18)0.047 (2)0.0029 (14)0.0038 (15)0.0167 (17)
C190.0218 (16)0.0246 (17)0.0341 (17)0.0019 (13)0.0005 (13)0.0000 (14)
C19A0.0139 (14)0.0246 (16)0.0239 (15)0.0047 (12)0.0004 (11)0.0008 (13)
O1140.0165 (10)0.0206 (11)0.0346 (11)0.0017 (8)0.0020 (8)0.0026 (9)
C1210.0167 (14)0.0278 (16)0.0244 (15)0.0004 (13)0.0020 (11)0.0020 (14)
C1220.0233 (16)0.0339 (18)0.0272 (16)0.0100 (14)0.0005 (12)0.0012 (15)
C1230.0255 (16)0.0355 (18)0.0260 (16)0.0101 (14)0.0034 (12)0.0063 (15)
C1240.0175 (15)0.0324 (17)0.0212 (14)0.0018 (13)0.0002 (11)0.0034 (14)
Cl140.0311 (4)0.0441 (5)0.0230 (4)0.0017 (4)0.0005 (3)0.0013 (4)
C1250.0268 (16)0.0252 (16)0.0300 (17)0.0021 (13)0.0024 (13)0.0023 (14)
C1260.0272 (16)0.0229 (16)0.0281 (16)0.0029 (13)0.0011 (13)0.0019 (14)
N210.0183 (12)0.0216 (13)0.0249 (12)0.0030 (10)0.0010 (9)0.0012 (11)
C220.0188 (15)0.0198 (15)0.0248 (15)0.0006 (12)0.0015 (11)0.0020 (12)
C230.0231 (16)0.0261 (16)0.0291 (16)0.0056 (13)0.0015 (12)0.0009 (14)
C240.0347 (18)0.0219 (16)0.0415 (19)0.0040 (14)0.0056 (14)0.0053 (15)
C250.049 (2)0.0351 (19)0.0372 (19)0.0096 (16)0.0072 (15)0.0140 (16)
C25A0.0234 (16)0.0377 (19)0.0268 (16)0.0014 (14)0.0030 (12)0.0064 (15)
C260.0286 (18)0.055 (2)0.0266 (17)0.0059 (16)0.0013 (13)0.0163 (17)
C270.0300 (18)0.057 (2)0.0232 (16)0.0072 (16)0.0023 (13)0.0014 (17)
C280.0307 (18)0.0388 (19)0.0274 (17)0.0043 (14)0.0026 (13)0.0067 (15)
C290.0229 (16)0.0294 (17)0.0245 (15)0.0011 (13)0.0014 (12)0.0009 (14)
C29A0.0139 (14)0.0306 (18)0.0209 (14)0.0027 (12)0.0005 (11)0.0028 (13)
O2140.0259 (11)0.0237 (11)0.0405 (12)0.0070 (9)0.0029 (9)0.0015 (10)
C2210.0161 (14)0.0196 (14)0.0245 (15)0.0041 (12)0.0014 (11)0.0023 (13)
C2220.0199 (15)0.0187 (15)0.0294 (16)0.0010 (12)0.0001 (12)0.0014 (13)
C2230.0283 (17)0.0217 (16)0.0269 (16)0.0012 (13)0.0054 (13)0.0009 (13)
C2240.0258 (16)0.0257 (16)0.0197 (14)0.0094 (13)0.0002 (12)0.0020 (13)
Cl240.0440 (5)0.0410 (5)0.0225 (4)0.0053 (4)0.0018 (3)0.0018 (4)
C2250.0206 (15)0.0255 (16)0.0296 (16)0.0052 (13)0.0010 (12)0.0071 (14)
C2260.0210 (15)0.0239 (16)0.0257 (15)0.0006 (13)0.0046 (12)0.0056 (13)
Geometric parameters (Å, º) top
N11—C19A1.427 (3)N21—C29A1.430 (3)
N11—O1141.451 (3)N21—O2141.446 (3)
N11—C121.518 (3)N21—C221.528 (3)
C12—C1211.494 (4)C22—C2211.485 (3)
C12—C131.545 (4)C22—C231.527 (4)
C12—H121.0000C22—H221.0000
C13—C141.567 (4)C23—C241.563 (4)
C13—H13A0.9900C23—H23A0.9900
C13—H13B0.9900C23—H23B0.9900
C14—O1141.418 (3)C24—O2141.420 (3)
C14—C151.508 (4)C24—C251.497 (4)
C14—H141.0000C24—H241.0000
C15—C15A1.490 (4)C25—C25A1.506 (4)
C15—H15A0.9900C25—H25A0.9900
C15—H15B0.9900C25—H25B0.9900
C15A—C161.368 (4)C25A—C29A1.355 (4)
C15A—C19A1.398 (4)C25A—C261.371 (4)
C16—C171.363 (4)C26—C271.375 (4)
C16—H160.9500C26—H260.9500
C17—C181.389 (4)C27—C281.347 (4)
C17—H170.9500C27—H270.9500
C18—C191.358 (4)C28—C291.364 (4)
C18—H180.9500C28—H280.9500
C19—C19A1.370 (4)C29—C29A1.378 (4)
C19—H190.9500C29—H290.9500
C121—C1261.354 (4)C221—C2261.353 (3)
C121—C1221.404 (4)C221—C2221.411 (4)
C122—C1231.365 (4)C222—C2231.366 (4)
C122—H1220.9500C222—H2220.9500
C123—C1241.347 (4)C223—C2241.337 (4)
C123—H1230.9500C223—H2230.9500
C124—C1251.394 (4)C224—C2251.404 (4)
C124—Cl141.726 (3)C224—Cl241.719 (3)
C125—C1261.370 (4)C225—C2261.355 (4)
C125—H1250.9500C225—H2250.9500
C126—H1260.9500C226—H2260.9500
C19A—N11—O114104.68 (19)C29A—N21—O214106.86 (19)
C19A—N11—C12113.91 (19)C29A—N21—C22112.81 (19)
O114—N11—C12101.70 (18)O214—N21—C22102.92 (18)
C121—C12—N11111.9 (2)C221—C22—C23111.0 (2)
C121—C12—C13116.8 (2)C221—C22—N21115.7 (2)
N11—C12—C13100.9 (2)C23—C22—N21104.0 (2)
C121—C12—H12108.9C221—C22—H22108.6
N11—C12—H12108.9C23—C22—H22108.6
C13—C12—H12108.9N21—C22—H22108.6
C12—C13—C14105.4 (2)C22—C23—C24103.0 (2)
C12—C13—H13A110.7C22—C23—H23A111.2
C14—C13—H13A110.7C24—C23—H23A111.2
C12—C13—H13B110.7C22—C23—H23B111.2
C14—C13—H13B110.7C24—C23—H23B111.2
H13A—C13—H13B108.8H23A—C23—H23B109.1
O114—C14—C15105.2 (2)O214—C24—C25103.7 (2)
O114—C14—C13102.3 (2)O214—C24—C23104.7 (2)
C15—C14—C13117.7 (2)C25—C24—C23116.8 (3)
O114—C14—H14110.4O214—C24—H24110.4
C15—C14—H14110.4C25—C24—H24110.4
C13—C14—H14110.4C23—C24—H24110.4
C15A—C15—C14106.8 (2)C24—C25—C25A111.3 (2)
C15A—C15—H15A110.4C24—C25—H25A109.4
C14—C15—H15A110.4C25A—C25—H25A109.4
C15A—C15—H15B110.4C24—C25—H25B109.4
C14—C15—H15B110.4C25A—C25—H25B109.4
H15A—C15—H15B108.6H25A—C25—H25B108.0
C16—C15A—C19A117.9 (3)C29A—C25A—C26116.8 (3)
C16—C15A—C15120.5 (3)C29A—C25A—C25119.7 (3)
C19A—C15A—C15121.6 (2)C26—C25A—C25123.5 (3)
C17—C16—C15A119.6 (3)C25A—C26—C27122.3 (3)
C17—C16—H16120.2C25A—C26—H26118.9
C15A—C16—H16120.2C27—C26—H26118.9
C16—C17—C18121.6 (3)C28—C27—C26120.2 (3)
C16—C17—H17119.2C28—C27—H27119.9
C18—C17—H17119.2C26—C27—H27119.9
C19—C18—C17120.2 (3)C27—C28—C29118.3 (3)
C19—C18—H18119.9C27—C28—H28120.9
C17—C18—H18119.9C29—C28—H28120.9
C18—C19—C19A117.8 (3)C28—C29—C29A121.2 (3)
C18—C19—H19121.1C28—C29—H29119.4
C19A—C19—H19121.1C29A—C29—H29119.4
C19—C19A—C15A123.0 (3)C25A—C29A—C29121.1 (3)
C19—C19A—N11115.4 (2)C25A—C29A—N21120.0 (3)
C15A—C19A—N11121.6 (2)C29—C29A—N21118.9 (2)
C14—O114—N11105.90 (18)C24—O214—N21103.96 (18)
C126—C121—C122118.5 (2)C226—C221—C222119.0 (2)
C126—C121—C12121.5 (3)C226—C221—C22119.4 (2)
C122—C121—C12119.9 (2)C222—C221—C22121.6 (2)
C123—C122—C121123.3 (3)C223—C222—C221123.2 (3)
C123—C122—H122118.3C223—C222—H222118.4
C121—C122—H122118.3C221—C222—H222118.4
C124—C123—C122116.4 (3)C224—C223—C222116.2 (3)
C124—C123—H123121.8C224—C223—H223121.9
C122—C123—H123121.8C222—C223—H223121.9
C123—C124—C125122.2 (2)C223—C224—C225121.8 (2)
C123—C124—Cl14116.1 (2)C223—C224—Cl24115.9 (2)
C125—C124—Cl14121.7 (2)C225—C224—Cl24122.2 (2)
C126—C125—C124120.2 (3)C226—C225—C224121.4 (3)
C126—C125—H125119.9C226—C225—H225119.3
C124—C125—H125119.9C224—C225—H225119.3
C121—C126—C125119.4 (3)C221—C226—C225118.3 (3)
C121—C126—H126120.3C221—C226—H226120.8
C125—C126—H126120.3C225—C226—H226120.8
C19A—N11—C12—C121162.3 (2)C29A—N21—C22—C221155.4 (2)
O114—N11—C12—C12185.7 (2)O214—N21—C22—C22189.8 (2)
C19A—N11—C12—C1372.8 (2)C29A—N21—C22—C2382.5 (2)
O114—N11—C12—C1339.2 (2)O214—N21—C22—C2332.3 (2)
C121—C12—C13—C14105.1 (3)C221—C22—C23—C24117.8 (2)
N11—C12—C13—C1416.4 (2)N21—C22—C23—C247.3 (2)
C12—C13—C14—O11412.5 (3)C22—C23—C24—O21420.5 (3)
C12—C13—C14—C15102.1 (3)C22—C23—C24—C2593.5 (3)
O114—C14—C15—C15A50.7 (3)O214—C24—C25—C25A45.5 (3)
C13—C14—C15—C15A62.3 (3)C23—C24—C25—C25A69.1 (3)
C14—C15—C15A—C16167.8 (2)C24—C25—C25A—C29A5.2 (4)
C14—C15—C15A—C19A11.3 (3)C24—C25—C25A—C26173.9 (3)
C19A—C15A—C16—C171.1 (4)C29A—C25A—C26—C271.9 (4)
C15—C15A—C16—C17178.1 (3)C25—C25A—C26—C27177.3 (3)
C15A—C16—C17—C180.2 (4)C25A—C26—C27—C280.1 (5)
C16—C17—C18—C190.4 (5)C26—C27—C28—C291.4 (5)
C17—C18—C19—C19A0.0 (4)C27—C28—C29—C29A0.7 (4)
C18—C19—C19A—C15A1.0 (4)C26—C25A—C29A—C292.5 (4)
C18—C19—C19A—N11179.6 (2)C25—C25A—C29A—C29176.6 (3)
C16—C15A—C19A—C191.5 (4)C26—C25A—C29A—N21177.4 (2)
C15—C15A—C19A—C19177.6 (3)C25—C25A—C29A—N213.4 (4)
C16—C15A—C19A—N11180.0 (2)C28—C29—C29A—C25A1.3 (4)
C15—C15A—C19A—N110.9 (4)C28—C29—C29A—N21178.7 (2)
O114—N11—C19A—C19156.0 (2)O214—N21—C29A—C25A28.6 (3)
C12—N11—C19A—C1993.8 (3)C22—N21—C29A—C25A83.8 (3)
O114—N11—C19A—C15A25.5 (3)O214—N21—C29A—C29151.4 (2)
C12—N11—C19A—C15A84.8 (3)C22—N21—C29A—C2996.2 (3)
C15—C14—O114—N1184.6 (2)C25—C24—O214—N2180.9 (2)
C13—C14—O114—N1138.9 (2)C23—C24—O214—N2142.1 (3)
C19A—N11—O114—C1467.8 (2)C29A—N21—O214—C2472.2 (2)
C12—N11—O114—C1451.1 (2)C22—N21—O214—C2446.9 (2)
N11—C12—C121—C12690.9 (3)C23—C22—C221—C22673.8 (3)
C13—C12—C121—C12624.7 (4)N21—C22—C221—C22644.4 (3)
N11—C12—C121—C12285.2 (3)C23—C22—C221—C222105.0 (3)
C13—C12—C121—C122159.3 (2)N21—C22—C221—C222136.8 (2)
C126—C121—C122—C1230.3 (4)C226—C221—C222—C2231.2 (4)
C12—C121—C122—C123175.9 (3)C22—C221—C222—C223180.0 (3)
C121—C122—C123—C1240.3 (4)C221—C222—C223—C2240.9 (4)
C122—C123—C124—C1251.0 (4)C222—C223—C224—C2252.1 (4)
C122—C123—C124—Cl14178.5 (2)C222—C223—C224—Cl24178.9 (2)
C123—C124—C125—C1261.1 (4)C223—C224—C225—C2261.4 (4)
Cl14—C124—C125—C126178.3 (2)Cl24—C224—C225—C226179.7 (2)
C122—C121—C126—C1250.2 (4)C222—C221—C226—C2251.9 (4)
C12—C121—C126—C125175.9 (3)C22—C221—C226—C225179.2 (2)
C124—C125—C126—C1210.4 (4)C224—C225—C226—C2210.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O114i1.002.373.357 (3)168
C22—H22···N11i1.002.563.442 (3)147
C125—H125···O114i0.952.383.248 (3)152
C225—H225···O214ii0.952.503.428 (3)164
C23—H23B···Cg3iii0.992.783.596 (3)140
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1.
(III) 2-exo-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-1,4- epoxy-1-benzazepine top
Crystal data top
C17H17NOF(000) = 1072
Mr = 251.32Dx = 1.297 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5901 reflections
a = 10.9966 (17) Åθ = 2.6–27.5°
b = 23.691 (10) ŵ = 0.08 mm1
c = 10.6323 (8) ÅT = 120 K
β = 111.661 (8)°Block, colourless
V = 2574.3 (12) Å30.48 × 0.30 × 0.14 mm
Z = 8
Data collection top
Bruker-Nonius KappaCCD
diffractometer
4790 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.6°
ϕ & ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2828
Tmin = 0.965, Tmax = 0.989l = 1212
30931 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0254P)2 + 2.2514P]
where P = (Fo2 + 2Fc2)/3
4790 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C17H17NOV = 2574.3 (12) Å3
Mr = 251.32Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.9966 (17) ŵ = 0.08 mm1
b = 23.691 (10) ÅT = 120 K
c = 10.6323 (8) Å0.48 × 0.30 × 0.14 mm
β = 111.661 (8)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
4790 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3352 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.989Rint = 0.075
30931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
4790 reflectionsΔρmin = 0.31 e Å3
345 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.81171 (17)0.21064 (8)0.73917 (18)0.0197 (4)
C120.7860 (2)0.24867 (9)0.6223 (2)0.0179 (5)
H120.84330.23750.57210.022*
C130.6415 (2)0.23634 (10)0.5326 (2)0.0224 (5)
H13A0.59180.27180.50140.027*
H13B0.63550.21330.45280.027*
C140.5914 (2)0.20392 (10)0.6267 (2)0.0221 (5)
H140.50440.21890.62080.027*
C150.5856 (2)0.14082 (10)0.6071 (2)0.0239 (5)
H15A0.54480.12320.66620.029*
H15B0.53130.13170.51200.029*
C15A0.7214 (2)0.11779 (10)0.6410 (2)0.0205 (5)
C160.7457 (2)0.06293 (10)0.6132 (2)0.0235 (5)
H160.67390.03830.57110.028*
C170.8714 (2)0.04290 (10)0.6446 (2)0.0253 (6)
H170.88580.00500.62480.030*
C180.9761 (2)0.07880 (10)0.7055 (2)0.0242 (6)
H181.06290.06560.72640.029*
C190.9548 (2)0.13349 (10)0.7359 (2)0.0207 (5)
H191.02690.15790.77850.025*
C19A0.8285 (2)0.15291 (9)0.7044 (2)0.0188 (5)
O1140.69003 (15)0.21449 (7)0.76042 (15)0.0240 (4)
C1210.8129 (2)0.30962 (10)0.6659 (2)0.0182 (5)
C1220.7903 (2)0.35101 (10)0.5679 (2)0.0211 (5)
H1220.75480.34050.47520.025*
C1230.8179 (2)0.40730 (10)0.6011 (2)0.0232 (5)
C1240.8667 (2)0.42208 (10)0.7368 (2)0.0251 (6)
H1240.88440.46060.76190.030*
C1250.8898 (2)0.38150 (10)0.8355 (2)0.0250 (6)
H1250.92360.39220.92810.030*
C1260.8642 (2)0.32529 (10)0.8008 (2)0.0229 (5)
H1260.88190.29740.86950.027*
C1270.7991 (3)0.45081 (11)0.4928 (3)0.0321 (6)
H12A0.83920.43750.42980.048*
H12B0.84040.48630.53430.048*
H12C0.70530.45700.44350.048*
N210.30859 (17)0.28295 (8)0.60314 (18)0.0201 (4)
C220.2739 (2)0.24751 (10)0.7003 (2)0.0197 (5)
H220.33150.25780.79480.024*
C230.1305 (2)0.26429 (10)0.6764 (2)0.0241 (6)
H23A0.07190.23100.65060.029*
H23B0.12420.28170.75850.029*
C240.0965 (2)0.30647 (10)0.5615 (2)0.0215 (5)
H240.00340.30140.49920.026*
C250.1210 (2)0.36732 (10)0.6061 (2)0.0237 (5)
H25A0.07770.39240.52790.028*
H25B0.08300.37510.67550.028*
C25A0.2654 (2)0.37945 (10)0.6635 (2)0.0201 (5)
C260.3140 (2)0.43159 (10)0.7172 (2)0.0228 (5)
H260.25500.46040.71990.027*
C270.4465 (2)0.44255 (10)0.7669 (2)0.0246 (6)
H270.47830.47850.80420.030*
C280.5324 (2)0.40104 (10)0.7621 (2)0.0247 (6)
H280.62370.40850.79570.030*
C290.4862 (2)0.34877 (10)0.7087 (2)0.0231 (5)
H290.54560.32020.70550.028*
C29A0.3535 (2)0.33808 (9)0.6599 (2)0.0188 (5)
O2140.18323 (14)0.29124 (7)0.49351 (14)0.0211 (4)
C2210.2867 (2)0.18544 (10)0.6790 (2)0.0204 (5)
C2220.3379 (2)0.14974 (10)0.7889 (2)0.0219 (5)
H2220.36990.16540.87740.026*
C2230.3441 (2)0.09165 (10)0.7742 (2)0.0232 (5)
C2240.2974 (2)0.06926 (10)0.6450 (2)0.0242 (6)
H2240.29970.02960.63260.029*
C2250.2474 (2)0.10442 (10)0.5339 (2)0.0281 (6)
H2250.21650.08870.44540.034*
C2260.2420 (2)0.16175 (10)0.5499 (2)0.0266 (6)
H2260.20760.18540.47260.032*
C2270.4015 (3)0.05477 (11)0.8967 (3)0.0351 (7)
H22A0.38990.01500.86920.053*
H22B0.35700.06220.95970.053*
H22C0.49500.06300.94130.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0175 (10)0.0233 (11)0.0204 (10)0.0016 (8)0.0092 (8)0.0008 (9)
C120.0148 (11)0.0231 (13)0.0163 (11)0.0008 (10)0.0062 (9)0.0004 (10)
C130.0167 (12)0.0250 (13)0.0218 (12)0.0011 (10)0.0027 (10)0.0009 (10)
C140.0133 (12)0.0282 (14)0.0245 (13)0.0005 (10)0.0067 (10)0.0025 (11)
C150.0194 (12)0.0273 (14)0.0259 (13)0.0024 (10)0.0096 (10)0.0006 (11)
C15A0.0213 (13)0.0215 (13)0.0195 (12)0.0006 (10)0.0086 (10)0.0031 (10)
C160.0218 (13)0.0228 (13)0.0243 (13)0.0060 (10)0.0067 (10)0.0005 (11)
C170.0282 (14)0.0210 (13)0.0279 (13)0.0009 (11)0.0119 (11)0.0010 (11)
C180.0208 (13)0.0265 (14)0.0257 (13)0.0037 (10)0.0092 (10)0.0044 (11)
C190.0190 (12)0.0234 (14)0.0178 (12)0.0013 (10)0.0046 (10)0.0028 (10)
C19A0.0213 (12)0.0191 (13)0.0165 (12)0.0003 (10)0.0075 (10)0.0018 (10)
O1140.0241 (9)0.0296 (10)0.0223 (9)0.0002 (7)0.0132 (7)0.0025 (7)
C1210.0118 (11)0.0233 (13)0.0209 (12)0.0004 (9)0.0077 (9)0.0014 (10)
C1220.0168 (12)0.0259 (14)0.0199 (12)0.0017 (10)0.0061 (10)0.0002 (10)
C1230.0175 (12)0.0240 (14)0.0296 (14)0.0021 (10)0.0105 (10)0.0001 (11)
C1240.0204 (13)0.0208 (13)0.0354 (15)0.0019 (10)0.0117 (11)0.0074 (11)
C1250.0219 (13)0.0295 (14)0.0225 (13)0.0023 (11)0.0070 (10)0.0064 (11)
C1260.0222 (13)0.0244 (13)0.0212 (13)0.0008 (10)0.0071 (10)0.0015 (10)
C1270.0344 (15)0.0280 (15)0.0352 (15)0.0021 (12)0.0146 (12)0.0045 (12)
N210.0156 (10)0.0234 (11)0.0180 (10)0.0017 (8)0.0022 (8)0.0023 (8)
C220.0169 (12)0.0252 (13)0.0158 (12)0.0016 (10)0.0045 (10)0.0013 (10)
C230.0232 (13)0.0269 (14)0.0240 (13)0.0005 (11)0.0106 (11)0.0004 (11)
C240.0128 (11)0.0288 (14)0.0231 (13)0.0015 (10)0.0069 (10)0.0002 (10)
C250.0151 (12)0.0266 (14)0.0278 (13)0.0039 (10)0.0062 (10)0.0001 (11)
C25A0.0183 (12)0.0236 (13)0.0189 (12)0.0000 (10)0.0076 (10)0.0018 (10)
C260.0251 (13)0.0223 (13)0.0233 (13)0.0045 (10)0.0119 (10)0.0034 (11)
C270.0288 (14)0.0248 (14)0.0198 (13)0.0073 (11)0.0085 (10)0.0029 (10)
C280.0185 (12)0.0290 (14)0.0261 (13)0.0026 (11)0.0077 (10)0.0014 (11)
C290.0194 (12)0.0252 (14)0.0262 (13)0.0031 (10)0.0102 (10)0.0045 (11)
C29A0.0196 (12)0.0209 (13)0.0162 (12)0.0010 (10)0.0069 (9)0.0015 (10)
O2140.0152 (8)0.0293 (9)0.0153 (8)0.0015 (7)0.0015 (6)0.0021 (7)
C2210.0140 (12)0.0262 (13)0.0199 (12)0.0011 (10)0.0049 (9)0.0021 (10)
C2220.0183 (12)0.0286 (14)0.0191 (12)0.0001 (10)0.0073 (10)0.0009 (11)
C2230.0196 (12)0.0253 (14)0.0265 (13)0.0006 (10)0.0106 (10)0.0034 (11)
C2240.0216 (13)0.0215 (13)0.0319 (14)0.0008 (10)0.0127 (11)0.0005 (11)
C2250.0289 (14)0.0300 (15)0.0229 (13)0.0028 (11)0.0067 (11)0.0032 (11)
C2260.0272 (13)0.0276 (15)0.0209 (13)0.0001 (11)0.0041 (10)0.0023 (11)
C2270.0449 (17)0.0304 (15)0.0323 (15)0.0082 (13)0.0168 (13)0.0061 (12)
Geometric parameters (Å, º) top
N11—O1141.440 (2)N21—C29A1.447 (3)
N11—C19A1.446 (3)N21—O2141.453 (2)
N11—C121.475 (3)N21—C221.487 (3)
C12—C1211.512 (3)C22—C2211.502 (3)
C12—C131.550 (3)C22—C231.553 (3)
C12—H121.0000C22—H221.0000
C13—C141.517 (3)C23—C241.514 (3)
C13—H13A0.9900C23—H23A0.9900
C13—H13B0.9900C23—H23B0.9900
C14—O1141.456 (3)C24—O2141.440 (3)
C14—C151.508 (3)C24—C251.510 (3)
C14—H141.0000C24—H241.0000
C15—C15A1.504 (3)C25—C25A1.504 (3)
C15—H15A0.9900C25—H25A0.9900
C15—H15B0.9900C25—H25B0.9900
C15A—C161.381 (3)C25A—C261.383 (3)
C15A—C19A1.395 (3)C25A—C29A1.388 (3)
C16—C171.380 (3)C26—C271.378 (3)
C16—H160.9500C26—H260.9500
C17—C181.385 (3)C27—C281.378 (3)
C17—H170.9500C27—H270.9500
C18—C191.376 (3)C28—C291.379 (3)
C18—H180.9500C28—H280.9500
C19—C19A1.382 (3)C29—C29A1.380 (3)
C19—H190.9500C29—H290.9500
C121—C1261.384 (3)C221—C2221.383 (3)
C121—C1221.385 (3)C221—C2261.394 (3)
C122—C1231.384 (3)C222—C2231.390 (3)
C122—H1220.9500C222—H2220.9500
C123—C1241.386 (3)C223—C2241.382 (3)
C123—C1271.502 (3)C223—C2271.501 (3)
C124—C1251.376 (3)C224—C2251.383 (3)
C124—H1240.9500C224—H2240.9500
C125—C1261.383 (3)C225—C2261.373 (3)
C125—H1250.9500C225—H2250.9500
C126—H1260.9500C226—H2260.9500
C127—H12A0.9800C227—H22A0.9800
C127—H12B0.9800C227—H22B0.9800
C127—H12C0.9800C227—H22C0.9800
O114—N11—C19A108.27 (16)C29A—N21—O214106.81 (16)
O114—N11—C12101.15 (16)C29A—N21—C22110.82 (17)
C19A—N11—C12111.43 (17)O214—N21—C22102.88 (15)
N11—C12—C121111.72 (18)N21—C22—C221112.66 (18)
N11—C12—C13103.73 (17)N21—C22—C23104.33 (17)
C121—C12—C13114.13 (19)C221—C22—C23111.84 (19)
N11—C12—H12109.0N21—C22—H22109.3
C121—C12—H12109.0C221—C22—H22109.3
C13—C12—H12109.0C23—C22—H22109.3
C14—C13—C12103.23 (17)C24—C23—C22103.56 (18)
C14—C13—H13A111.1C24—C23—H23A111.0
C12—C13—H13A111.1C22—C23—H23A111.0
C14—C13—H13B111.1C24—C23—H23B111.0
C12—C13—H13B111.1C22—C23—H23B111.0
H13A—C13—H13B109.1H23A—C23—H23B109.0
O114—C14—C15106.49 (18)O214—C24—C25108.78 (18)
O114—C14—C13103.66 (17)O214—C24—C23103.15 (17)
C15—C14—C13114.7 (2)C25—C24—C23114.5 (2)
O114—C14—H14110.6O214—C24—H24110.1
C15—C14—H14110.6C25—C24—H24110.1
C13—C14—H14110.6C23—C24—H24110.1
C15A—C15—C14109.81 (19)C25A—C25—C24110.44 (19)
C15A—C15—H15A109.7C25A—C25—H25A109.6
C14—C15—H15A109.7C24—C25—H25A109.6
C15A—C15—H15B109.7C25A—C25—H25B109.6
C14—C15—H15B109.7C24—C25—H25B109.6
H15A—C15—H15B108.2H25A—C25—H25B108.1
C16—C15A—C19A118.0 (2)C26—C25A—C29A118.4 (2)
C16—C15A—C15122.9 (2)C26—C25A—C25121.8 (2)
C19A—C15A—C15119.1 (2)C29A—C25A—C25119.8 (2)
C17—C16—C15A121.8 (2)C27—C26—C25A121.3 (2)
C17—C16—H16119.1C27—C26—H26119.4
C15A—C16—H16119.1C25A—C26—H26119.4
C16—C17—C18119.2 (2)C28—C27—C26119.6 (2)
C16—C17—H17120.4C28—C27—H27120.2
C18—C17—H17120.4C26—C27—H27120.2
C19—C18—C17120.3 (2)C27—C28—C29120.2 (2)
C19—C18—H18119.9C27—C28—H28119.9
C17—C18—H18119.9C29—C28—H28119.9
C18—C19—C19A120.0 (2)C28—C29—C29A119.8 (2)
C18—C19—H19120.0C28—C29—H29120.1
C19A—C19—H19120.0C29A—C29—H29120.1
C19—C19A—C15A120.8 (2)C29—C29A—C25A120.8 (2)
C19—C19A—N11117.7 (2)C29—C29A—N21118.2 (2)
C15A—C19A—N11121.5 (2)C25A—C29A—N21121.0 (2)
N11—O114—C14103.67 (15)C24—O214—N21103.84 (15)
C126—C121—C122118.8 (2)C222—C221—C226118.1 (2)
C126—C121—C12122.2 (2)C222—C221—C22120.2 (2)
C122—C121—C12119.0 (2)C226—C221—C22121.6 (2)
C123—C122—C121121.9 (2)C221—C222—C223122.1 (2)
C123—C122—H122119.0C221—C222—H222118.9
C121—C122—H122119.0C223—C222—H222118.9
C122—C123—C124118.2 (2)C224—C223—C222118.5 (2)
C122—C123—C127120.7 (2)C224—C223—C227121.5 (2)
C124—C123—C127121.0 (2)C222—C223—C227120.1 (2)
C125—C124—C123120.6 (2)C223—C224—C225120.2 (2)
C125—C124—H124119.7C223—C224—H224119.9
C123—C124—H124119.7C225—C224—H224119.9
C124—C125—C126120.5 (2)C226—C225—C224120.8 (2)
C124—C125—H125119.8C226—C225—H225119.6
C126—C125—H125119.8C224—C225—H225119.6
C125—C126—C121120.0 (2)C225—C226—C221120.3 (2)
C125—C126—H126120.0C225—C226—H226119.8
C121—C126—H126120.0C221—C226—H226119.8
C123—C127—H12A109.5C223—C227—H22A109.5
C123—C127—H12B109.5C223—C227—H22B109.5
H12A—C127—H12B109.5H22A—C227—H22B109.5
C123—C127—H12C109.5C223—C227—H22C109.5
H12A—C127—H12C109.5H22A—C227—H22C109.5
H12B—C127—H12C109.5H22B—C227—H22C109.5
O114—N11—C12—C12184.18 (19)C29A—N21—C22—C221153.64 (18)
C19A—N11—C12—C121160.95 (17)O214—N21—C22—C22192.51 (19)
O114—N11—C12—C1339.2 (2)C29A—N21—C22—C2384.8 (2)
C19A—N11—C12—C1375.7 (2)O214—N21—C22—C2329.0 (2)
N11—C12—C13—C1414.4 (2)N21—C22—C23—C242.4 (2)
C121—C12—C13—C14107.3 (2)C221—C22—C23—C24119.6 (2)
C12—C13—C14—O11415.4 (2)C22—C23—C24—O21425.2 (2)
C12—C13—C14—C15100.3 (2)C22—C23—C24—C2592.8 (2)
O114—C14—C15—C15A49.7 (2)O214—C24—C25—C25A42.2 (2)
C13—C14—C15—C15A64.3 (2)C23—C24—C25—C25A72.6 (2)
C14—C15—C15A—C16169.8 (2)C24—C25—C25A—C26177.0 (2)
C14—C15—C15A—C19A10.7 (3)C24—C25—C25A—C29A4.7 (3)
C19A—C15A—C16—C170.9 (3)C29A—C25A—C26—C270.4 (3)
C15—C15A—C16—C17179.6 (2)C25—C25A—C26—C27178.6 (2)
C15A—C16—C17—C180.2 (4)C25A—C26—C27—C280.6 (3)
C16—C17—C18—C190.9 (3)C26—C27—C28—C290.4 (3)
C17—C18—C19—C19A0.6 (3)C27—C28—C29—C29A0.0 (3)
C18—C19—C19A—C15A0.4 (3)C28—C29—C29A—C25A0.2 (3)
C18—C19—C19A—N11179.7 (2)C28—C29—C29A—N21179.2 (2)
C16—C15A—C19A—C191.2 (3)C26—C25A—C29A—C290.0 (3)
C15—C15A—C19A—C19179.3 (2)C25—C25A—C29A—C29178.2 (2)
C16—C15A—C19A—N11179.0 (2)C26—C25A—C29A—N21179.0 (2)
C15—C15A—C19A—N110.5 (3)C25—C25A—C29A—N210.8 (3)
O114—N11—C19A—C19152.61 (18)O214—N21—C29A—C29145.90 (19)
C12—N11—C19A—C1997.0 (2)C22—N21—C29A—C29102.8 (2)
O114—N11—C19A—C15A27.5 (3)O214—N21—C29A—C25A33.1 (3)
C12—N11—C19A—C15A82.8 (2)C22—N21—C29A—C25A78.2 (2)
C19A—N11—O114—C1466.59 (19)C25—C24—O214—N2177.0 (2)
C12—N11—O114—C1450.62 (19)C23—C24—O214—N2144.9 (2)
C15—C14—O114—N1180.29 (19)C29A—N21—O214—C2470.01 (19)
C13—C14—O114—N1141.0 (2)C22—N21—O214—C2446.73 (19)
N11—C12—C121—C1264.3 (3)N21—C22—C221—C222139.9 (2)
C13—C12—C121—C126121.5 (2)C23—C22—C221—C222103.0 (2)
N11—C12—C121—C122178.32 (19)N21—C22—C221—C22643.4 (3)
C13—C12—C121—C12261.0 (3)C23—C22—C221—C22673.8 (3)
C126—C121—C122—C1230.2 (3)C226—C221—C222—C2230.9 (3)
C12—C121—C122—C123177.3 (2)C22—C221—C222—C223175.9 (2)
C121—C122—C123—C1241.5 (3)C221—C222—C223—C2240.0 (4)
C121—C122—C123—C127176.7 (2)C221—C222—C223—C227179.6 (2)
C122—C123—C124—C1251.5 (3)C222—C223—C224—C2250.8 (3)
C127—C123—C124—C125176.7 (2)C227—C223—C224—C225178.7 (2)
C123—C124—C125—C1260.2 (4)C223—C224—C225—C2260.8 (4)
C124—C125—C126—C1211.1 (3)C224—C225—C226—C2210.2 (4)
C122—C121—C126—C1251.1 (3)C222—C221—C226—C2251.0 (3)
C12—C121—C126—C125178.5 (2)C22—C221—C226—C225175.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N211.002.583.559 (3)165
C122—H122···O114i0.952.493.413 (3)163
C15—H15A···Cg30.992.763.495 (3)132
C25—H25B···Cg4ii0.992.793.586 (3)138
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z.
(IV) 7-bromo-2-exo-phenyl-2,3,4,5-tetrahydro-1H-1,4- epoxy-1-benzazepine top
Crystal data top
C16H14BrNOF(000) = 640
Mr = 316.19Dx = 1.613 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2989 reflections
a = 5.5214 (3) Åθ = 3.3–27.5°
b = 10.2982 (12) ŵ = 3.15 mm1
c = 22.900 (3) ÅT = 120 K
V = 1302.1 (2) Å3Block, colourless
Z = 40.22 × 0.20 × 0.18 mm
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2989 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ & ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.471, Tmax = 0.568l = 2929
14968 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.4327P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2989 reflectionsΔρmax = 0.51 e Å3
173 parametersΔρmin = 0.50 e Å3
0 restraintsAbsolute structure: Flack (1983), 1228 Bijvoet pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.497 (9)
Crystal data top
C16H14BrNOV = 1302.1 (2) Å3
Mr = 316.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5214 (3) ŵ = 3.15 mm1
b = 10.2982 (12) ÅT = 120 K
c = 22.900 (3) Å0.22 × 0.20 × 0.18 mm
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2989 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2587 reflections with I > 2σ(I)
Tmin = 0.471, Tmax = 0.568Rint = 0.051
14968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.51 e Å3
S = 1.07Δρmin = 0.50 e Å3
2989 reflectionsAbsolute structure: Flack (1983), 1228 Bijvoet pairs
173 parametersAbsolute structure parameter: 0.497 (9)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5898 (4)0.3932 (2)0.11111 (10)0.0173 (6)
C20.4507 (5)0.3346 (3)0.16044 (12)0.0184 (6)
H20.39930.40520.18770.022*
C30.2250 (5)0.2768 (3)0.13127 (12)0.0202 (7)
H3A0.20450.18440.14200.024*
H3B0.07760.32530.14270.024*
C40.2749 (5)0.2913 (3)0.06604 (13)0.0209 (6)
H40.22360.21140.04450.025*
C50.1627 (6)0.4097 (3)0.03939 (12)0.0200 (6)
H5A0.01290.41130.04800.024*
H5B0.18340.40730.00350.024*
C5A0.2808 (5)0.5297 (3)0.06365 (13)0.0166 (6)
C60.1900 (6)0.6529 (3)0.05266 (11)0.0176 (6)
H60.04680.66320.03010.021*
C70.3075 (6)0.7595 (3)0.07449 (11)0.0186 (6)
Br70.17334 (6)0.92624 (3)0.061526 (13)0.02630 (9)
C80.5181 (6)0.7489 (3)0.10599 (13)0.0222 (7)
H80.59930.82410.12000.027*
C90.6092 (5)0.6266 (3)0.11685 (13)0.0218 (7)
H90.75500.61700.13840.026*
C9A0.4890 (5)0.5182 (3)0.09649 (12)0.0171 (6)
O140.5358 (3)0.30644 (17)0.06365 (9)0.0203 (4)
C210.6083 (5)0.2402 (3)0.19305 (12)0.0179 (7)
C220.7003 (6)0.2751 (3)0.24663 (12)0.0229 (7)
H220.65790.35670.26310.027*
C230.8526 (7)0.1935 (3)0.27659 (12)0.0280 (7)
H230.91600.21960.31330.034*
C240.9143 (5)0.0745 (3)0.25392 (13)0.0249 (7)
H241.01950.01810.27480.030*
C250.8220 (6)0.0382 (3)0.20080 (12)0.0248 (7)
H250.86320.04390.18480.030*
C260.6703 (7)0.1198 (3)0.17051 (13)0.0231 (6)
H260.60720.09340.13380.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0190 (13)0.0142 (13)0.0189 (12)0.0006 (9)0.0013 (10)0.0003 (9)
C20.0206 (16)0.0154 (15)0.0193 (15)0.0017 (12)0.0056 (13)0.0006 (12)
C30.0176 (17)0.0169 (14)0.0260 (15)0.0008 (12)0.0005 (12)0.0044 (12)
C40.0226 (16)0.0150 (13)0.0251 (14)0.0005 (11)0.0016 (14)0.0042 (13)
C50.0223 (14)0.0160 (15)0.0217 (13)0.0002 (16)0.0045 (14)0.0038 (11)
C5A0.0177 (16)0.0166 (13)0.0155 (12)0.0006 (11)0.0008 (14)0.0002 (13)
C60.0169 (14)0.0198 (14)0.0161 (14)0.0013 (13)0.0020 (15)0.0001 (11)
C70.0231 (15)0.0128 (13)0.0197 (14)0.0012 (13)0.0046 (13)0.0019 (10)
Br70.03476 (17)0.01327 (12)0.03087 (15)0.00192 (15)0.00059 (16)0.00104 (14)
C80.0259 (17)0.0151 (16)0.0255 (15)0.0049 (13)0.0016 (14)0.0009 (12)
C90.0203 (18)0.0189 (14)0.0261 (16)0.0050 (12)0.0058 (13)0.0052 (12)
C9A0.0174 (15)0.0165 (14)0.0175 (14)0.0003 (13)0.0019 (13)0.0021 (12)
O140.0232 (11)0.0168 (10)0.0211 (10)0.0004 (8)0.0031 (10)0.0052 (10)
C210.0155 (16)0.0162 (15)0.0220 (15)0.0025 (12)0.0027 (12)0.0041 (12)
C220.0271 (17)0.0212 (15)0.0203 (14)0.0058 (15)0.0023 (14)0.0008 (12)
C230.0316 (19)0.0329 (18)0.0196 (15)0.0054 (17)0.0041 (15)0.0011 (13)
C240.0231 (15)0.0233 (15)0.0283 (16)0.0025 (15)0.0008 (12)0.0120 (15)
C250.0281 (16)0.0143 (14)0.0321 (16)0.0018 (15)0.0023 (17)0.0007 (11)
C260.0236 (15)0.0196 (14)0.0261 (15)0.0014 (16)0.0051 (16)0.0015 (11)
Geometric parameters (Å, º) top
N1—O141.438 (3)C6—H60.9500
N1—C9A1.441 (4)C7—C81.373 (4)
N1—C21.494 (4)C7—Br71.893 (3)
C2—C211.503 (4)C8—C91.378 (4)
C2—C31.533 (4)C8—H80.9500
C2—H21.0000C9—C9A1.380 (4)
C3—C41.526 (4)C9—H90.9500
C3—H3A0.9900C21—C221.376 (4)
C3—H3B0.9900C21—C261.386 (4)
C4—O141.450 (3)C22—C231.373 (4)
C4—C51.498 (4)C22—H220.9500
C4—H41.0000C23—C241.374 (4)
C5—C5A1.504 (4)C23—H230.9500
C5—H5A0.9900C24—C251.371 (4)
C5—H5B0.9900C24—H240.9500
C5A—C9A1.379 (4)C25—C261.374 (4)
C5A—C61.387 (4)C25—H250.9500
C6—C71.370 (4)C26—H260.9500
O14—N1—C9A107.4 (2)C5A—C6—H6120.1
O14—N1—C2102.3 (2)C6—C7—C8121.9 (3)
C9A—N1—C2109.7 (2)C6—C7—Br7119.0 (2)
N1—C2—C21109.8 (2)C8—C7—Br7119.1 (2)
N1—C2—C3104.2 (2)C7—C8—C9118.5 (3)
C21—C2—C3115.9 (3)C7—C8—H8120.8
N1—C2—H2108.9C9—C8—H8120.8
C21—C2—H2108.9C8—C9—C9A120.2 (3)
C3—C2—H2108.9C8—C9—H9119.9
C4—C3—C2104.0 (2)C9A—C9—H9119.9
C4—C3—H3A111.0C5A—C9A—C9121.0 (3)
C2—C3—H3A111.0C5A—C9A—N1121.7 (3)
C4—C3—H3B111.0C9—C9A—N1117.3 (2)
C2—C3—H3B111.0N1—O14—C4104.1 (2)
H3A—C3—H3B109.0C22—C21—C26118.3 (3)
O14—C4—C5107.9 (2)C22—C21—C2119.2 (3)
O14—C4—C3103.1 (2)C26—C21—C2122.4 (3)
C5—C4—C3113.8 (2)C23—C22—C21120.8 (3)
O14—C4—H4110.6C23—C22—H22119.6
C5—C4—H4110.6C21—C22—H22119.6
C3—C4—H4110.6C22—C23—C24120.6 (3)
C4—C5—C5A109.8 (2)C22—C23—H23119.7
C4—C5—H5A109.7C24—C23—H23119.7
C5A—C5—H5A109.7C25—C24—C23119.1 (3)
C4—C5—H5B109.7C25—C24—H24120.5
C5A—C5—H5B109.7C23—C24—H24120.5
H5A—C5—H5B108.2C24—C25—C26120.6 (3)
C9A—C5A—C6118.6 (2)C24—C25—H25119.7
C9A—C5A—C5119.5 (2)C26—C25—H25119.7
C6—C5A—C5121.9 (2)C25—C26—C21120.6 (3)
C7—C6—C5A119.7 (3)C25—C26—H26119.7
C7—C6—H6120.1C21—C26—H26119.7
O14—N1—C2—C2191.3 (2)C8—C9—C9A—C5A1.9 (5)
C9A—N1—C2—C21154.9 (2)C8—C9—C9A—N1178.0 (3)
O14—N1—C2—C333.4 (3)O14—N1—C9A—C5A32.0 (3)
C9A—N1—C2—C380.4 (3)C2—N1—C9A—C5A78.5 (3)
N1—C2—C3—C47.9 (3)O14—N1—C9A—C9148.2 (2)
C21—C2—C3—C4112.9 (3)C2—N1—C9A—C9101.3 (3)
C2—C3—C4—O1420.1 (3)C9A—N1—O14—C467.6 (3)
C2—C3—C4—C596.5 (3)C2—N1—O14—C447.9 (2)
O14—C4—C5—C5A47.0 (3)C5—C4—O14—N178.3 (3)
C3—C4—C5—C5A66.7 (3)C3—C4—O14—N142.4 (2)
C4—C5—C5A—C9A10.8 (4)N1—C2—C21—C22105.1 (3)
C4—C5—C5A—C6170.9 (3)C3—C2—C21—C22137.3 (3)
C9A—C5A—C6—C70.1 (4)N1—C2—C21—C2673.3 (4)
C5—C5A—C6—C7178.3 (3)C3—C2—C21—C2644.4 (4)
C5A—C6—C7—C81.7 (4)C26—C21—C22—C231.0 (5)
C5A—C6—C7—Br7177.6 (2)C2—C21—C22—C23177.4 (3)
C6—C7—C8—C91.5 (4)C21—C22—C23—C240.7 (5)
Br7—C7—C8—C9177.7 (2)C22—C23—C24—C250.1 (5)
C7—C8—C9—C9A0.3 (5)C23—C24—C25—C260.1 (5)
C6—C5A—C9A—C91.7 (4)C24—C25—C26—C210.1 (5)
C5—C5A—C9A—C9176.6 (3)C22—C21—C26—C250.7 (5)
C6—C5A—C9A—N1178.1 (3)C2—C21—C26—C25177.6 (3)
C5—C5A—C9A—N13.6 (4)
(V) 2-exo-(4-bromophenyl)-7-chloro-2,3,4,5- tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C16H13BrClNOF(000) = 704
Mr = 350.63Dx = 1.675 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3182 reflections
a = 15.3626 (16) Åθ = 2.7–27.5°
b = 11.5436 (13) ŵ = 3.14 mm1
c = 7.8832 (13) ÅT = 120 K
β = 96.080 (11)°Block, colourless
V = 1390.1 (3) Å30.32 × 0.32 × 0.24 mm
Z = 4
Data collection top
Bruker-Nonius KappaCCD
diffractometer
3181 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ & ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.406, Tmax = 0.470l = 1010
19930 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0394P)2 + 1.0122P]
where P = (Fo2 + 2Fc2)/3
3181 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C16H13BrClNOV = 1390.1 (3) Å3
Mr = 350.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3626 (16) ŵ = 3.14 mm1
b = 11.5436 (13) ÅT = 120 K
c = 7.8832 (13) Å0.32 × 0.32 × 0.24 mm
β = 96.080 (11)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
3181 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2267 reflections with I > 2σ(I)
Tmin = 0.406, Tmax = 0.470Rint = 0.072
19930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.06Δρmax = 0.86 e Å3
3181 reflectionsΔρmin = 0.56 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.30143 (16)0.6769 (2)0.6277 (3)0.0187 (6)
C20.3352 (2)0.6274 (3)0.7960 (4)0.0195 (7)
H20.31420.67490.88950.023*
C30.2933 (2)0.5067 (3)0.7941 (4)0.0228 (7)
H3A0.33660.44710.83630.027*
H3B0.24360.50490.86460.027*
C40.26234 (19)0.4884 (3)0.6076 (5)0.0231 (7)
H40.28030.41010.57000.028*
C50.16535 (19)0.5052 (3)0.5636 (5)0.0248 (8)
H5A0.14830.48300.44340.030*
H5B0.13260.45590.63760.030*
C5A0.1442 (2)0.6304 (3)0.5897 (4)0.0219 (7)
C60.0584 (2)0.6685 (3)0.5793 (5)0.0293 (8)
H60.01150.61500.55760.035*
C70.0414 (2)0.7832 (4)0.6002 (5)0.0313 (9)
Cl70.06685 (6)0.82971 (10)0.58244 (15)0.0525 (3)
C80.1072 (2)0.8628 (3)0.6350 (5)0.0299 (9)
H80.09400.94220.65110.036*
C90.1927 (2)0.8255 (3)0.6461 (4)0.0245 (8)
H90.23910.87930.66990.029*
C9A0.2110 (2)0.7102 (3)0.6229 (4)0.0193 (7)
O140.30532 (13)0.57727 (18)0.5191 (3)0.0200 (5)
C210.4338 (2)0.6283 (3)0.8113 (4)0.0194 (7)
C220.4784 (2)0.7183 (3)0.8985 (4)0.0227 (7)
H220.44660.77450.95470.027*
C230.5681 (2)0.7273 (3)0.9049 (4)0.0219 (7)
H230.59820.78910.96530.026*
C240.6133 (2)0.6455 (3)0.8227 (4)0.0202 (7)
Br240.73587 (2)0.66277 (3)0.81935 (4)0.02365 (12)
C250.5716 (2)0.5527 (3)0.7402 (4)0.0222 (7)
H250.60380.49530.68710.027*
C260.4818 (2)0.5452 (3)0.7367 (4)0.0234 (8)
H260.45220.48110.68130.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0147 (13)0.0203 (15)0.0212 (15)0.0001 (11)0.0022 (11)0.0036 (12)
C20.0167 (16)0.0249 (17)0.0174 (17)0.0015 (13)0.0046 (13)0.0013 (14)
C30.0199 (16)0.0211 (17)0.028 (2)0.0005 (13)0.0069 (14)0.0065 (16)
C40.0196 (16)0.0148 (16)0.035 (2)0.0006 (13)0.0030 (14)0.0090 (16)
C50.0184 (16)0.0273 (19)0.028 (2)0.0039 (14)0.0017 (14)0.0004 (16)
C5A0.0196 (17)0.0300 (19)0.0165 (17)0.0012 (14)0.0037 (13)0.0007 (15)
C60.0175 (16)0.039 (2)0.031 (2)0.0030 (16)0.0004 (14)0.0059 (19)
C70.0162 (17)0.050 (2)0.027 (2)0.0106 (16)0.0029 (15)0.0062 (19)
Cl70.0217 (5)0.0726 (8)0.0614 (7)0.0201 (5)0.0040 (5)0.0185 (6)
C80.0277 (19)0.034 (2)0.027 (2)0.0128 (15)0.0028 (15)0.0065 (17)
C90.0240 (17)0.0262 (19)0.0228 (18)0.0035 (14)0.0005 (14)0.0017 (16)
C9A0.0178 (16)0.0251 (17)0.0154 (17)0.0006 (13)0.0036 (13)0.0007 (15)
O140.0201 (11)0.0214 (12)0.0187 (12)0.0012 (9)0.0036 (9)0.0018 (10)
C210.0170 (16)0.0242 (17)0.0167 (17)0.0014 (13)0.0011 (13)0.0025 (14)
C220.0220 (17)0.0237 (18)0.0228 (19)0.0043 (14)0.0036 (14)0.0000 (16)
C230.0205 (16)0.0211 (18)0.0239 (19)0.0002 (13)0.0012 (14)0.0034 (15)
C240.0161 (15)0.0250 (19)0.0194 (17)0.0022 (13)0.0010 (13)0.0040 (15)
Br240.01527 (16)0.0272 (2)0.0286 (2)0.00042 (14)0.00249 (12)0.00000 (17)
C250.0177 (16)0.0219 (18)0.027 (2)0.0000 (13)0.0002 (14)0.0020 (15)
C260.0191 (17)0.0277 (19)0.0230 (19)0.0007 (13)0.0000 (14)0.0009 (15)
Geometric parameters (Å, º) top
N1—C9A1.438 (4)C6—H60.9500
N1—O141.438 (3)C7—C81.372 (5)
N1—C21.487 (4)C7—Cl71.739 (3)
C2—C211.506 (4)C8—C91.377 (5)
C2—C31.534 (4)C8—H80.9500
C2—H21.0000C9—C9A1.377 (4)
C3—C41.511 (5)C9—H90.9500
C3—H3A0.9900C21—C261.379 (5)
C3—H3B0.9900C21—C221.386 (5)
C4—O141.439 (4)C22—C231.377 (4)
C4—C51.506 (4)C22—H220.9500
C4—H41.0000C23—C241.375 (4)
C5—C5A1.499 (5)C23—H230.9500
C5—H5A0.9900C24—C251.375 (4)
C5—H5B0.9900C24—Br241.897 (3)
C5A—C9A1.383 (4)C25—C261.380 (4)
C5A—C61.384 (4)C25—H250.9500
C6—C71.362 (5)C26—H260.9500
C9A—N1—O14107.4 (2)C5A—C6—H6120.1
C9A—N1—C2111.8 (2)C6—C7—C8121.9 (3)
O14—N1—C2101.0 (2)C6—C7—Cl7119.0 (3)
N1—C2—C21108.8 (3)C8—C7—Cl7119.2 (3)
N1—C2—C3103.5 (2)C7—C8—C9118.8 (3)
C21—C2—C3115.1 (3)C7—C8—H8120.6
N1—C2—H2109.7C9—C8—H8120.6
C21—C2—H2109.7C8—C9—C9A120.0 (3)
C3—C2—H2109.7C8—C9—H9120.0
C4—C3—C2102.9 (3)C9A—C9—H9120.0
C4—C3—H3A111.2C9—C9A—C5A120.8 (3)
C2—C3—H3A111.2C9—C9A—N1117.7 (3)
C4—C3—H3B111.2C5A—C9A—N1121.5 (3)
C2—C3—H3B111.2N1—O14—C4103.3 (2)
H3A—C3—H3B109.1C26—C21—C22118.3 (3)
O14—C4—C5106.9 (3)C26—C21—C2122.7 (3)
O14—C4—C3105.0 (2)C22—C21—C2119.0 (3)
C5—C4—C3114.1 (3)C23—C22—C21121.0 (3)
O14—C4—H4110.2C23—C22—H22119.5
C5—C4—H4110.2C21—C22—H22119.5
C3—C4—H4110.2C24—C23—C22118.9 (3)
C5A—C5—C4108.4 (3)C24—C23—H23120.5
C5A—C5—H5A110.0C22—C23—H23120.5
C4—C5—H5A110.0C25—C24—C23121.6 (3)
C5A—C5—H5B110.0C25—C24—Br24119.3 (2)
C4—C5—H5B110.0C23—C24—Br24119.1 (2)
H5A—C5—H5B108.4C24—C25—C26118.2 (3)
C9A—C5A—C6118.8 (3)C24—C25—H25120.9
C9A—C5A—C5120.0 (3)C26—C25—H25120.9
C6—C5A—C5121.2 (3)C21—C26—C25121.8 (3)
C7—C6—C5A119.7 (3)C21—C26—H26119.1
C7—C6—H6120.1C25—C26—H26119.1
C9A—N1—C2—C21163.1 (3)C5—C5A—C9A—N12.0 (5)
O14—N1—C2—C2183.0 (3)O14—N1—C9A—C9150.5 (3)
C9A—N1—C2—C374.0 (3)C2—N1—C9A—C999.6 (3)
O14—N1—C2—C339.9 (3)O14—N1—C9A—C5A27.2 (4)
N1—C2—C3—C415.9 (3)C2—N1—C9A—C5A82.8 (4)
C21—C2—C3—C4102.7 (3)C9A—N1—O14—C467.4 (3)
C2—C3—C4—O1413.8 (3)C2—N1—O14—C449.9 (3)
C2—C3—C4—C5102.9 (3)C5—C4—O14—N181.6 (3)
O14—C4—C5—C5A49.1 (4)C3—C4—O14—N139.9 (3)
C3—C4—C5—C5A66.5 (4)N1—C2—C21—C2680.3 (4)
C4—C5—C5A—C9A8.8 (4)C3—C2—C21—C2635.4 (4)
C4—C5—C5A—C6172.0 (3)N1—C2—C21—C2297.3 (3)
C9A—C5A—C6—C70.5 (5)C3—C2—C21—C22147.0 (3)
C5—C5A—C6—C7178.7 (3)C26—C21—C22—C232.6 (5)
C5A—C6—C7—C81.3 (6)C2—C21—C22—C23175.2 (3)
C5A—C6—C7—Cl7178.7 (3)C21—C22—C23—C240.2 (5)
C6—C7—C8—C91.1 (6)C22—C23—C24—C252.6 (5)
Cl7—C7—C8—C9179.0 (3)C22—C23—C24—Br24176.2 (2)
C7—C8—C9—C9A0.1 (5)C23—C24—C25—C262.1 (5)
C8—C9—C9A—C5A0.6 (5)Br24—C24—C25—C26176.6 (2)
C8—C9—C9A—N1177.1 (3)C22—C21—C26—C253.0 (5)
C6—C5A—C9A—C90.4 (5)C2—C21—C26—C25174.6 (3)
C5—C5A—C9A—C9179.6 (3)C24—C25—C26—C210.7 (5)
C6—C5A—C9A—N1177.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i1.002.563.535 (4)164
C25—H25···O14ii0.952.403.290 (4)155
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC16H15NOC16H14ClNOC17H17NOC16H14BrNO
Mr237.29271.73251.32316.19
Crystal system, space groupMonoclinic, CcMonoclinic, P21/nMonoclinic, P21/cOrthorhombic, P212121
Temperature (K)120120120120
a, b, c (Å)10.7475 (7), 10.7842 (12), 20.5812 (19)8.2405 (14), 11.5432 (16), 27.442 (2)10.9966 (17), 23.691 (10), 10.6323 (8)5.5214 (3), 10.2982 (12), 22.900 (3)
α, β, γ (°)90, 91.688 (7), 9090, 101.030 (13), 9090, 111.661 (8), 9090, 90, 90
V3)2384.4 (4)2562.1 (6)2574.3 (12)1302.1 (2)
Z8884
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.080.290.083.15
Crystal size (mm)0.51 × 0.33 × 0.180.46 × 0.26 × 0.100.48 × 0.30 × 0.140.22 × 0.20 × 0.18
Data collection
DiffractometerBruker-Nonius KappaCCD
diffractometer
Bruker-Nonius KappaCCD
diffractometer
Bruker-Nonius KappaCCD
diffractometer
Bruker-Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.952, 0.9850.889, 0.9720.965, 0.9890.471, 0.568
No. of measured, independent and
observed [I > 2σ(I)] reflections
15795, 2214, 1595 33797, 4745, 2978 30931, 4790, 3352 14968, 2989, 2587
Rint0.0720.0790.0750.051
(sin θ/λ)max1)0.6060.6060.6060.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.08 0.050, 0.108, 1.05 0.057, 0.114, 1.07 0.032, 0.064, 1.07
No. of reflections2214474547902989
No. of parameters325343345173
No. of restraints2000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.240.25, 0.260.23, 0.310.51, 0.50
Absolute structure???Flack (1983), 1228 Bijvoet pairs
Absolute structure parameter???0.497 (9)


(V)
Crystal data
Chemical formulaC16H13BrClNO
Mr350.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)15.3626 (16), 11.5436 (13), 7.8832 (13)
α, β, γ (°)90, 96.080 (11), 90
V3)1390.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.14
Crystal size (mm)0.32 × 0.32 × 0.24
Data collection
DiffractometerBruker-Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.406, 0.470
No. of measured, independent and
observed [I > 2σ(I)] reflections
19930, 3181, 2267
Rint0.072
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.095, 1.06
No. of reflections3181
No. of parameters181
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.56
Absolute structure?
Absolute structure parameter?

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), Sir2004 (Burla et al., 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, °) for compounds (I)–(V) top
(i)Ring-puckering parametersa,b
Five-membered ringSix-membered ring
CompoundxQ2ϕ2Qθϕ
(I)10.460 (4)200.8 (5)0.631 (4)55.8 (4)344.3 (5)
(I)20.458 (4)201.3 (6)0.637 (4)54.7 (4)342.0 (5)
(II)10.452 (2)201.6 (3)0.628 (2)51.5 (3)341.3 (3)
(II)20.427 (3)189.6 (4)0.641 (3)54.1 (3)348.0 (3)
(III)10.458 (2)197.7 (3)0.625 (2)51.7 (2)342.8 (3)
(III)20.435 (2)182.9 (3)0.613 (2)52.6 (2)353.5 (3)
(IV)-0.435 (3)189.9 (4)0.605 (3)49.5 (3)347.6 (4)
(V)-0.453 (3)200.1 (4)0.630 (3)52.7 (3)343.8 (4)
(ii)Torsional angles Nx1-Cx2-Cx21-Cx22b
(I)x = 1179.6 (4)
(I)x = 2177.4 (4)
(II)x = 185.2 (3)
(II)x = 2136.8 (2)
(III)x = 1-178.32 (19)
(III)x = 2139.9 (2)
(IV)105.1 (3)
(V)97.3 (3)
a Ring-puckering parameters refer to the atom sequences (Ox14-Nx1-Cx2-Cx3-Cx4) and (Ox14-Nx1-Cx9A-Cx5A-Cx5-Cx4) respectively.

b x = 1 or 2 for compounds (I) - (III) and x is nul for compounds (IV) and (V).
Hydrogen bond parameters (Å, °) for compounds (I)-(III) and compound (V) top
CompoundD-H···AD-HH···AD···AD-H···A
(I)C122-H122···Cg1a,i0.952.583.469 (5)156
C222-H222···Cg2b,ii0.952.713.610 (5)158
(II)C22-H22···O114iii1.002.373.357 (3)168
C22-H22···N11iii1.002.563.442 (3)147
C125-H125···O114iii0.952.383.248 (3)152
C225-H225···O214iv0.952.503.428 (3)164
C23-H23B···Cg3c,v0.992.783.596 (3)140
(III)C14-H14···N211.002.583.559 (3)165
C122-H122···O114vi0.952.493.413 (3)163
C15-H15A···Cg3c0.992.763.495 (3)132
C25-H25B···Cg4d,vii0.992.793.586 (3)138
(V)C2-H2···N1viii1.002.563.535 (4)164
C25-H25···O14ix0.952.403.290 (4)155
a Cg1 represents the centroid of the ring (C15A,C16,C17,C18,C19,C19A). b Cg2 represents the centroid of the ring (C25A,C26,C27,C28,C29,C29A). c Cg3 represents the centroid of the ring (C221-C226). c Cg4 represents the centroid of the ring (C121-C126).

Symmetry codes: i (0.5 + x, 0.5 + y, z); ii (-0.5 + x, -0.5 + y, z); iii (-x, 1 - y, 1 - z; iv (1 - x, -y, 1 - z); v (-x, -y, 1 - z); vi (x, 0.5 - y, -0.5 + z); vii (-1 + x, y, z); viii (x, 1.5 - y, 0.5 + z); ix (1 - x, 1 - y, 1 - z).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds