Download citation
Download citation
link to html
The compounds poly[di-μ4-succinato-μ2-1,2-di-4-pyridyl­eth­ane-dicopper(II)], [Cu2(C4H4O4)2(C12H12N2)]n, (I), and poly[di-μ4-succinato-μ2-1,3-di-4-pyridylpropane-dicopper(II)], [Cu2(C4H4O4)2(C13H14N2)]n, (II), exhibit polymeric structures with the dicopper units doubly bridged by bis-bidentate succinate groups and crosslinked by the separator bis­(pyridyl) mol­ecules. In (I), the mol­ecule exhibits a centre of inversion located midway between the core Cu-dimer atoms and another that relates half of the bis­(pyridyl)ethane ligand to the other half. Compound (II) has a similar mol­ecular packing but with a doubled lattice constant and noncentrosymmetric core units. An anti­ferromagnetic inter­action due to the dinuclear copper units was deduced from magnetic subsceptibility measurements, and spin triplet signals were detected in the electron paramagnetic resonance spectra for both compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109040566/fa3201sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109040566/fa3201Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109040566/fa3201IIsup3.hkl
Contains datablock II

CCDC references: 760066; 760067

Comment top

Metal–organic coordination polymers are of great current interest and spacer ligands are frequently used to form new extended framework structures. Dimetal units can be combined with the bidentate organic ligands 1,2-di-4-pyridylethane and 1,3-di-4-pyridylpropane as flexible organic spacers to give rise to a large variety of structures (Batsanov et al., 1996; Suen et al., 2006; Carballo et al., 2007). The resultant structures combining dimetal units of Cu2(OAc)4 with two different N,N'-bidentate ligands, 1,2-di-4-pyridylethane and 1,4-di-4-pyridylbuta-1,3-diyne, have been reported as one-dimensional polymer chains containing a bridging nitrogenated ligand and Cu2(OAc)4 dimeric units (Goforth et al., 2005). Besides the observed polymorphism due to the crystallization conditions, ππ interactions between the pyridyl rings play an important role in the resultant packing of the polymeric chains (Hu et al., 2005).

During investigations of the magnetic properties of compounds based on copper(II) succinate complexes, two new compounds were synthesized with 1,2-di-4-pyridylethane and 1,3-di-4-pyridylpropane as bidentate ligands. Our goal was centred on the structural frameworks resulting from the interaction of the succinate chains with N,N'-bidentate spacer ligands. The structure of the binuclear unit was reported by O'Connor & Maslen (1966) for the copper succinate dihydrate, [Cu(C4H4O4)].2H2O. In that structure, ribbon-like chains of paddle-wheel dicopper units are doubly bridged through bis-bidentate succinate groups. Each succinate anion links two dimeric units in the chain and two linking succinate anions are located between each pair of dimeric copper groups. A water molecule is coordinated to each Cu atom in the apical position.

We have now synthesized two new compounds, (I) and (II), with 1,2-di-4-pyridylethane and 1,3-di-4-pyridylpropane as spacer ligands, respectively, and present their crystal structures here.

The structures of both compounds (I) and (II) can be described as ribbon-like chains of paddle-wheel dicopper units doubly bridged through bis-bidentate succinate groups in gauche conformations, with torsion angles C7—C8—C9—C10 = -67.6 (2)° in (I), and C1—C2—C3—C4 = 70.6 (6)° and C5—C6—C7—C8 = -62.47 (1)° in (II), similar to those found for [Cu(C4H4O4)].2H2O (O'Connor & Maslen, 1966). The molecular conformations are shown in Fig. 1 and the molecular packing, viewed along the [010] direction, in Fig. 2. The dimeric copper(II) units are coordinated through the two N atoms to the bidentate ligands in infinite chains. The –Cu–Cu–py(CH2)npy–Cu–Cu– chains run along the [101] direction in (I) and along the [201] direction in (II). The ligand molecules link the succinate chains to form two-dimensional sheets. In compound (I), the planes of successive pyridyl rings joined by the ethylene group are parallel. The pyridyl rings of parallel chains are symmetry-related by the twofold screw axis, and those at (x, y, z) and (1 - x, -1/2 + y, 3/2 - z) form a dihedral angle of 27.7 (3)° with a relative disposition far from eclipsed because of the shift of 1/2 b (the Cg···Cg distance between their centroids is 4.78 Å).

In compound (II), the pyridyl rings containing atoms N1 and N2 form a dihedral angle of 12.3 (3)° and exhibit two different interactions with the rings of parallel symmetry-related chains. For pairs of rings containing N1 at (x, y, z) and (2 - x, 1 - y, 1 - z), the Cg···Cg distance is 3.761 (3) Å (slip distance 1.29 Å), whereas for the rings containing N2 at (x, y, z) and (1 - x, 1 - y, 1 - z), these values are 3.631 (4) Å and 1.03 Å, respectively, which corresponds to a ππ interaction. In this way, the chains interact through these ππ stacking interactions between pyridyl ring pairs and a three-dimensional architecture is thereby established. Other such ππ interactions between pairs of aromatic rings have been described (Perlepes et al., 1992).

In both compounds, each CuII atom exhibits the same coordination, a square-pyramidal geometry. The geometry of the dinuclear unit is described in Tables 1 and 2 for compounds (I) and (II), respectively. The equatorial plane is formed by four O atoms of four succinate groups. The apical position is occupied by an N atom of a spacer ligand. The trigonality indices (Addison et al., 1984) deduced from the angle data [τ = 0.004 for (I), and 0.005 (Cu1) and 0.004 (Cu2) for (II)] indicate a square-pyramidal geometry. The CuII atoms are displaced from the basal plane toward the apical N atom by 0.218 Å in (I), and by 0.195 (Cu1) and 0.213 Å (Cu2) in (II). This coordination geometry is similar to that found for CuII succinate dihydrate (O'Connor & Maslen, 1966). The magnetic and electron paramgnetic resonance (EPR) results for [Cu(C4H4O4)].2H2O (Sharrok & Melnik, 1985) correspond to the antiferromagnetic interaction characteristic of dimeric units with four synsyn bridging carboxylate groups. In compounds (I) and (II) we found similar results.

The magnetic and EPR results agree with those found for compounds containing a dimeric copper unit (Seco et al., 2002; Sapiña et al., 1994). The dominant magnetic interaction is the antiferromagnetism due to the presence of the dimeric units. A hypothetical interaction through the nitrogenated ligands is negligible, as was found for one-dimensional chains with 1,2-di-4-pyridylethane (Carballo et al., 2007).

Experimental top

A combined solution of (CuSO4).5H2O (0.125 mmol, 31 mg) and succinic acid (0.125 mmol, 15 mg) in H2O (25 ml), 1,2-di-4-pyridylethane (0.125 mmol, 23 mg) in H2O (25 ml) and urea (0.437 mmol, 26 mg) in H2O (25 ml) was prepared. After approximately a month, small green crystals of (I) were obtained, suitable for X-ray crystallographic study. By the same procedure with 1,3-di-4-pyridylpropane, crystals of compound (II) were also obtained.

Temperature-dependent magnetic susceptibility data were collected in the 6.5–300 K range using a Quantum Design PPMS 6000 magnetometer in a field of 5 kOe. The χm.T values decrease with decreasing temperature in the manner characteristic of paddle-wheel dinuclear copper groups. The observed χm.T data were fitted to the Bleaney–Bowers equation for a dimer with S1 = S2 = 1/2, modified by the inclusion of a fraction of monomeric impurity (O'Connor, 1982): χm(2Cu) = 2{[Cex(1-ρ)/(1 + 3 ex)] + Cρ/4 + Nα}, where C = Ng2β2/kT, x = 2 J/kT, 2 J = separation between singlet and triplet states, [T is the temperature, k is the Boltzmann constant?], ρ = fraction of monomeric impurity and Nα is the temperature-independent paramagnetism (TIP). The antiferromagnetic parameters are 2 J = -366 and -336 cm-1 for (I) and (II), respectively. The powder EPR spectra of (I) and (II), recorded on a Bruker ESP 300 spectrometer at Q band and room temperature, show the five signals of the triplet state (S = 1) for D ≠ 0 and E 0. The spectra were interpreted according to the Wasserman, Snyder and Yager equations (Bencini & Gatteschi, 1990). The values gparallel = 2.26/2.26, gperpendicular = 2.07/2.06 and D = 0.36/0.37 cm-1 for (I)/(II) were thereby obtained.

Refinement top

The space group for both compounds (I) and (II) is P21/c but the lattice constants cannot be compared directly. The relation between the cell parameters is given by aI = 1/2cII, bI = bII and cI = aII + 1/2cII. The diffraction pattern of (II) shows a pseudo body-centred symmetry (h + k + l = 2n) which, combined with the genuine conditions for P21/c, gives pseudo-conditions for I2/a (standard C2/c).

For both compounds, the H-atom coordinates were calculated with C—H = 0.98 Å and constrained, with Uiso(H) = 1.2Ueq(C). The atomic displacement parameters of the pyridyl rings indicate some orientational disorder, with a large component of the thermal ellipsoid perpendicular to the plane of the ring.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007) for (I); X-AREA (Stoe & Cie, 2006) for (II). Cell refinement: CrysAlis RED (Oxford Diffraction, 2007) for (I); X-AREA (Stoe & Cie, 2006) for (II). Data reduction: CrysAlis RED (Oxford Diffraction, 2007) for (I); X-RED32 (Stoe & Cie, 2006) for (II). For both compounds, program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. (a) A view of the copper coordination with a partial chain for (I) and (b) the configuration for compound (II). Atoms of the asymmetric units are labelled. For (I), the Cu—Cu vector is centred at (0, 1, 1/2). Displacement ellipsoids are drawn at the ??% probability level [Please complete] and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Projections along [010], showing the molecular packing of (a) (I) and (b) (II).
(I) poly[di-µ4-succinato-µ2-1,2-di-4-pyridylethane-dicopper(II)] top
Crystal data top
[Cu2(C4H4O4)2(C12H12N2)]F(000) = 552
Mr = 271.7Dx = 1.803 (1) Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 852 reflections
a = 11.342 (2) Åθ = 2.7–32.5°
b = 6.4613 (10) ŵ = 2.18 mm1
c = 15.269 (4) ÅT = 295 K
β = 116.55 (3)°Plate, green
V = 1000.9 (4) Å30.16 × 0.16 × 0.02 mm
Z = 4
Data collection top
Make? Model? CCD
diffractometer
2885 independent reflections
Radiation source: X-ray tube1225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
Detector resolution: 8.3504 pixels mm-1θmax = 30.0°, θmin = 2.8°
ω–scansh = 1515
Absorption correction: integration
(JANA2006; Petříček et al., 2006)
k = 99
Tmin = 0.763, Tmax = 0.960l = 1921
10503 measured reflections
Refinement top
Refinement on F0 constraints
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.068Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0004F2)
S = 0.99(Δ/σ)max = 0.050
2885 reflectionsΔρmax = 1.83 e Å3
145 parametersΔρmin = 0.97 e Å3
0 restraints
Crystal data top
[Cu2(C4H4O4)2(C12H12N2)]V = 1000.9 (4) Å3
Mr = 271.7Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.342 (2) ŵ = 2.18 mm1
b = 6.4613 (10) ÅT = 295 K
c = 15.269 (4) Å0.16 × 0.16 × 0.02 mm
β = 116.55 (3)°
Data collection top
Make? Model? CCD
diffractometer
2885 independent reflections
Absorption correction: integration
(JANA2006; Petříček et al., 2006)
1225 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.960Rint = 0.093
10503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 0.99Δρmax = 1.83 e Å3
2885 reflectionsΔρmin = 0.97 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.11891 (8)0.96724 (10)0.57384 (4)0.0306 (3)
O10.1287 (5)0.7716 (6)0.4796 (3)0.044 (2)
O20.0709 (4)0.8189 (6)0.3561 (2)0.038 (2)
O40.1921 (5)0.1807 (6)0.5215 (2)0.041 (2)
O30.0079 (5)0.2322 (6)0.3975 (2)0.040 (2)
N0.2913 (5)0.8234 (7)0.6964 (3)0.037 (3)
C10.2759 (5)0.6208 (5)0.7079 (3)0.046 (4)
C20.3480 (5)0.5129 (7)0.7918 (3)0.051 (4)
C30.4470 (4)0.6124 (4)0.8707 (4)0.056 (4)
C40.4674 (5)0.8205 (6)0.8593 (3)0.058 (4)
C50.3884 (5)0.9144 (7)0.7723 (3)0.047 (4)
C60.5272 (4)0.4949 (6)0.9653 (2)0.077 (3)
C70.03924 (9)0.73493 (5)0.39513 (6)0.030 (3)
C80.0729 (4)0.5824 (6)0.33461 (19)0.038 (3)
C90.16814 (9)0.41667 (5)0.39428 (4)0.040 (3)
C100.11519 (9)0.26539 (8)0.443045 (7)0.035 (4)
H10.2085930.5454860.6523120.0549*
H20.3298970.3659360.7962540.0617*
H40.5369430.8983380.9123510.0693*
H50.4049631.0609650.7654360.0565*
H6A0.535520.349870.9502410.0927*
H6B0.6176970.5478810.9960040.0927*
H8A0.0081010.5179820.2858670.0456*
H8B0.1091370.6569660.2961790.0456*
H9A0.199440.341150.353040.0481*
H9B0.248550.481120.443800.0481*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0350 (5)0.0290 (4)0.0260 (3)0.0021 (4)0.0119 (3)0.0028 (3)
O10.053 (4)0.040 (2)0.035 (2)0.008 (2)0.016 (2)0.0031 (18)
O20.049 (4)0.034 (2)0.033 (2)0.001 (2)0.020 (2)0.0051 (16)
O40.040 (4)0.040 (3)0.041 (2)0.001 (2)0.018 (2)0.0073 (17)
O30.043 (4)0.034 (2)0.041 (2)0.013 (2)0.016 (3)0.0118 (17)
N0.044 (5)0.032 (3)0.032 (2)0.005 (3)0.013 (3)0.006 (2)
C10.036 (6)0.042 (4)0.047 (3)0.013 (4)0.008 (4)0.000 (3)
C20.045 (7)0.035 (4)0.071 (4)0.009 (4)0.024 (4)0.021 (3)
C30.038 (6)0.087 (5)0.048 (4)0.019 (5)0.024 (4)0.029 (4)
C40.050 (7)0.074 (5)0.032 (3)0.000 (5)0.003 (4)0.006 (3)
C50.044 (6)0.047 (4)0.049 (3)0.001 (4)0.019 (4)0.001 (3)
C60.055 (5)0.120 (3)0.053 (3)0.021 (3)0.020 (3)0.045 (2)
C70.047 (5)0.014 (4)0.033 (3)0.008 (3)0.020 (3)0.008 (2)
C80.057 (5)0.035 (3)0.031 (3)0.004 (3)0.028 (4)0.005 (2)
C90.051 (5)0.040 (4)0.041 (3)0.002 (3)0.031 (3)0.002 (3)
C100.036 (6)0.029 (7)0.047 (4)0.016 (6)0.025 (4)0.004 (4)
Geometric parameters (Å, º) top
Cu1—Cu1i2.665 (2)C2—H20.980
Cu1—O11.955 (4)C3—C41.388 (5)
Cu1—O2i1.967 (4)C3—C61.522 (5)
Cu1—O4ii1.955 (5)C4—C51.368 (6)
Cu1—O3iii1.983 (5)C4—H40.980
Cu1—N2.218 (4)C5—H50.980
O1—C71.257 (3)C6—C6iv1.445 (7)
O2—C71.243 (4)C6—H6A0.980
O4—C101.250 (3)C6—H6B0.980
O3—C101.269 (5)C7—C81.512 (4)
N—C11.342 (6)C8—C91.504 (4)
N—C51.327 (6)C8—H8A0.980
C1—C21.364 (6)C8—H8B0.980
C1—H10.980C9—C101.5067 (11)
C2—C31.384 (5)
O1—Cu1—O2i167.08 (15)C2—C1—H1118.0
O1—Cu1—O4ii88.93 (19)C1—C2—H2120.0
O1—Cu1—O3iii89.57 (19)C3—C2—H2120.0
O2i—Cu1—O4ii89.86 (19)C3—C4—H4121.0
O2i—Cu1—O3iii88.83 (19)C5—C4—H4121.0
O4ii—Cu1—O3iii167.50 (15)C4—C5—H5117.0
O1—C7—O2125.9 (3)C7—C8—C9113.75 (18)
O4—C10—O3125.2 (3)C7—C8—H8A109.0
C1—N—C5115.1 (4)C7—C8—H8B109.0
C1—C2—C3119.5 (4)C10—C9—H9A109.0
C2—C3—C4117.2 (4)C10—C9—H9B109.0
C2—C3—C6120.2 (3)C8—C9—H9A109.0
C4—C3—C6122.7 (3)C8—C9—H9B109.0
C3—C4—C5118.6 (4)C3—C6—C6iv113.8 (2)
C7—C8—C9113.75 (18)C3—C6—H6A109.0
C8—C9—C10115.1 (2)C3—C6—H6B109.0
C3—C6—C6iv113.8 (4)C6iv—C6—H6A109.0
N—C1—H1118.0C6iv—C6—H6B109.0
C7—C8—C9—C1067.6 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+2.
(II) poly[di-µ4-succinato-µ2-1,3-di-4-pyridylpropane-dicopper(II)] top
Crystal data top
[Cu2(C4H4O4)2(C13H14N2)]F(000) = 1136
Mr = 557.5Dx = 1.717 (1) Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 532 reflections
a = 15.563 (1) Åθ = 3.1–22.5°
b = 6.4472 (7) ŵ = 2.03 mm1
c = 24.100 (2) ÅT = 295 K
β = 116.913 (9)°Prismatic, green
V = 2156.2 (4) Å30.29 × 0.08 × 0.02 mm
Z = 4
Data collection top
Stoe IPDS image-plate
diffractometer
5101 independent reflections
Radiation source: fine focus sealed tube1931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
ω scansθmax = 28.0°, θmin = 2.7°
Absorption correction: gaussian
(JANA2006; Petříček et al., 2006)
h = 2020
Tmin = 0.789, Tmax = 0.960k = 88
25854 measured reflectionsl = 3131
Refinement top
Refinement on F0 constraints
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.054Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 1.30(Δ/σ)max = 0.039
5101 reflectionsΔρmax = 0.54 e Å3
248 parametersΔρmin = 0.85 e Å3
0 restraints
Crystal data top
[Cu2(C4H4O4)2(C13H14N2)]V = 2156.2 (4) Å3
Mr = 557.5Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.563 (1) ŵ = 2.03 mm1
b = 6.4472 (7) ÅT = 295 K
c = 24.100 (2) Å0.29 × 0.08 × 0.02 mm
β = 116.913 (9)°
Data collection top
Stoe IPDS image-plate
diffractometer
5101 independent reflections
Absorption correction: gaussian
(JANA2006; Petříček et al., 2006)
1931 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.960Rint = 0.110
25854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.30Δρmax = 0.54 e Å3
5101 reflectionsΔρmin = 0.85 e Å3
248 parameters
Special details top

Refinement. Refinement of F against ALL reflections. The conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of I > σ(I) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.17678 (9)0.20595 (16)0.19667 (6)0.0246 (6)
Cu20.32283 (9)0.27343 (17)0.30679 (6)0.0231 (5)
O10.1087 (5)0.4238 (10)0.2184 (3)0.030 (4)
O20.2302 (6)0.4674 (10)0.3137 (4)0.036 (4)
O30.1449 (6)1.0085 (10)0.2468 (4)0.034 (4)
O40.2722 (6)1.0525 (11)0.3417 (3)0.031 (3)
O50.2278 (6)0.4183 (10)0.1618 (4)0.035 (4)
O60.3488 (5)0.4771 (11)0.2551 (3)0.037 (3)
O70.2671 (6)1.0048 (11)0.1916 (4)0.037 (4)
O80.3919 (6)1.0638 (10)0.2833 (3)0.035 (4)
N11.0553 (5)0.4178 (12)0.6148 (3)0.026 (4)
N20.4451 (5)0.3947 (12)0.3883 (3)0.028 (4)
C10.1457 (5)0.5050 (10)0.27044 (11)0.024 (5)
C20.0857 (5)0.6562 (9)0.2864 (2)0.038 (4)
C30.1493 (5)0.8239 (10)0.33420 (12)0.029 (6)
C40.1902 (5)0.9729 (10)0.30296 (16)0.020 (5)
C50.35289 (6)0.97821 (6)0.23136 (2)0.029 (5)
C60.41242 (6)0.82608 (6)0.21495 (4)0.032 (4)
C70.35388 (6)0.65488 (5)0.17277 (4)0.031 (4)
C80.30150 (6)0.50731 (5)0.19612 (2)0.029 (5)
C90.99225 (4)0.30834 (3)0.57125 (3)0.052 (5)
C100.906190 (19)0.39072 (5)0.522389 (17)0.049 (3)
C110.88685 (5)0.59386 (6)0.51985 (3)0.040 (4)
C120.9586 (5)0.7155 (8)0.5693 (3)0.055 (6)
C131.0379 (5)0.6173 (7)0.6133 (4)0.052 (5)
C140.8014 (3)0.7055 (5)0.4687 (2)0.034 (5)
C150.7450 (4)0.8301 (8)0.4960 (3)0.044 (6)
C160.6955 (5)0.6951 (7)0.5232 (4)0.049 (5)
C170.6075 (4)0.5938 (8)0.4796 (3)0.028 (4)
C180.6097 (4)0.3878 (6)0.4663 (3)0.037 (4)
C190.52906 (7)0.29295 (7)0.42123 (5)0.033 (5)
C200.4420 (4)0.5969 (8)0.4009 (3)0.038 (4)
C210.5215 (5)0.6972 (7)0.4459 (3)0.038 (4)
H2A0.0388870.7244190.2483490.0461*
H2B0.0485740.5800510.303540.0461*
H3A0.1099520.9014270.3493670.035*
H3B0.2023350.7559570.3694490.035*
H6A0.4630760.7666180.2531980.0385*
H6B0.446580.9009140.1955090.0385*
H7A0.3940430.5752440.1587280.037*
H7B0.3080420.7133480.1326830.037*
H91.0036610.1588140.571390.0619*
H100.8607870.2977590.4903690.0583*
H120.9506660.8656830.5713430.0655*
H131.0858260.7028860.6465520.0625*
H14A0.8244690.7995440.4464260.0409*
H14B0.7585130.603790.4388010.0409*
H15A0.7888120.9252860.5279840.0532*
H15B0.6972610.9181540.4635310.0532*
H16A0.6828120.7752930.5532890.0586*
H16B0.7408540.5908350.5503580.0586*
H180.6689290.3076460.4889340.0449*
H190.5326660.1454760.4126470.0391*
H200.382130.6747530.3778270.0457*
H210.5168720.8447210.4539810.0458*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0210 (8)0.0213 (6)0.0303 (7)0.0041 (6)0.0107 (6)0.0056 (5)
Cu20.0191 (8)0.0227 (6)0.0269 (6)0.0034 (6)0.0100 (6)0.0047 (5)
O10.025 (5)0.028 (4)0.034 (4)0.003 (3)0.010 (4)0.007 (3)
O20.037 (6)0.032 (4)0.043 (5)0.005 (3)0.022 (4)0.006 (3)
O30.035 (6)0.026 (4)0.039 (4)0.006 (3)0.016 (4)0.003 (3)
O40.025 (5)0.032 (4)0.031 (4)0.009 (3)0.010 (4)0.004 (3)
O50.039 (5)0.035 (4)0.031 (4)0.014 (3)0.018 (4)0.003 (3)
O60.028 (5)0.035 (4)0.036 (4)0.019 (3)0.006 (4)0.006 (3)
O70.019 (6)0.039 (4)0.047 (5)0.003 (4)0.008 (4)0.012 (3)
O80.028 (6)0.035 (4)0.038 (4)0.003 (3)0.010 (4)0.013 (3)
N10.022 (6)0.025 (5)0.023 (4)0.005 (4)0.003 (4)0.005 (3)
N20.033 (6)0.025 (5)0.030 (5)0.003 (4)0.018 (5)0.001 (3)
C10.024 (7)0.025 (6)0.032 (6)0.006 (4)0.021 (6)0.000 (4)
C20.035 (6)0.025 (5)0.071 (5)0.008 (4)0.038 (5)0.019 (4)
C30.044 (8)0.016 (5)0.046 (8)0.001 (4)0.037 (7)0.000 (4)
C40.016 (7)0.017 (5)0.028 (6)0.008 (4)0.009 (6)0.015 (4)
C50.027 (7)0.014 (5)0.055 (8)0.006 (5)0.027 (7)0.005 (5)
C60.033 (6)0.018 (5)0.057 (5)0.008 (4)0.031 (5)0.012 (4)
C70.043 (7)0.017 (5)0.039 (5)0.005 (4)0.024 (5)0.003 (4)
C80.045 (7)0.020 (5)0.036 (7)0.013 (5)0.031 (6)0.001 (5)
C90.035 (7)0.021 (9)0.088 (4)0.000 (6)0.018 (4)0.004 (5)
C100.040 (5)0.030 (4)0.068 (4)0.008 (7)0.017 (4)0.017 (6)
C110.040 (6)0.056 (6)0.028 (4)0.000 (5)0.018 (4)0.007 (4)
C120.042 (8)0.030 (5)0.080 (7)0.009 (5)0.018 (7)0.007 (5)
C130.036 (8)0.036 (6)0.047 (6)0.006 (5)0.014 (6)0.005 (5)
C140.027 (7)0.043 (8)0.028 (6)0.008 (5)0.008 (6)0.014 (5)
C150.027 (11)0.036 (5)0.050 (7)0.012 (6)0.000 (7)0.013 (5)
C160.042 (9)0.077 (6)0.013 (5)0.018 (5)0.001 (6)0.007 (4)
C170.013 (5)0.042 (5)0.025 (5)0.003 (4)0.004 (4)0.014 (4)
C180.018 (6)0.045 (6)0.039 (5)0.007 (4)0.003 (5)0.001 (4)
C190.015 (7)0.030 (7)0.048 (6)0.005 (5)0.010 (5)0.001 (5)
C200.025 (6)0.028 (5)0.044 (5)0.003 (4)0.001 (5)0.005 (4)
C210.036 (7)0.019 (5)0.048 (5)0.003 (4)0.009 (5)0.005 (4)
Geometric parameters (Å, º) top
Cu1—Cu22.6336 (17)C12—C131.365 (8)
Cu1—O11.968 (9)C14—C151.540 (9)
Cu1—O3i1.967 (9)C15—C161.495 (11)
Cu1—O51.953 (9)C16—C171.451 (8)
Cu1—O7i1.957 (9)C17—C181.370 (7)
Cu2—O21.971 (9)C17—C211.382 (8)
Cu2—O4i1.989 (9)C18—C191.376 (5)
Cu2—O61.974 (9)C20—C211.382 (7)
Cu2—O8i1.963 (9)C2—H2A0.980
O1—C11.234 (8)C2—H2B0.980
O2—C11.279 (9)C3—H3A0.980
O3—C41.232 (8)C3—H3B0.980
O4—C41.299 (9)C6—H6A0.9800
O5—C81.212 (7)C6—H6B0.9800
O6—C81.285 (7)C7—H7A0.9800
O7—C51.254 (7)C7—H7B0.9800
O8—C51.246 (7)C9—H90.9800
N1—C91.277 (6)C10—H100.9800
N1—C131.312 (9)C12—H120.980
N2—C191.352 (7)C13—H130.980
N2—C201.345 (9)C14—H14A0.980
C1—C21.515 (10)C14—H14B0.980
C2—C31.563 (7)C15—H15A0.980
C3—C41.526 (10)C15—H15B0.980
C5—C61.5194 (12)C16—H16A0.980
C6—C71.4977 (8)C16—H16B0.980
C7—C81.5171 (12)C19—H190.9800
C9—C101.4265 (6)C20—H200.980
C10—C111.3390 (6)C18—H180.980
C11—C121.442 (6)C21—H210.980
C11—C141.524 (4)
O1—Cu1—O3i89.0 (4)C10—C11—C12114.9 (2)
O1—Cu1—O589.3 (4)C10—C11—C14126.51 (14)
O1—Cu1—O7i168.1 (3)C12—C11—C14118.5 (3)
O3i—Cu1—O5169.3 (3)C11—C12—C13118.7 (4)
O3i—Cu1—O7i89.9 (4)N1—C13—C12125.4 (5)
O5—Cu1—O7i89.6 (4)C11—C14—C15111.0 (4)
O2—Cu2—O4i88.5 (4)C14—C15—C16113.0 (4)
O2—Cu2—O689.9 (4)C15—C16—C17116.7 (6)
O2—Cu2—O8i167.9 (3)C16—C17—C18119.4 (5)
O4i—Cu2—O6167.6 (3)C16—C17—C21123.6 (5)
O4i—Cu2—O8i90.1 (4)C18—C17—C21116.7 (5)
O6—Cu2—O8i88.9 (4)C17—C18—C19120.4 (4)
Cu1—O1—C1120.9 (6)N2—C19—C18122.8 (4)
Cu2—O2—C1125.0 (6)N2—C20—C21121.4 (5)
Cu1ii—O3—C4128.1 (6)C17—C21—C20121.3 (5)
Cu2ii—O4—C4115.3 (5)C1—C2—H2A109.0
Cu1—O5—C8118.8 (5)C1—C2—H2B109.0
Cu2—O6—C8128.3 (5)C2—C3—H3A109.0
Cu1ii—O7—C5126.1 (5)C2—C3—H3B109.0
Cu2ii—O8—C5120.9 (5)C4—C3—H3A109.0
C9—N1—C13116.6 (5)C4—C3—H3B109.0
C19—N2—C20117.5 (5)C6—C7—H7A109.0
O1—C1—O2125.6 (8)C6—C7—H7B109.0
O1—C1—C2118.2 (6)C8—C7—H7A109.0
O2—C1—C2116.2 (5)C8—C7—H7B109.0
C1—C2—C3112.0 (6)C10—C9—H9118.0
C2—C3—C4109.8 (4)C11—C10—H10119.0
O3—C4—O4127.2 (8)C11—C12—H12120.0
O3—C4—C3120.0 (7)C12—C13—H13117.0
O4—C4—C3112.8 (5)C11—C14—H14A109.0
O7—C5—O8125.0 (6)C11—C14—H14B109.0
O7—C5—C6116.9 (4)C14—C15—H15A109.0
O8—C5—C6118.1 (4)C14—C15—H15B109.0
C5—C6—C7113.40 (7)C15—C16—H16A109.0
C6—C7—C8118.31 (8)C15—C16—H16B109.0
O5—C8—O6125.0 (5)C17—C18—H18119.0
O5—C8—C7123.0 (4)C18—C19—H19119.0
O6—C8—C7111.7 (4)C21—C20—H20119.0
N1—C9—C10123.9 (3)C20—C21—H21119.0
C9—C10—C11120.63 (3)
C1—C2—C3—C470.6 (6)C5—C6—C7—C862.47 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu2(C4H4O4)2(C12H12N2)][Cu2(C4H4O4)2(C13H14N2)]
Mr271.7557.5
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)295295
a, b, c (Å)11.342 (2), 6.4613 (10), 15.269 (4)15.563 (1), 6.4472 (7), 24.100 (2)
β (°) 116.55 (3) 116.913 (9)
V3)1000.9 (4)2156.2 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)2.182.03
Crystal size (mm)0.16 × 0.16 × 0.020.29 × 0.08 × 0.02
Data collection
DiffractometerMake? Model? CCD
diffractometer
Stoe IPDS image-plate
diffractometer
Absorption correctionIntegration
(JANA2006; Petříček et al., 2006)
Gaussian
(JANA2006; Petříček et al., 2006)
Tmin, Tmax0.763, 0.9600.789, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
10503, 2885, 1225 25854, 5101, 1931
Rint0.0930.110
(sin θ/λ)max1)0.7030.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.068, 0.99 0.056, 0.054, 1.30
No. of reflections28855101
No. of parameters145248
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.83, 0.970.54, 0.85

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), X-AREA (Stoe & Cie, 2006), CrysAlis RED (Oxford Diffraction, 2007), X-RED32 (Stoe & Cie, 2006), SIR97 (Altomare et al., 1999), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Selected geometric parameters (Å, º) for (I) top
Cu1—Cu1i2.665 (2)Cu1—O4ii1.955 (5)
Cu1—O11.955 (4)Cu1—O3iii1.983 (5)
Cu1—O2i1.967 (4)Cu1—N2.218 (4)
O1—Cu1—O2i167.08 (15)O2i—Cu1—O4ii89.86 (19)
O1—Cu1—O4ii88.93 (19)O2i—Cu1—O3iii88.83 (19)
O1—Cu1—O3iii89.57 (19)O4ii—Cu1—O3iii167.50 (15)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z; (iii) x, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
Cu1—Cu22.6336 (17)Cu2—O21.971 (9)
Cu1—O11.968 (9)Cu2—O4i1.989 (9)
Cu1—O3i1.967 (9)Cu2—O61.974 (9)
Cu1—O51.953 (9)Cu2—O8i1.963 (9)
Cu1—O7i1.957 (9)
O1—Cu1—O3i89.0 (4)O2—Cu2—O4i88.5 (4)
O1—Cu1—O589.3 (4)O2—Cu2—O689.9 (4)
O1—Cu1—O7i168.1 (3)O2—Cu2—O8i167.9 (3)
O3i—Cu1—O5169.3 (3)O4i—Cu2—O6167.6 (3)
O3i—Cu1—O7i89.9 (4)O4i—Cu2—O8i90.1 (4)
O5—Cu1—O7i89.6 (4)O6—Cu2—O8i88.9 (4)
Symmetry code: (i) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds