Download citation
Download citation
link to html
The bond distances in 2-cyano-N-(2,6-dimethoxy­pyrimidin-4-yl)-3-[4-(dimethyl­amino)phenyl]acrylamide, C18H19N5O3, (I), and in the anionic component of the salt dimethyl­ammonium 6-cyano-1,3-dimethyl-2,4,5-trioxo-1,2,3,4,5,8-hexa­hydropyrido[2,3-d]pyrimidin-8-ide, C2H8N2+·C10H7N4O3, (II), provide evidence for the occurrence of electronic polarization. There are no hydrogen bonds in the structure of (I), instead pairs of mol­ecules are linked into centrosymmetric dimers by a single π–π stacking inter­action. In (II), a combination of a two-centre N—H...O hydrogen bond, a three-centre N—H...(O)2 hydrogen bond, together utilizing all three O atoms, and a two-centre C—H...N hydrogen bond, link the components into a ribbon containing R12(6), R22(10) and R66(30) rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109053785/fa3211sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109053785/fa3211Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109053785/fa3211IIsup3.hkl
Contains datablock II

CCDC references: 765479; 765480

Comment top

We report here the structures of the title compounds, (I) and (II) (Figs. 1 and 2), which result from the reactions of cyanoacetylpyrimidine derivatives with, respectively, 4-dimethylaminobenzaldehyde (Quiroga et al., 2009; see first scheme) and dimethylformamide dimethylacetal (see second scheme). The use of 5-cyanoacetylpyrimidines as intermediates for the synthesis of substituted pyrido[2,3-d]pyrimidin-5-ones has recently been described (Quiroga et al., 2009), and compounds (I) and (II), for which structures are reported here, were both synthesized using variations of the recently reported procedure.

Within the molecule of (I) (Fig. 1), the spacer unit linking the two rings adopts an all-trans configuration which is nearly planar, while the two rings are each twisted out of this plane by less than 10°, as shown by the leading torsion angles (Table 1). Similarly, the C atoms of the methoxy groups are almost coplanar with the adjacent pyrimidine ring, with deviations from the ring plane of 0.071 (2) Å for atom C21 and 0.195 (2) Å for atom C61, although the spatial disposition of these groups differs from that originally suggested (Quiroga et al., 2009).

The bond distances in the molecule of (I) show some values which are worthy of comment (Table 1). In the C51–C56 aryl ring, the two bonds C52—C53 and C55—C56 are significantly shorter than the other four bonds; the exocyclic C54—N54 bond is somewhat short for its type [mean value (Allen et al., 1987) 1.371 Å]; the C45—C51 bond is very short for its type (mean value 1.470 Å, lower quartile value 1.463 Å), while the C43—C45 bond is long for its type (mean value 1.326 Å, upper quartile value 1.334 Å). Although the C42—C43 and C42—O42 bonds have lengths typical of their types, the C43—C44 bond is shorter than those found in a series of analogous nitriles where electronic conjugation is not possible [mean value 1.442 (4) Å; Cobo et al., 2005, 2006, 2009] and the C44—N44 bond is correspondingly longer [mean value 1.130 (4) Å]. Thus, within the spacer unit, the bond-length anomalies are concentrated in the carbonitrile fragment, rather than in the carbonyl fragment and its adjacent C—C bonds. Taken as a whole, the bond distances in (I) indicate that form (Ia) (see first scheme), which is intuitively the more obvious of the polarized forms, probably makes only a very small contribution to the overall electronic structure, while form (Ib) is a significant contributor, in addition to the classical unpolarized form (I).

In the anion of compound (II) (Fig. 2), it is striking that, while the C2—O2 and C4—O4 distances are identical and typical of their type, the C5—O5 distance is significantly longer (Table 2). As found for the analogous bonds in (I), the C6—C61 bond in (II) is slightly short for its type and C61—N61 is slightly long. Thus, the forms (IIa) and, to a lesser extent, (IIb) are contributors to the overall electronic structure, in addition to the simple form (II) (see second scheme).

Despite the polarization of the electronic structure in (I), neither atom O42 nor N44 acts as a hydrogen-bond acceptor. Indeed, there are no hydrogen bonds of any kind in the crystal structure of (I). In particular, the N—H unit does not act as a hydrogen-bond donor, as the nearest potential hydrogen-bond acceptor is atom O42 in the molecule at (1 - x, 1 - y, 1 - z) and the geometric parameters for this contact are N41···O42i = 3.501 (2) Å, H41···O42i = 3.51 Å and N41—H41···O42i = 82° [symmetry code: (i) 1 - x, 1 y, 1 - z]. Nor are there any N—H···π or C—H···π hydrogen bonds present. Instead, pairs of molecules related by inversion are linked into centrosymmetric dimers (Fig. 3) by a single ππ stacking interaction. The aryl ring of the molecule at (x, y, z) and the pyrimidine ring of the molecule at (1 - x, 1 - y, 1 - z) make a dihedral angle of only 2.2 (2)°. The corresponding ring-centroid separation is 3.632 (2) Å and the interplanar spacing is ca 3.395 Å, with a ring-centroid offset of ca 1.29 Å. There are no direction-specific interactions between these dimers.

In compound (II), the ionic components in the selected asymmetric unit are linked by a slightly asymmetric but nonetheless planar three-centre N—H···(O)2 hydrogen bond (Table 3, Fig. 2), forming an R12(6) motif (Bernstein et al., 1995). The shorter component of this three-centre system involves atom O5 as the acceptor and, because of the polarization in form (IIa), this stronger component could be regarded as a charge-assisted hydrogen bond (Gilli et al., 1994). In addition, atom N21 in the cation at (x, y, z) acts as hydrogen-bond donor to atom O2 in the anion at (x, y, 1 + z), and the combination of all the N—H···O interactions generates a hydrogen-bonded C22(8)C22(10)[R12(6)] chain of rings (Fig. 4). Finally, a single C—H···N hydrogen bond, which utilizes the nitrile N atom as the acceptor, links an antiparallel pair of chains of rings into a ribbon running parallel to the [001] direction in which R22(10) rings centred at (1, 1, 1/2 + n), where n represents an integer, alternate with R66(30) rings centred at (1, 1, n), where n again represents an integer (Fig. 4). There are no direction-specific interactions between adjacent ribbons.

The formation of the salt (II) in the reaction of dimethylformamide dimethylacetal with a cyanoacetylpyrimidine derivative may be contrasted with the reaction (Galvez et al., 2008) of the same acetal with a cyanoacetylindole derivative to form the neutral compound, (III) (see third scheme). Here, the intramolecular distances indicate that both of the polarized forms, (IIIa) and (IIIb), are significant contributors to the overall electronic structure. The formation of these compounds, and of (I), attests to the synthetic versatility of cyanoacetyl derivatives as intermediates for the synthesis of new heterocyclic compounds.

Experimental top

For the synthesis of (I), a solution of 2-cyano-N-(2,6-dimethoxypyrimidin-4-yl)acetamide (1.0 mmol) and 4-(N,N-dimethylamino)benzaldehyde (1.0 mmol) in ethanol (10 ml) containing a catalytic quantity of sodium hydroxide (20% w/v aqueous solution, 5 drops) was stirred for 3 h at ambient temperature. The resulting precipitate was collected by filtration, washed with ethanol, and recrystallized from a mixture of dimethylformamide and ethanol to give yellow crystals of (I) suitable for single-crystal X-ray diffraction (yield 76%, m.p. 526–527 K). Analysis: MS (70 eV): 354 (17), 353 (76, M+), 352 (16), 199 (65), 182 (100), 172 (20), 171 (58), 156 (12).

For the synthesis of (II), a solution of 3-(6-amino-1,2,3,4-tetrahydro-1,3-dimethyl-2,4- dioxopyrimidin-5-yl)-3-oxo-propanenitrile (1.9 mmol) and dimethylformamide dimethyacetal (3.0 mmol) in toluene (5.3 ml) was heated at 393 K for 30 min. The resulting solid product was collected by filtration, washed and recrystallized from ethanol to give yellow crystals of (II) suitable for single-crystal X-ray diffraction (yield 70%, m.p. 532–534 K). Analysis: MS (70 eV) 232 [M+ - 45 (HN(CH3)2] (37); 204 (12); 120 (35).

Refinement top

All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H = 0.98 (methyl) or 0.95 Å (aromatic, heteroaromatic and alkenyl) and N—H = 0.88 (N—H) or 0.92 Å (NH2), and with Uiso(H) = kUeq(carrier), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The independent components of (II), showing the atom-labelling scheme and the three-centre N—H···(O)2 hydrogen bond (dashed lines) linking the ions within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a centrosymmetric π-stacked dimer. For the sake of clarity, H atoms have been omitted. The atom marked with an asterisk (*) is at the symmetry position (1 - x, 1 - y, 1 - z).
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded ribbon running parallel to [001] and containing rings of R12(6), R22(10) and R66(30) types. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
(I) 2-cyano-N-(2,6-dimethoxypyrimidin-4-yl)-3-[4- (dimethylamino)phenyl]acrylamide top
Crystal data top
C18H19N5O3Z = 2
Mr = 353.38F(000) = 372
Triclinic, P1Dx = 1.381 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9772 (2) ÅCell parameters from 3350 reflections
b = 10.0023 (4) Åθ = 3.1–26.1°
c = 10.8409 (5) ŵ = 0.10 mm1
α = 93.693 (2)°T = 120 K
β = 93.562 (3)°Needle, yellow
γ = 99.196 (2)°0.23 × 0.12 × 0.12 mm
V = 849.80 (6) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3350 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 9.091 pixels mm-1θmax = 26.1°, θmin = 3.1°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.978, Tmax = 0.988l = 1313
15270 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0813P)2 + 0.0098P]
where P = (Fo2 + 2Fc2)/3
3350 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H19N5O3γ = 99.196 (2)°
Mr = 353.38V = 849.80 (6) Å3
Triclinic, P1Z = 2
a = 7.9772 (2) ÅMo Kα radiation
b = 10.0023 (4) ŵ = 0.10 mm1
c = 10.8409 (5) ÅT = 120 K
α = 93.693 (2)°0.23 × 0.12 × 0.12 mm
β = 93.562 (3)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3350 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2512 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.988Rint = 0.055
15270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3350 reflectionsΔρmin = 0.28 e Å3
239 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61431 (15)0.17404 (13)0.88150 (12)0.0168 (3)
C20.54750 (18)0.10950 (15)0.77337 (14)0.0166 (3)
N30.46465 (15)0.15698 (12)0.68130 (12)0.0172 (3)
C40.44916 (18)0.29010 (15)0.69915 (14)0.0162 (3)
C50.51551 (17)0.37031 (15)0.80405 (14)0.0168 (3)
H50.50710.46400.81470.020*
C60.59629 (18)0.30358 (15)0.89377 (14)0.0163 (3)
O20.56916 (13)0.02176 (10)0.76471 (10)0.0212 (3)
C210.5067 (2)0.10007 (17)0.65065 (16)0.0280 (4)
H21A0.38510.09720.63470.042*
H21B0.52340.19440.65710.042*
H21C0.56910.06200.58240.042*
O60.65606 (13)0.37715 (10)1.00031 (10)0.0201 (3)
C610.7247 (2)0.30378 (16)1.09691 (15)0.0225 (4)
H61A0.64190.22351.11040.034*
H61B0.74840.36281.17380.034*
H61C0.83040.27531.07200.034*
N410.35598 (15)0.33326 (13)0.60046 (12)0.0171 (3)
H410.30400.26930.54520.020*
C420.33595 (18)0.46381 (15)0.57948 (14)0.0169 (3)
O420.40720 (14)0.56194 (11)0.64753 (10)0.0229 (3)
C430.22379 (18)0.48007 (16)0.46827 (14)0.0169 (3)
C440.14629 (19)0.36036 (16)0.39376 (15)0.0202 (4)
N440.08482 (18)0.25996 (15)0.33940 (13)0.0297 (4)
C450.19902 (18)0.60817 (16)0.44639 (14)0.0174 (4)
H450.25460.67560.50760.021*
C510.10538 (18)0.66115 (15)0.34888 (15)0.0175 (3)
C520.03099 (18)0.58625 (16)0.23900 (15)0.0193 (4)
H520.04110.49310.22670.023*
C530.05580 (18)0.64474 (16)0.14934 (15)0.0191 (4)
H530.10470.59130.07650.023*
C540.07375 (18)0.78354 (16)0.16357 (15)0.0178 (4)
C550.00235 (18)0.86011 (16)0.27247 (15)0.0195 (4)
H550.00640.95360.28460.023*
C560.08905 (19)0.79964 (16)0.36099 (15)0.0193 (4)
H560.14000.85330.43320.023*
N540.16249 (16)0.84038 (14)0.07516 (13)0.0216 (3)
C570.2340 (2)0.76240 (18)0.03952 (15)0.0251 (4)
H57A0.14160.73720.08690.038*
H57B0.29980.81760.08880.038*
H57C0.30880.68000.02000.038*
C580.1775 (2)0.98365 (16)0.08968 (16)0.0249 (4)
H58A0.23321.00140.16570.037*
H58B0.24561.00700.01830.037*
H58C0.06381.03890.09480.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0185 (7)0.0153 (7)0.0168 (7)0.0031 (5)0.0006 (5)0.0017 (5)
C20.0178 (8)0.0152 (8)0.0175 (8)0.0036 (6)0.0028 (6)0.0034 (6)
N30.0199 (7)0.0139 (7)0.0182 (7)0.0041 (5)0.0011 (5)0.0017 (5)
C40.0147 (7)0.0165 (8)0.0179 (8)0.0029 (6)0.0033 (6)0.0027 (6)
C50.0174 (8)0.0134 (8)0.0200 (8)0.0039 (6)0.0016 (6)0.0011 (6)
C60.0161 (7)0.0162 (8)0.0162 (8)0.0013 (6)0.0012 (6)0.0001 (6)
O20.0311 (6)0.0125 (6)0.0201 (6)0.0064 (4)0.0030 (5)0.0002 (5)
C210.0457 (10)0.0161 (9)0.0216 (9)0.0082 (7)0.0055 (8)0.0033 (7)
O60.0259 (6)0.0162 (6)0.0178 (6)0.0052 (4)0.0049 (5)0.0009 (5)
C610.0288 (9)0.0211 (9)0.0176 (9)0.0063 (7)0.0052 (7)0.0026 (7)
N410.0195 (7)0.0146 (7)0.0168 (7)0.0037 (5)0.0032 (5)0.0014 (5)
C420.0184 (8)0.0167 (8)0.0166 (8)0.0036 (6)0.0044 (6)0.0031 (7)
O420.0296 (6)0.0160 (6)0.0221 (6)0.0036 (5)0.0057 (5)0.0014 (5)
C430.0170 (8)0.0173 (8)0.0166 (8)0.0029 (6)0.0012 (6)0.0022 (6)
C440.0238 (8)0.0201 (9)0.0184 (8)0.0076 (7)0.0003 (7)0.0060 (7)
N440.0422 (9)0.0228 (8)0.0231 (8)0.0058 (7)0.0052 (7)0.0005 (7)
C450.0166 (7)0.0177 (8)0.0178 (8)0.0024 (6)0.0017 (6)0.0015 (6)
C510.0148 (7)0.0173 (8)0.0203 (8)0.0012 (6)0.0024 (6)0.0026 (7)
C520.0211 (8)0.0146 (8)0.0223 (9)0.0036 (6)0.0006 (6)0.0025 (7)
C530.0188 (8)0.0192 (9)0.0184 (8)0.0009 (6)0.0008 (6)0.0011 (7)
C540.0147 (7)0.0180 (9)0.0214 (9)0.0027 (6)0.0022 (6)0.0064 (7)
C550.0196 (8)0.0145 (8)0.0246 (9)0.0034 (6)0.0021 (6)0.0018 (7)
C560.0195 (8)0.0182 (8)0.0195 (9)0.0013 (6)0.0001 (6)0.0012 (6)
N540.0232 (7)0.0206 (7)0.0220 (8)0.0059 (6)0.0016 (6)0.0058 (6)
C570.0242 (8)0.0292 (10)0.0228 (9)0.0068 (7)0.0021 (7)0.0067 (7)
C580.0270 (9)0.0217 (9)0.0282 (10)0.0088 (7)0.0006 (7)0.0093 (7)
Geometric parameters (Å, º) top
N1—C61.3254 (19)C44—N441.152 (2)
N1—C21.338 (2)C43—C451.361 (2)
C2—N31.3184 (19)C45—C511.434 (2)
C2—O21.3495 (18)C45—H450.9500
N3—C41.3593 (19)C54—N541.363 (2)
C4—C51.374 (2)C51—C521.410 (2)
C4—N411.3952 (19)C52—C531.373 (2)
C5—C61.396 (2)C53—C541.418 (2)
C5—H50.9500C54—C551.412 (2)
C6—O61.3464 (18)C55—C561.375 (2)
O2—C211.4368 (19)C56—C511.411 (2)
C21—H21A0.9800C52—H520.9500
C21—H21B0.9800C53—H530.9500
C21—H21C0.9800C55—H550.9500
O6—C611.4463 (18)C56—H560.9500
C61—H61A0.9800N54—C581.456 (2)
C61—H61B0.9800N54—C571.457 (2)
C61—H61C0.9800C57—H57A0.9800
N41—C421.372 (2)C57—H57B0.9800
N41—H410.8800C57—H57C0.9800
C42—O421.2276 (18)C58—H58A0.9800
C42—C431.489 (2)C58—H58B0.9800
C43—C441.430 (2)C58—H58C0.9800
C6—N1—C2114.06 (13)N44—C44—C43176.24 (17)
N3—C2—N1128.63 (14)C43—C45—C51132.50 (15)
N3—C2—O2119.29 (13)C43—C45—H45113.7
N1—C2—O2112.06 (13)C51—C45—H45113.7
C2—N3—C4114.77 (13)C52—C51—C56116.69 (14)
N3—C4—C5123.12 (14)C52—C51—C45125.07 (14)
N3—C4—N41112.10 (13)C56—C51—C45118.21 (14)
C5—C4—N41124.77 (14)C53—C52—C51121.59 (14)
C4—C5—C6114.85 (14)C53—C52—H52119.2
C4—C5—H5122.6C51—C52—H52119.2
C6—C5—H5122.6C52—C53—C54121.16 (15)
N1—C6—O6118.83 (13)C52—C53—H53119.4
N1—C6—C5124.52 (14)C54—C53—H53119.4
O6—C6—C5116.63 (13)N54—C54—C55121.37 (14)
C2—O2—C21116.88 (12)N54—C54—C53120.86 (15)
O2—C21—H21A109.5C55—C54—C53117.76 (14)
O2—C21—H21B109.5C56—C55—C54120.15 (14)
H21A—C21—H21B109.5C56—C55—H55119.9
O2—C21—H21C109.5C54—C55—H55119.9
H21A—C21—H21C109.5C55—C56—C51122.63 (15)
H21B—C21—H21C109.5C55—C56—H56118.7
C6—O6—C61116.10 (12)C51—C56—H56118.7
O6—C61—H61A109.5C54—N54—C58120.40 (14)
O6—C61—H61B109.5C54—N54—C57121.04 (13)
H61A—C61—H61B109.5C58—N54—C57118.42 (13)
O6—C61—H61C109.5N54—C57—H57A109.5
H61A—C61—H61C109.5N54—C57—H57B109.5
H61B—C61—H61C109.5H57A—C57—H57B109.5
C42—N41—C4127.57 (13)N54—C57—H57C109.5
C42—N41—H41116.2H57A—C57—H57C109.5
C4—N41—H41116.2H57B—C57—H57C109.5
O42—C42—N41122.18 (14)N54—C58—H58A109.5
O42—C42—C43121.69 (13)N54—C58—H58B109.5
N41—C42—C43116.12 (13)H58A—C58—H58B109.5
C45—C43—C44124.51 (14)N54—C58—H58C109.5
C45—C43—C42117.43 (14)H58A—C58—H58C109.5
C44—C43—C42118.04 (13)H58B—C58—H58C109.5
C6—N1—C2—N31.7 (2)N41—C42—C43—C440.4 (2)
C6—N1—C2—O2179.81 (12)C44—C43—C45—C513.6 (3)
N1—C2—N3—C41.4 (2)C42—C43—C45—C51178.03 (15)
O2—C2—N3—C4179.79 (12)C43—C45—C51—C528.9 (3)
C2—N3—C4—C50.6 (2)C43—C45—C51—C56172.80 (15)
C2—N3—C4—N41178.15 (12)N1—C2—O2—C21178.19 (12)
N3—C4—C5—C61.9 (2)N1—C6—O6—C614.43 (19)
N41—C4—C5—C6176.64 (13)C56—C51—C52—C531.2 (2)
C2—N1—C6—O6178.66 (12)C45—C51—C52—C53179.48 (14)
C2—N1—C6—C50.1 (2)C51—C52—C53—C540.2 (2)
C4—C5—C6—N11.6 (2)C52—C53—C54—N54178.89 (14)
C4—C5—C6—O6177.02 (11)C52—C53—C54—C550.7 (2)
N3—C2—O2—C213.19 (19)N54—C54—C55—C56179.04 (14)
C5—C6—O6—C61174.28 (13)C53—C54—C55—C560.6 (2)
N3—C4—N41—C42170.16 (13)C54—C55—C56—C510.5 (2)
C5—C4—N41—C4211.1 (2)C52—C51—C56—C551.4 (2)
C4—N41—C42—O422.7 (2)C45—C51—C56—C55179.77 (14)
C4—N41—C42—C43177.93 (13)C55—C54—N54—C581.5 (2)
O42—C42—C43—C451.8 (2)C55—C54—N54—C57177.17 (13)
N41—C42—C43—C45178.81 (12)C53—C54—N54—C573.2 (2)
O42—C42—C43—C44179.76 (13)C53—C54—N54—C58178.89 (13)
(II) dimethylammonium 6-cyano-1,3-dimethyl-2,4,5-trioxo-1,2,3,4,5,8- hexahydropyrido[2,3-d]pyrimidin-8-ide top
Crystal data top
C2H8N+·C10H7N4O3Z = 2
Mr = 277.29F(000) = 292
Triclinic, P1Dx = 1.415 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1520 (5) ÅCell parameters from 2419 reflections
b = 9.2984 (8) Åθ = 3.0–25.5°
c = 9.7299 (8) ŵ = 0.11 mm1
α = 69.609 (3)°T = 120 K
β = 70.741 (4)°Needle, yellow
γ = 79.447 (5)°0.12 × 0.05 × 0.03 mm
V = 650.69 (9) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2419 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 3.0°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1111
Tmin = 0.988, Tmax = 0.997l = 1111
9719 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1013P)2 + 0.2276P]
where P = (Fo2 + 2Fc2)/3
2419 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C2H8N+·C10H7N4O3γ = 79.447 (5)°
Mr = 277.29V = 650.69 (9) Å3
Triclinic, P1Z = 2
a = 8.1520 (5) ÅMo Kα radiation
b = 9.2984 (8) ŵ = 0.11 mm1
c = 9.7299 (8) ÅT = 120 K
α = 69.609 (3)°0.12 × 0.05 × 0.03 mm
β = 70.741 (4)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2419 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1538 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.997Rint = 0.077
9719 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
2419 reflectionsΔρmin = 0.33 e Å3
185 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7706 (3)0.5365 (3)0.2930 (3)0.0241 (6)
C20.6987 (3)0.3996 (3)0.3378 (3)0.0247 (7)
N30.6587 (3)0.3176 (3)0.4918 (3)0.0244 (6)
C40.6821 (3)0.3648 (3)0.6056 (3)0.0231 (7)
C4a0.7570 (3)0.5110 (3)0.5526 (3)0.0216 (6)
C50.7927 (3)0.5721 (3)0.6572 (3)0.0217 (7)
C60.8678 (3)0.7188 (3)0.5836 (3)0.0243 (7)
C70.9031 (3)0.7888 (3)0.4276 (3)0.0258 (7)
H70.95330.88490.38550.031*
N80.8717 (3)0.7306 (3)0.3307 (3)0.0263 (6)
C8a0.8015 (3)0.5946 (3)0.3955 (3)0.0219 (7)
C110.8251 (4)0.6202 (4)0.1281 (3)0.0329 (8)
H11A0.95250.61140.08960.049*
H11B0.78320.72890.11110.049*
H11C0.77580.57600.07390.049*
O20.6683 (3)0.3502 (3)0.2480 (2)0.0342 (6)
C310.5889 (4)0.1671 (4)0.5392 (4)0.0349 (8)
H31A0.52340.16890.47030.052*
H31B0.51150.14500.64420.052*
H31C0.68540.08700.53460.052*
O40.6390 (3)0.2813 (2)0.7386 (2)0.0310 (5)
O50.7642 (2)0.5067 (2)0.7990 (2)0.0263 (5)
C610.9088 (4)0.7896 (3)0.6770 (3)0.0260 (7)
N610.9408 (3)0.8469 (3)0.7516 (3)0.0363 (7)
N210.6842 (3)0.2360 (3)1.0197 (3)0.0257 (6)
H21A0.71560.27811.07920.031*
H21B0.69640.30820.92470.031*
C220.4996 (4)0.2018 (4)1.0896 (4)0.0328 (8)
H22A0.48420.12911.19310.049*
H22B0.46520.15641.02710.049*
H22C0.42680.29721.09490.049*
C230.8040 (4)0.0987 (4)1.0028 (4)0.0330 (8)
H23A0.76900.05100.94250.050*
H23B0.79900.02471.10430.050*
H23C0.92320.12960.95050.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0261 (12)0.0285 (15)0.0181 (13)0.0035 (10)0.0082 (10)0.0053 (11)
C20.0214 (14)0.0283 (18)0.0251 (17)0.0007 (12)0.0070 (12)0.0097 (14)
N30.0281 (13)0.0241 (14)0.0226 (14)0.0056 (10)0.0075 (10)0.0073 (11)
C40.0201 (14)0.0275 (17)0.0228 (17)0.0001 (12)0.0062 (12)0.0099 (14)
C4a0.0197 (14)0.0222 (16)0.0213 (16)0.0005 (11)0.0044 (12)0.0073 (13)
C50.0188 (13)0.0244 (17)0.0218 (17)0.0021 (11)0.0055 (12)0.0092 (13)
C60.0222 (14)0.0250 (17)0.0243 (17)0.0022 (12)0.0048 (12)0.0075 (13)
C70.0238 (14)0.0216 (17)0.0302 (18)0.0020 (12)0.0077 (13)0.0057 (14)
N80.0276 (13)0.0257 (15)0.0241 (14)0.0045 (10)0.0075 (10)0.0047 (11)
C8a0.0179 (13)0.0248 (17)0.0231 (16)0.0021 (11)0.0072 (12)0.0080 (13)
C110.0435 (18)0.036 (2)0.0198 (17)0.0058 (15)0.0098 (14)0.0073 (14)
O20.0409 (12)0.0422 (14)0.0281 (12)0.0078 (10)0.0130 (10)0.0161 (11)
C310.0473 (19)0.0296 (19)0.0316 (19)0.0102 (15)0.0124 (15)0.0094 (15)
O40.0416 (12)0.0280 (13)0.0232 (13)0.0109 (9)0.0092 (10)0.0037 (10)
O50.0336 (11)0.0249 (12)0.0213 (12)0.0029 (9)0.0086 (9)0.0074 (9)
C610.0242 (15)0.0236 (17)0.0268 (17)0.0048 (12)0.0031 (12)0.0062 (14)
N610.0474 (17)0.0320 (17)0.0312 (16)0.0136 (13)0.0088 (13)0.0091 (13)
N210.0319 (13)0.0265 (15)0.0189 (13)0.0050 (11)0.0069 (10)0.0064 (11)
C220.0297 (16)0.037 (2)0.0301 (18)0.0042 (13)0.0070 (14)0.0095 (15)
C230.0319 (16)0.0292 (19)0.0333 (19)0.0021 (14)0.0079 (14)0.0078 (15)
Geometric parameters (Å, º) top
N1—C21.368 (4)C7—H70.9500
C2—N31.381 (4)C11—H11A0.9800
N3—C41.401 (3)C11—H11B0.9800
C4—C4a1.447 (4)C11—H11C0.9800
C4a—C51.449 (4)C31—H31A0.9800
C5—C61.444 (4)C31—H31B0.9800
C6—C71.379 (4)C31—H31C0.9800
C7—N81.346 (4)N21—C221.476 (4)
N8—C8a1.340 (4)N21—C231.481 (4)
C8a—N11.393 (4)N21—H21A0.9200
C4a—C8a1.408 (4)N21—H21B0.9200
N1—C111.470 (4)C22—H22A0.9800
C2—O21.225 (3)C22—H22B0.9800
N3—C311.471 (4)C22—H22C0.9800
C4—O41.225 (4)C23—H23A0.9800
C5—O51.258 (3)C23—H23B0.9800
C6—C611.438 (4)C23—H23C0.9800
C61—N611.151 (4)
C2—N1—C8a122.8 (2)H11A—C11—H11B109.5
C2—N1—C11117.6 (2)N1—C11—H11C109.5
C8a—N1—C11119.5 (2)H11A—C11—H11C109.5
O2—C2—N1122.8 (3)H11B—C11—H11C109.5
O2—C2—N3120.3 (3)N3—C31—H31A109.5
N1—C2—N3117.0 (2)N3—C31—H31B109.5
C2—N3—C4125.4 (2)H31A—C31—H31B109.5
C2—N3—C31117.0 (2)N3—C31—H31C109.5
C4—N3—C31117.6 (2)H31A—C31—H31C109.5
O4—C4—N3118.6 (3)H31B—C31—H31C109.5
O4—C4—C4a125.9 (3)N61—C61—C6179.6 (3)
N3—C4—C4a115.6 (2)C22—N21—C23113.3 (2)
C8a—C4a—C4119.7 (2)C22—N21—H21A108.9
C8a—C4a—C5118.8 (3)C23—N21—H21A108.9
C4—C4a—C5121.5 (2)C22—N21—H21B108.9
O5—C5—C6121.3 (2)C23—N21—H21B108.9
O5—C5—C4a125.0 (3)H21A—N21—H21B107.7
C6—C5—C4a113.6 (2)N21—C22—H22A109.5
C7—C6—C61120.4 (3)N21—C22—H22B109.5
C7—C6—C5121.4 (3)H22A—C22—H22B109.5
C61—C6—C5118.2 (2)N21—C22—H22C109.5
N8—C7—C6124.7 (3)H22A—C22—H22C109.5
N8—C7—H7117.6H22B—C22—H22C109.5
C6—C7—H7117.6N21—C23—H23A109.5
C8a—N8—C7115.4 (2)N21—C23—H23B109.5
N8—C8a—N1114.4 (2)H23A—C23—H23B109.5
N8—C8a—C4a126.1 (3)N21—C23—H23C109.5
N1—C8a—C4a119.6 (3)H23A—C23—H23C109.5
N1—C11—H11A109.5H23B—C23—H23C109.5
N1—C11—H11B109.5
C8a—N1—C2—O2178.4 (2)C4—C4a—C5—C6179.8 (2)
C11—N1—C2—O24.8 (4)O5—C5—C6—C7178.4 (2)
C8a—N1—C2—N30.9 (4)C4a—C5—C6—C71.1 (4)
C11—N1—C2—N3175.9 (2)O5—C5—C6—C610.4 (4)
O2—C2—N3—C4177.8 (2)C4a—C5—C6—C61179.8 (2)
N1—C2—N3—C41.5 (4)C61—C6—C7—N8179.1 (2)
O2—C2—N3—C313.4 (4)C5—C6—C7—N80.4 (4)
N1—C2—N3—C31177.2 (2)C6—C7—N8—C8a0.2 (4)
C2—N3—C4—O4179.2 (2)C7—N8—C8a—N1179.8 (2)
C31—N3—C4—O42.1 (4)C7—N8—C8a—C4a0.9 (4)
C2—N3—C4—C4a0.9 (4)C2—N1—C8a—N8179.6 (2)
C31—N3—C4—C4a177.8 (2)C11—N1—C8a—N83.7 (4)
O4—C4—C4a—C8a179.6 (2)C2—N1—C8a—C4a0.3 (4)
N3—C4—C4a—C8a0.3 (4)C11—N1—C8a—C4a177.0 (2)
O4—C4—C4a—C51.5 (4)C4—C4a—C8a—N8179.9 (2)
N3—C4—C4a—C5178.4 (2)C5—C4a—C8a—N81.7 (4)
C8a—C4a—C5—O5177.8 (2)C4—C4a—C8a—N10.8 (4)
C4—C4a—C5—O50.4 (4)C5—C4a—C8a—N1179.0 (2)
C8a—C4a—C5—C61.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21A···O2i0.921.882.735 (4)153
N21—H21B···O40.922.122.757 (3)126
N21—H21B···O50.921.892.699 (3)146
C7—H7···N61ii0.952.543.483 (4)172
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC18H19N5O3C2H8N+·C10H7N4O3
Mr353.38277.29
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)120120
a, b, c (Å)7.9772 (2), 10.0023 (4), 10.8409 (5)8.1520 (5), 9.2984 (8), 9.7299 (8)
α, β, γ (°)93.693 (2), 93.562 (3), 99.196 (2)69.609 (3), 70.741 (4), 79.447 (5)
V3)849.80 (6)650.69 (9)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.100.11
Crystal size (mm)0.23 × 0.12 × 0.120.12 × 0.05 × 0.03
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.978, 0.9880.988, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
15270, 3350, 2512 9719, 2419, 1538
Rint0.0550.077
(sin θ/λ)max1)0.6180.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.04 0.065, 0.194, 1.03
No. of reflections33502419
No. of parameters239185
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.280.32, 0.33

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (I) top
C42—O421.2276 (18)C51—C521.410 (2)
C42—C431.489 (2)C52—C531.373 (2)
C43—C441.430 (2)C53—C541.418 (2)
C44—N441.152 (2)C54—C551.412 (2)
C43—C451.361 (2)C55—C561.375 (2)
C45—C511.434 (2)C56—C511.411 (2)
C54—N541.363 (2)
N3—C4—N41—C42170.16 (13)N1—C2—O2—C21178.19 (12)
C4—N41—C42—C43177.93 (13)N1—C6—O6—C614.43 (19)
N41—C42—C43—C45178.81 (12)C53—C54—N54—C573.2 (2)
C42—C43—C45—C51178.03 (15)C53—C54—N54—C58178.89 (13)
C43—C45—C51—C528.9 (3)
Selected bond lengths (Å) for (II) top
N1—C21.368 (4)N8—C8a1.340 (4)
C2—N31.381 (4)C8a—N11.393 (4)
N3—C41.401 (3)C4a—C8a1.408 (4)
C4—C4a1.447 (4)C2—O21.225 (3)
C4a—C51.449 (4)C4—O41.225 (4)
C5—C61.444 (4)C5—O51.258 (3)
C6—C71.379 (4)C6—C611.438 (4)
C7—N81.346 (4)C61—N611.151 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N21—H21A···O2i0.921.882.735 (4)153
N21—H21B···O40.922.122.757 (3)126
N21—H21B···O50.921.892.699 (3)146
C7—H7···N61ii0.952.543.483 (4)172
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds