Download citation
Download citation
link to html
Sodium strontium penta­borate, Na3SrB5O10, maintains the same, previously unobserved, structure type at 200, 250 and 293 K. The fundamental building units are anionic [B5O10]5- groups distorted from mm2 point symmetry. The Sr atoms are eightfold coordinated by O atoms, forming trigonal dodeca­hedra. The Na atoms appear in three crystallographically different environments. The present single-crystal results correct a previous report in which a monoclinic cell was deduced for this compound on the basis of powder diffraction data. The structure of the title compound is discussed in the crystalochemical context of other borates with the same formula type. Although the unit cell of the present compound is similar to that determined in a previous study of the analogous Ca-containing compound, this study demonstrates that the structures of the two are different. These novel alkali-alkaline earth borates are considered as potential host materials for optical applications (fluorescence materials or phosphors).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108016909/fa3144sup1.cif
Contains datablocks global, I_200K, I_250K, I_293K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016909/fa3144I_200Ksup2.hkl
Contains datablock I_200K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016909/fa3144I_250Ksup3.hkl
Contains datablock I_250K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016909/fa3144I_293Ksup4.hkl
Contains datablock I_293K

Comment top

Inorganic borates have long been a focus of research due to their variety of structure types, transparency over a wide range of wavelengths, high laser damage tolerance and high optical quality. Studies of alkali metal and alkaline earth borates have produced a large family of compounds with outstanding physical properties (Becker, 1998; Chen et al., 1999), such as β-BaB2O4 (Chen et al., 1985), LiB3O5 (Chen et al., 1989), Sr2Be2B2O7 (Chen et al., 1995) and K2Al2B2O7 (Hu et al., 1999). Recently, photoluminescence has also been observed in many rare earth ion-doped alkaline earth metal borates (Pei & Su, 1993; Schaffers & Keszler, 1994; Diaz & Keszler, 1996, 1997). Some have been developed into useful phosphors, such as UV-emitting Eu2+-doped SrB4O7 [Please check rephrasing] in lamps for medical applications and skin tanning (Pei & Su, 1993). Because it has a similar radius and identical valence to Sr2+ and Ba2+, it is easy to substitute Eu2+ for Sr2+ and Ba2+ in crystals, giving photoluminescent doped systems. These properties depend on the crystal structures of the borates, which have a variety of [BnOm] polyhedral groups. The richness of their crystal chemistry and optical properties led us to explore more borates in the system M2O–M'O–B2O3 (M is an alkali metal and M' is an alkaline earth metal) to search for new functional materials. Four ternary compounds, NaSrBO3 (Wu et al., 2006), NaSr4(BO3)3 (Wu et al., 2005), NaSrB5O9 (Wu, Zhang, Chen et al., 2007) and the title compound, Na3SrB5O10, were found while investigating the subsolidus phase relations in the system Na2O–SrO–B2O3. The space group of Na3SrB5O10 was at first thought to be C2 based on the indexing of a powder pattern (Wu, Zhang, Chen et al., 2007). In the present study, we have employed single-crystal X-ray diffraction at various temperatures to determine and refine the structure of the title compound.

The single-crystal study at 200 K showed that crystalline Na3SrB5O10 is in fact triclinic. As illustrated in Fig. 1, the fundamental building unit of Na3SrB5O10 is the [B5O10]5- group, which is composed of four [BO3] triangles (Δ) (labelled B2, B3, B4 and B5) and one [BO4] tetrahedron (T) (labelled B1). In the [B5O10] group, one T(B1) in the middle is connected to Δ(B2)+Δ(B4) and Δ(B3)+Δ(B5) on two sides, forming two [B3O3] six-membered rings approximately perpendicular to each other. A constraint to planarity for the six-membered rings was tried during structure refinement but led to a significant increase of the R value, which means that the distortion from local mm2 point symmetry for the ideal [B5O10] group is real. The four terminal O atoms lie near the planes of their respective six-membered rings, but with small deviations which lead to dihedral angles of 9.43 (14)° between Δ(B2) and Δ(B4), and 11.72 (13)° between Δ(B3) and Δ(B5) (Fig. 2). The [B5O10]5- groups are not directly linked to each other but connected via SrO8 and NaOn (n = 6 or 7) polyhedra (Fig. 3), forming a complex three-dimensional array.

The Sr atoms are eight-fold coordinated by O, forming polyhedra with 12 faces. These form edge-sharing pairs, as shown in Fig. 4. Each SrO8 polyhedron connects to five [B5O10]5- groups through three edges and two vertices.

The Na atoms appear in three crystallographically different environments (Fig. 5). Atom Na1 is six-fold coordinated by O at distances of 2.246 (2)–2.7220 (18) Å with a bond-valence sum (Brown & Altermatt, 1985) of 1.181, forming a distorted octahedron that shares one edge and four vertices with five adjacent [B5O10]5- groups. Two of these distorted octahedra share one edge with each other. Atom Na2 has close contacts from six O atoms at distances of 2.3210 (16)–2.705 (2) Å, and is weakly bonded to one additional O neighbour at a distance of 3.024 (2) Å. A bond-valence calculation gives sums of 0.968 and 1.005 for atom Na2 when six and seven bonds are taken into account, respectively, which means the long Na—O distance also participates in the coordination scheme, forming a distorted polyhedron with nine faces. Two of the [Na2O7] polyhedra share a common face, and each of them shares three edges and one vertex with four neighbouring [B5O10]5- groups. Atom Na3 is coordinated by five O atoms at distances of 2.248 (2)–2.705 (2) Å and by one further O atom at a distance of 3.151 (2) Å. The five shortest bonds give a bond-valence sum of 0.917 for atom Na3, but this increases to 0.943 when the sixth bond is taken into account, indicating that the distorted octahedron is the coordination polyhedron. Two of the [Na3O6] polyhedra share a common edge, and each shares two edges and two vertices with four [B5O10]5- groups.

To date, four pentaborates have been described, namely Na3MgB5O10 (Chen, Li, Zuo et al., 2007), Na3CaB5O10 (Fayos et al., 1985; Chen, Li, Zuo et al., 2007), Na3SrB5O10 (this work) and Na3ZnB5O10 (Chen, Li, Chang et al., 2007). The structure of Na3CaB5O10 was first reported by Fayos et al. (1985). A recent study found that it had a superstructure (Chen, Li, Zuo et al., 2007) with a cell volume twice that reported previously. The present Sr-containing structure has a cell similar to that of the previously reported Ca-containing structure.

Na3MgB5O10 crystallizes in the orthorhombic space group Pbca, and Na3ZnB5O10 crystallizes in the monoclinic space group P21/n. The fundamental building unit of the calcium and strontium pentaborates is the isolated polyanionic group [B5O10]5-, but none of the six-membered rings with terminal O atoms is rigorously planar; they are distorted and only approximately perpendicular to each other. The dihedral angles formed by the six-membered rings are 88.41 (6)° and 88.02 (7)/89.63 (7)° for Na3SrB5O10 and Na3CaB5O10, respectively. In contrast with the Sr- and Ca-containing borates, in which the [B5O10]5- groups exist as discrete residues, the [B5O10]5- groups in the Mg- and Zn-containing compounds are bridged by [MgO4] or [ZnO4], and form infinite two-dimensional [MgB5O10]3- and [ZnB5O10]3- layers. Another difference between the Mg-, Ca-, Sr- and Zn-containing compounds relates to the coordination polyhedra of the divalent cations. Both Mg and Zn atoms are four-coordinate. The [SrO8] coordination polyhedron connects five adjacent [B5O10] groups by sharing three edges and two vertices with [BO3], while the [CaO6] octahedron shares one edge with [BO4] and four vertices with [BO3] to bridge five [B5O10] groups. The coordination environment of Ca in Na3CaB5O10 is similar to that of atom Na1 in the title compound, as the sites analogous to those occupied by Ca in Na3CaB5O10 are occupied by atom Na1 in Na3SrB5O10. Because of the different valences of the alkali metal (Na1) and alkaline earth (Ca) cations, the M—O distances are different, in such a way as to reduce the bond valence of the position occupied by Na+ and improve the bond valence for Sr2+, which is accompanied by a small change in the orientation of the [B5O10] groups. Some changes are also observed in the environments of the O atoms. A similar situation has been found in NaMgBO3 (Wu, Zhang, Kong et al., 2007) and NaSrBO3, in which the alkali metal and alkaline earth metal atoms exchange positions. As for the Na atoms, they appear in three crystallographically distinct environments in every one of the four borates. In the magnesium pentaborate, all of them are seven-coordinate, but with different coordination polyhedra. In the calcium pentaborate, they are seven-, six- and five-coordinate (Chen, Li, Zuo et al., 2007). In the strontium pentaborate, they are six-, seven- and six-coordinate and, as mentioned above, give the correct bond valences, even with two unusually long distances to the surrounding O atoms. In the Zn pentaborate, they are eight-, seven- and six-coordinate. It is likely that the different combinations of Mg—O, Ca—O, Sr—O, Zn—O and Na—O bonds cause the six-membered rings to show different degrees of distortion in the different structures.

These borates form stable doped systems, without a reducing atmosphere, when the divalent cations are replaced by rare earth ions (Pei & Su, 1993) such as Eu2+. It is known that Eu2+-doped borates will show various emissions when the dopant is placed in different O-atom environments (Diaz & Keszler, 1997). Considering the different environments of the divalent cations and the O atoms in the four pentaborates, it is reasonable to expect photoluminescence with different emissions for these systems when doped with Eu2+.

Experimental top

Polycrystalline samples were prepared by solid-state reactions conducted by sintering at high temperature. Mixtures of analytical purity Na2CO3, SrCO3 and H3BO3 were heated to 873 K to decompose the carbonate and eliminate water, and then elevated to the sintering temperature of 1073 K for 72 h. Between sintering steps, the samples were cooled and ground. The pure powder sample was compacted, then placed in a Pt crucible and fired at 1123 K for 48 h. It was then cooled to 553 K and taken out of the furnace. Small transparent single crystals could be selected from the compacted sample.

Refinement top

Single-crystal data for Na3SrB5O10 were collected on a Stoe IPDS II single-crystal diffractometer (Mo Kα). The unit cell was first determined from a powder pattern using DICVOL91 (Boultif & Louër, 1991) by the successive dichotomy method with Si as the internal standard. This gave a monoclinic unit cell with a = 7.290 (1) Å, b = 13.442 (2) Å, c = 9.792 (1) Å and β = 109.60 (1)° [ICDD (ICDD, 2005) PDF 56-0146]. Based on the systematic absences, the possible space groups were deduced to be C2, Cm or C2/m (Wu, Zhang, Chen et al., 2007). The present single-crystal study at 200 K showed that the actual unit cell is triclinic, with cell constants similar to those of the reduced cell of the previously reported structure of Na3CaB5O10 (Fayos et al., 1985). The structure was solved by direct methods and refined by full matrix least-squares techniques, with anisotropic thermal parameters for all atoms. Calculated radial distribution functions (PLATON; Spek, 2003) indicated that the title compound and the analogous Ca compound are not isomorphous. The structure was also investigated at different temperatures (250 and 293 K; data available in the archived CIF), with very similar results and no indication of a possible phase transition in this temperature interval.

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Balls&Sticks (Version 1.42; Ozawa & Kang, 2004); software used to prepare material for publication: WinGX (Version 1.64; Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Projection of the structure of Na3SrB5O10, viewed along [100].
[Figure 2] Fig. 2. The [B5O10]5- group.
[Figure 3] Fig. 3. A view of the [B5O10]5- group and the adjacent Na and Sr coordination. [Symmetry codes: (i) x + 1, y, z; (ii) x, y - 1, z; (iii) -x, 1 - y, 1 - z; (iv) 1 - x, 1 - y, 1 - z; (v) -x, 2 - y, 1 - z; (vi) 1 - x, 2 - y, 1 - z; (vii) 1 - x, -y, -z; (viii) 1 - x, 1 - y, -z; (ix) x, y, z + 1; (x)-x, 1 - y, -z.]
[Figure 4] Fig. 4. The SrO8 coordination polyhedra.
[Figure 5] Fig. 5. The Na1O6, Na2O7 and Na3O6 coordination polyhedra.
(I_200K) sodium strontium pentaborate top
Crystal data top
Na3SrB5O10Z = 2
Mr = 370.64F(000) = 352
Triclinic, P1Dx = 2.757 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.277 (2) ÅCell parameters from 4273 reflections
b = 7.601 (2) Åθ = 3.2–36.3°
c = 9.728 (2) ŵ = 6.23 mm1
α = 81.062 (16)°T = 200 K
β = 70.538 (15)°Plate, colourless
γ = 61.636 (15)°0.1 × 0.1 × 0.02 mm
V = 446.43 (19) Å3
Data collection top
Stoe IPDS II
diffractometer
2049 independent reflections
Radiation source: fine-focus sealed tube1595 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.136
rotation method, ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: numerical
via equivalents (X-SHAPE and X-RED; Stoe & Cie, 1996)
h = 99
Tmin = 0.335, Tmax = 0.511k = 99
11007 measured reflectionsl = 1212
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.050Secondary atom site location: difference Fourier map
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0253P)2 + 2.0814P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2049 reflectionsΔρmax = 0.75 e Å3
172 parametersΔρmin = 0.94 e Å3
Crystal data top
Na3SrB5O10γ = 61.636 (15)°
Mr = 370.64V = 446.43 (19) Å3
Triclinic, P1Z = 2
a = 7.277 (2) ÅMo Kα radiation
b = 7.601 (2) ŵ = 6.23 mm1
c = 9.728 (2) ÅT = 200 K
α = 81.062 (16)°0.1 × 0.1 × 0.02 mm
β = 70.538 (15)°
Data collection top
Stoe IPDS II
diffractometer
2049 independent reflections
Absorption correction: numerical
via equivalents (X-SHAPE and X-RED; Stoe & Cie, 1996)
1595 reflections with I > 2σ(I)
Tmin = 0.335, Tmax = 0.511Rint = 0.136
11007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050172 parameters
wR(F2) = 0.0894 restraints
S = 1.08Δρmax = 0.75 e Å3
2049 reflectionsΔρmin = 0.94 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.21356 (3)0.94626 (3)0.77505 (2)0.00583 (4)
Na10.27930 (12)0.01508 (12)0.11506 (10)0.0098 (2)
Na20.84487 (13)0.50424 (13)0.16342 (10)0.0133 (2)
Na30.20961 (14)0.27520 (17)0.45000 (11)0.0281 (3)
O10.1689 (2)0.75187 (19)0.18955 (16)0.0063 (4)
O20.6608 (2)0.8048 (2)0.35726 (17)0.0139 (4)
O30.0139 (2)0.7955 (2)0.00078 (17)0.0098 (4)
O40.1567 (2)0.6537 (2)0.43867 (16)0.0087 (4)
O50.4064 (2)0.4137 (2)0.25015 (16)0.0095 (4)
O60.4711 (2)0.6865 (2)0.27103 (17)0.0099 (4)
O70.3177 (2)0.8224 (2)0.51172 (17)0.0141 (4)
O80.5042 (2)0.1443 (2)0.10496 (17)0.0091 (4)
O90.2335 (2)0.4699 (2)0.06442 (17)0.0100 (4)
O100.0226 (2)0.7791 (2)0.68077 (17)0.0125 (4)
B10.3029 (3)0.6274 (3)0.2883 (3)0.0076 (6)
B20.3855 (3)0.3365 (3)0.1369 (3)0.0078 (6)
B30.4894 (3)0.7713 (3)0.3780 (3)0.0087 (6)
B40.1401 (3)0.6753 (3)0.0809 (3)0.0086 (6)
B50.1597 (3)0.7518 (3)0.5465 (3)0.0083 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.00487 (5)0.00737 (6)0.00545 (7)0.00267 (4)0.00163 (5)0.00075 (5)
Na10.0075 (3)0.0112 (3)0.0111 (4)0.0056 (2)0.0002 (3)0.0022 (3)
Na20.0101 (3)0.0174 (3)0.0125 (4)0.0052 (2)0.0038 (3)0.0026 (3)
Na30.0225 (3)0.0598 (5)0.0144 (4)0.0288 (3)0.0097 (3)0.0111 (4)
O10.0091 (4)0.0043 (5)0.0085 (6)0.0038 (4)0.0041 (4)0.0016 (4)
O20.0172 (5)0.0225 (6)0.0113 (7)0.0147 (4)0.0093 (5)0.0056 (5)
O30.0090 (5)0.0124 (6)0.0101 (6)0.0046 (4)0.0050 (4)0.0016 (5)
O40.0088 (5)0.0133 (5)0.0045 (6)0.0067 (4)0.0010 (4)0.0022 (5)
O50.0123 (5)0.0073 (5)0.0104 (6)0.0016 (4)0.0074 (4)0.0043 (5)
O60.0093 (5)0.0147 (5)0.0066 (6)0.0071 (4)0.0004 (4)0.0031 (5)
O70.0154 (5)0.0236 (6)0.0085 (7)0.0144 (4)0.0004 (5)0.0044 (5)
O80.0080 (5)0.0075 (5)0.0142 (7)0.0047 (4)0.0038 (5)0.0009 (5)
O90.0126 (5)0.0065 (5)0.0090 (6)0.0005 (4)0.0057 (5)0.0024 (5)
O100.0128 (5)0.0162 (6)0.0080 (7)0.0058 (4)0.0018 (5)0.0042 (5)
B10.0076 (7)0.0061 (8)0.0080 (10)0.0031 (6)0.0007 (7)0.0010 (7)
B20.0120 (7)0.0116 (8)0.0038 (9)0.0093 (6)0.0020 (7)0.0018 (7)
B30.0104 (7)0.0089 (8)0.0065 (10)0.0045 (6)0.0020 (7)0.0002 (7)
B40.0104 (7)0.0113 (8)0.0086 (9)0.0065 (6)0.0048 (6)0.0019 (7)
B50.0045 (7)0.0097 (8)0.0100 (10)0.0031 (6)0.0018 (7)0.0007 (8)
Geometric parameters (Å, º) top
Sr1—O8i2.4613 (18)Na3—O4vii2.3366 (18)
Sr1—O2ii2.4847 (18)Na3—O52.4247 (19)
Sr1—O1iii2.5823 (14)Na3—O10vii2.627 (2)
Sr1—O72.6080 (18)Na3—O42.705 (2)
Sr1—O3iv2.6219 (16)Na3—O7vi3.151 (2)
Sr1—O3iii2.6918 (17)B1—O11.495 (3)
Sr1—O102.697 (2)B1—O41.471 (3)
Sr1—O5i2.7858 (15)B1—O51.477 (3)
Na1—O82.246 (2)B1—O61.445 (3)
Na1—O8v2.2971 (18)B2—O51.406 (3)
Na1—O1vi2.4213 (19)B2—O81.319 (2)
Na1—O10vii2.4515 (17)B2—O91.407 (3)
Na1—O3viii2.4549 (19)B3—O21.334 (3)
Na1—O6vi2.7220 (18)B3—O61.378 (3)
Na2—O62.3210 (16)B3—O71.420 (3)
Na2—O10i2.4194 (18)B4—O11.398 (3)
Na2—O9ix2.424 (2)B4—O31.331 (3)
Na2—O9x2.560 (2)B4—O91.387 (3)
Na2—O3ix2.561 (2)B5—O41.390 (3)
Na2—O22.705 (2)B5—O71.412 (3)
Na2—O3x3.024 (2)B5—O101.328 (3)
Na3—O2i2.248 (2)
O8i—Sr1—O2ii84.61 (6)O6—Na2—O3ix119.26 (8)
O8i—Sr1—O1iii131.51 (5)O10i—Na2—O3ix76.87 (6)
O2ii—Sr1—O1iii82.93 (5)O9ix—Na2—O3ix56.10 (5)
O8i—Sr1—O7121.01 (5)O9x—Na2—O3ix86.32 (6)
O2ii—Sr1—O782.81 (6)O6—Na2—O255.57 (6)
O1iii—Sr1—O7103.58 (5)O10i—Na2—O299.69 (6)
O8i—Sr1—O3iv88.27 (6)O9ix—Na2—O2125.50 (6)
O2ii—Sr1—O3iv155.96 (5)O9x—Na2—O299.78 (7)
O1iii—Sr1—O3iv84.72 (5)O3ix—Na2—O2172.97 (6)
O7—Sr1—O3iv120.23 (6)O6—Na2—O3x107.50 (6)
O8i—Sr1—O3iii79.14 (5)O10i—Na2—O3x134.01 (7)
O2ii—Sr1—O3iii86.82 (5)O9ix—Na2—O3x79.20 (6)
O1iii—Sr1—O3iii53.55 (5)O9x—Na2—O3x48.86 (5)
O7—Sr1—O3iii156.06 (5)O3ix—Na2—O3x110.21 (5)
O3iv—Sr1—O3iii69.27 (6)O2—Na2—O3x76.63 (6)
O8i—Sr1—O10140.66 (5)O2i—Na3—O4vii101.74 (7)
O2ii—Sr1—O10126.57 (6)O2i—Na3—O5112.70 (8)
O1iii—Sr1—O1080.93 (5)O4vii—Na3—O5135.81 (7)
O7—Sr1—O1052.81 (5)O2i—Na3—O10vii145.70 (8)
O3iv—Sr1—O1071.23 (6)O4vii—Na3—O10vii57.08 (6)
O3iii—Sr1—O10120.90 (5)O5—Na3—O10vii99.97 (7)
O8i—Sr1—O5i52.85 (5)O2i—Na3—O493.27 (8)
O2ii—Sr1—O5i105.25 (5)O4vii—Na3—O497.70 (6)
O1iii—Sr1—O5i171.55 (5)O5—Na3—O454.96 (5)
O7—Sr1—O5i75.82 (5)O10vii—Na3—O4114.69 (6)
O3iv—Sr1—O5i88.35 (5)O2i—Na3—O7vi75.17 (7)
O3iii—Sr1—O5i127.90 (5)O4vii—Na3—O7vi86.28 (6)
O10—Sr1—O5i92.28 (5)O5—Na3—O7vi127.94 (5)
O8—Na1—O8v91.51 (7)O10vii—Na3—O7vi76.67 (6)
O8—Na1—O1vi150.22 (6)O4—Na3—O7vi168.35 (7)
O8v—Na1—O1vi89.43 (6)O6—B1—O4112.6 (2)
O8—Na1—O10vii96.56 (7)O6—B1—O5109.32 (15)
O8v—Na1—O10vii165.69 (7)O4—B1—O5107.64 (17)
O1vi—Na1—O10vii89.40 (6)O6—B1—O1108.75 (18)
O8—Na1—O3viii117.81 (7)O4—B1—O1108.52 (14)
O8v—Na1—O3viii87.48 (6)O5—B1—O1110.0 (2)
O1vi—Na1—O3viii91.96 (7)O8—B2—O5119.35 (19)
O10vii—Na1—O3viii78.31 (6)O8—B2—O9123.0 (2)
O8—Na1—O6vi95.24 (6)O5—B2—O9117.66 (17)
O8v—Na1—O6vi93.20 (6)O2—B3—O6121.60 (18)
O1vi—Na1—O6vi55.00 (6)O2—B3—O7121.1 (2)
O10vii—Na1—O6vi97.79 (6)O6—B3—O7117.3 (2)
O3viii—Na1—O6vi146.92 (7)O3—B4—O9119.4 (2)
O6—Na2—O10i107.24 (6)O3—B4—O1121.22 (19)
O6—Na2—O9ix87.57 (6)O9—B4—O1119.22 (19)
O10i—Na2—O9ix131.32 (7)O10—B5—O4122.7 (2)
O6—Na2—O9x152.17 (7)O10—B5—O7119.0 (2)
O10i—Na2—O9x88.18 (6)O4—B5—O7118.32 (18)
O9ix—Na2—O9x99.64 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+2, z+1; (iv) x, y, z+1; (v) x+1, y, z; (vi) x, y1, z; (vii) x, y+1, z+1; (viii) x, y+1, z; (ix) x+1, y+1, z; (x) x+1, y, z.
(I_250K) sodium strontium pentaborate top
Crystal data top
Na3SrB5O10Z = 2
Mr = 370.64F(000) = 352
Triclinic, P1Dx = 2.753 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.279 (2) ÅCell parameters from 4273 reflections
b = 7.601 (1) Åθ = 3.2–36.0°
c = 9.735 (2) ŵ = 6.22 mm1
α = 81.092 (16)°T = 250 K
β = 70.565 (15)°Plate, colourless
γ = 61.668 (14)°0.1 × 0.1 × 0.02 mm
V = 447.08 (16) Å3
Data collection top
Stoe IPDS II
diffractometer
2373 independent reflections
Radiation source: fine-focus sealed tube1704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.150
rotation method, ω scansθmax = 29.0°, θmin = 3.4°
Absorption correction: numerical
via equivalents (X-SHAPE and X-RED; Stoe & Cie, 1996)
h = 99
Tmin = 0.336, Tmax = 0.512k = 1010
9384 measured reflectionsl = 1313
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.058Secondary atom site location: difference Fourier map
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0205P)2 + 0.9553P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2373 reflectionsΔρmax = 0.82 e Å3
172 parametersΔρmin = 0.84 e Å3
Crystal data top
Na3SrB5O10γ = 61.668 (14)°
Mr = 370.64V = 447.08 (16) Å3
Triclinic, P1Z = 2
a = 7.279 (2) ÅMo Kα radiation
b = 7.601 (1) ŵ = 6.22 mm1
c = 9.735 (2) ÅT = 250 K
α = 81.092 (16)°0.1 × 0.1 × 0.02 mm
β = 70.565 (15)°
Data collection top
Stoe IPDS II
diffractometer
2373 independent reflections
Absorption correction: numerical
via equivalents (X-SHAPE and X-RED; Stoe & Cie, 1996)
1704 reflections with I > 2σ(I)
Tmin = 0.336, Tmax = 0.512Rint = 0.150
9384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058172 parameters
wR(F2) = 0.1014 restraints
S = 1.05Δρmax = 0.82 e Å3
2373 reflectionsΔρmin = 0.84 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.21377 (3)0.94601 (3)0.77508 (3)0.00788 (4)
Na10.27987 (13)0.01465 (13)0.11480 (11)0.0138 (2)
Na20.84428 (14)0.50530 (14)0.16329 (11)0.0167 (3)
Na30.20999 (15)0.27453 (19)0.45095 (12)0.0323 (3)
O10.1678 (2)0.7515 (2)0.19046 (17)0.0104 (4)
O20.6601 (2)0.8063 (2)0.3564 (2)0.0169 (5)
O30.0130 (2)0.7946 (2)0.00001 (18)0.0106 (4)
O40.1567 (2)0.6536 (2)0.43872 (17)0.0109 (4)
O50.4070 (2)0.4138 (2)0.24946 (18)0.0107 (4)
O60.4697 (2)0.6880 (2)0.27158 (18)0.0137 (4)
O70.3165 (2)0.8224 (2)0.5118 (2)0.0171 (5)
O80.5043 (2)0.1454 (2)0.10460 (19)0.0112 (4)
O90.2353 (2)0.4693 (2)0.06457 (18)0.0128 (4)
O100.0225 (2)0.7795 (2)0.68161 (18)0.0142 (5)
B10.3019 (4)0.6277 (4)0.2872 (3)0.0107 (6)
B20.3865 (3)0.3369 (4)0.1374 (3)0.0103 (6)
B30.4899 (4)0.7739 (3)0.3788 (3)0.0112 (6)
B40.1393 (3)0.6766 (3)0.0818 (3)0.0076 (6)
B50.1562 (3)0.7510 (3)0.5474 (3)0.0073 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.00677 (5)0.00945 (6)0.00757 (7)0.00327 (4)0.00249 (5)0.00099 (5)
Na10.0126 (3)0.0171 (3)0.0136 (4)0.0085 (2)0.0024 (3)0.0027 (3)
Na20.0145 (3)0.0215 (4)0.0155 (4)0.0090 (3)0.0041 (3)0.0019 (3)
Na30.0281 (4)0.0680 (6)0.0156 (5)0.0343 (3)0.0107 (3)0.0127 (4)
O10.0126 (5)0.0114 (6)0.0082 (7)0.0043 (4)0.0058 (5)0.0009 (5)
O20.0194 (5)0.0236 (7)0.0176 (8)0.0154 (4)0.0112 (5)0.0055 (6)
O30.0116 (5)0.0124 (6)0.0094 (7)0.0048 (4)0.0054 (5)0.0012 (5)
O40.0109 (5)0.0207 (6)0.0053 (6)0.0102 (4)0.0009 (4)0.0042 (5)
O50.0125 (5)0.0054 (6)0.0135 (7)0.0008 (4)0.0069 (5)0.0023 (5)
O60.0131 (5)0.0252 (6)0.0070 (7)0.0131 (4)0.0004 (5)0.0043 (5)
O70.0161 (5)0.0271 (7)0.0131 (8)0.0154 (4)0.0002 (5)0.0044 (6)
O80.0076 (5)0.0084 (6)0.0168 (7)0.0012 (4)0.0050 (5)0.0027 (5)
O90.0211 (6)0.0090 (6)0.0112 (7)0.0052 (4)0.0096 (5)0.0028 (5)
O100.0158 (6)0.0185 (7)0.0080 (7)0.0064 (5)0.0034 (5)0.0047 (5)
B10.0110 (8)0.0087 (8)0.0126 (10)0.0027 (6)0.0044 (7)0.0042 (8)
B20.0095 (7)0.0139 (9)0.0088 (10)0.0065 (6)0.0026 (7)0.0000 (8)
B30.0198 (8)0.0083 (8)0.0070 (10)0.0095 (6)0.0024 (8)0.0027 (8)
B40.0060 (7)0.0110 (8)0.0058 (10)0.0038 (6)0.0020 (7)0.0009 (7)
B50.0042 (6)0.0089 (8)0.0113 (10)0.0026 (6)0.0045 (6)0.0028 (7)
Geometric parameters (Å, º) top
Sr1—O8i2.462 (2)Na3—O4vii2.3380 (19)
Sr1—O2ii2.478 (2)Na3—O52.440 (2)
Sr1—O1iii2.5826 (15)Na3—O10vii2.641 (3)
Sr1—O72.610 (2)Na3—O42.708 (2)
Sr1—O3iv2.6345 (17)Na3—O7vi3.147 (2)
Sr1—O102.691 (2)B1—O11.480 (3)
Sr1—O3iii2.6924 (17)B1—O41.479 (3)
Sr1—O5i2.7849 (15)B1—O51.477 (3)
Na1—O82.252 (2)B1—O61.453 (4)
Na1—O8v2.2952 (19)B2—O51.394 (4)
Na1—O1vi2.429 (2)B2—O81.316 (3)
Na1—O10vii2.4514 (18)B2—O91.405 (3)
Na1—O3viii2.459 (2)B3—O21.317 (4)
Na1—O6vi2.7161 (19)B3—O61.394 (4)
Na2—O62.3283 (17)B3—O71.423 (3)
Na2—O10i2.4239 (19)B4—O11.389 (4)
Na2—O9ix2.431 (2)B4—O31.329 (3)
Na2—O3ix2.565 (2)B4—O91.399 (3)
Na2—O9x2.574 (2)B5—O41.380 (3)
Na2—O22.704 (2)B5—O71.432 (3)
Na2—O3x3.009 (2)B5—O101.320 (3)
Na3—O2i2.249 (2)
O8i—Sr1—O2ii84.64 (6)O6—Na2—O9x152.30 (8)
O8i—Sr1—O1iii131.61 (6)O10i—Na2—O9x87.89 (6)
O2ii—Sr1—O1iii82.85 (5)O9ix—Na2—O9x99.99 (7)
O8i—Sr1—O7121.20 (5)O3ix—Na2—O9x85.99 (6)
O2ii—Sr1—O782.93 (6)O6—Na2—O255.43 (7)
O1iii—Sr1—O7103.31 (6)O10i—Na2—O2100.06 (7)
O8i—Sr1—O3iv88.16 (6)O9ix—Na2—O2125.40 (6)
O2ii—Sr1—O3iv155.95 (6)O3ix—Na2—O2173.24 (7)
O1iii—Sr1—O3iv84.92 (5)O9x—Na2—O299.88 (7)
O7—Sr1—O3iv120.13 (6)O6—Na2—O3x107.59 (6)
O8i—Sr1—O10140.51 (5)O10i—Na2—O3x134.01 (7)
O2ii—Sr1—O10126.77 (6)O9ix—Na2—O3x79.42 (6)
O1iii—Sr1—O1080.92 (6)O3ix—Na2—O3x109.96 (6)
O7—Sr1—O1052.80 (6)O9x—Na2—O3x49.04 (5)
O3iv—Sr1—O1071.09 (6)O2—Na2—O3x76.61 (6)
O8i—Sr1—O3iii79.17 (5)O2i—Na3—O4vii101.99 (7)
O2ii—Sr1—O3iii86.59 (6)O2i—Na3—O5113.00 (9)
O1iii—Sr1—O3iii53.60 (6)O4vii—Na3—O5135.40 (7)
O7—Sr1—O3iii155.81 (5)O2i—Na3—O10vii145.87 (9)
O3iv—Sr1—O3iii69.51 (7)O4vii—Na3—O10vii57.13 (6)
O10—Sr1—O3iii120.91 (5)O5—Na3—O10vii99.45 (7)
O8i—Sr1—O5i52.70 (6)O2i—Na3—O493.63 (8)
O2ii—Sr1—O5i105.22 (5)O4vii—Na3—O497.56 (7)
O1iii—Sr1—O5i171.66 (6)O5—Na3—O454.92 (6)
O7—Sr1—O5i76.06 (5)O10vii—Na3—O4114.33 (7)
O3iv—Sr1—O5i88.26 (5)O2i—Na3—O7vi75.25 (7)
O10—Sr1—O5i92.35 (5)O4vii—Na3—O7vi86.32 (7)
O3iii—Sr1—O5i127.89 (5)O5—Na3—O7vi127.94 (6)
O8—Na1—O8v91.73 (8)O10vii—Na3—O7vi76.61 (7)
O8—Na1—O1vi150.45 (7)O4—Na3—O7vi168.79 (7)
O8v—Na1—O1vi89.53 (7)O6—B1—O5109.22 (16)
O8—Na1—O10vii96.56 (8)O6—B1—O4111.5 (2)
O8v—Na1—O10vii165.53 (8)O5—B1—O4107.61 (19)
O1vi—Na1—O10vii89.08 (7)O6—B1—O1109.2 (2)
O8—Na1—O3viii117.35 (7)O5—B1—O1110.7 (2)
O8v—Na1—O3viii87.49 (7)O4—B1—O1108.58 (16)
O1vi—Na1—O3viii92.20 (7)O8—B2—O5119.9 (2)
O10vii—Na1—O3viii78.18 (6)O8—B2—O9122.3 (3)
O8—Na1—O6vi95.43 (7)O5—B2—O9117.75 (19)
O8v—Na1—O6vi93.38 (6)O2—B3—O6121.3 (2)
O1vi—Na1—O6vi55.03 (6)O2—B3—O7123.1 (3)
O10vii—Na1—O6vi97.60 (6)O6—B3—O7115.6 (2)
O3viii—Na1—O6vi147.18 (8)O3—B4—O1122.2 (2)
O6—Na2—O10i107.28 (7)O3—B4—O9118.9 (2)
O6—Na2—O9ix87.55 (7)O1—B4—O9118.7 (2)
O10i—Na2—O9ix130.96 (8)O10—B5—O4125.0 (2)
O6—Na2—O3ix119.56 (8)O10—B5—O7117.9 (2)
O10i—Na2—O3ix76.67 (6)O4—B5—O7117.12 (18)
O9ix—Na2—O3ix56.05 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+2, z+1; (iv) x, y, z+1; (v) x+1, y, z; (vi) x, y1, z; (vii) x, y+1, z+1; (viii) x, y+1, z; (ix) x+1, y+1, z; (x) x+1, y, z.
(I_293K) sodium strontium pentaborate top
Crystal data top
Na3SrB5O10Z = 2
Mr = 370.64F(000) = 352
Triclinic, P1Dx = 2.738 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.288 (7) ÅCell parameters from 4273 reflections
b = 7.611 (8) Åθ = 3.3–36.6°
c = 9.754 (9) ŵ = 6.19 mm1
α = 81.28 (8)°T = 293 K
β = 70.72 (7)°Plate, colourless
γ = 61.68 (7)°0.1 × 0.1 × 0.02 mm
V = 449.6 (8) Å3
Data collection top
Stoe IPDS II
diffractometer
2385 independent reflections
Radiation source: fine-focus sealed tube1720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.169
rotation method, ω scansθmax = 29.0°, θmin = 3.4°
Absorption correction: numerical
via equivalents (X-SHAPE and X-RED; Stoe & Cie, 1996)
h = 99
Tmin = 0.337, Tmax = 0.513k = 1010
12682 measured reflectionsl = 1313
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.059Secondary atom site location: difference Fourier map
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0043P)2 + 2.9499P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2385 reflectionsΔρmax = 0.81 e Å3
172 parametersΔρmin = 0.88 e Å3
Crystal data top
Na3SrB5O10γ = 61.68 (7)°
Mr = 370.64V = 449.6 (8) Å3
Triclinic, P1Z = 2
a = 7.288 (7) ÅMo Kα radiation
b = 7.611 (8) ŵ = 6.19 mm1
c = 9.754 (9) ÅT = 293 K
α = 81.28 (8)°0.1 × 0.1 × 0.02 mm
β = 70.72 (7)°
Data collection top
Stoe IPDS II
diffractometer
2385 independent reflections
Absorption correction: numerical
via equivalents (X-SHAPE and X-RED; Stoe & Cie, 1996)
1720 reflections with I > 2σ(I)
Tmin = 0.337, Tmax = 0.513Rint = 0.169
12682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059172 parameters
wR(F2) = 0.1034 restraints
S = 1.06Δρmax = 0.81 e Å3
2385 reflectionsΔρmin = 0.88 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.21411 (4)0.94587 (4)0.77498 (3)0.00979 (5)
Na10.28038 (14)0.01532 (14)0.11510 (11)0.0169 (3)
Na20.84288 (15)0.50640 (15)0.16291 (11)0.0198 (3)
Na30.21044 (17)0.2735 (2)0.45066 (13)0.0393 (4)
O10.1670 (2)0.7517 (2)0.19082 (18)0.0124 (4)
O20.6565 (3)0.8091 (3)0.35669 (19)0.0214 (5)
O30.0128 (2)0.7943 (2)0.00059 (19)0.0148 (5)
O40.1571 (2)0.6544 (2)0.43896 (18)0.0154 (5)
O50.4057 (2)0.4141 (2)0.25037 (18)0.0127 (4)
O60.4684 (2)0.6885 (2)0.27235 (18)0.0153 (4)
O70.3180 (2)0.8204 (3)0.51151 (19)0.0195 (5)
O80.5048 (2)0.1457 (2)0.10438 (19)0.0152 (5)
O90.2335 (3)0.4701 (2)0.06535 (19)0.0168 (5)
O100.0234 (2)0.7786 (2)0.68105 (18)0.0165 (5)
B10.2991 (3)0.6283 (3)0.2900 (3)0.0086 (6)
B20.3857 (4)0.3382 (4)0.1369 (3)0.0111 (6)
B30.4908 (4)0.7722 (4)0.3776 (3)0.0122 (6)
B40.1399 (4)0.6760 (4)0.0818 (3)0.0111 (7)
B50.1595 (4)0.7502 (4)0.5472 (3)0.0127 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.00882 (5)0.01152 (6)0.00956 (7)0.00452 (4)0.00299 (5)0.00120 (6)
Na10.0139 (3)0.0229 (4)0.0150 (4)0.0110 (3)0.0002 (3)0.0034 (3)
Na20.0176 (3)0.0276 (4)0.0148 (4)0.0110 (3)0.0033 (3)0.0022 (4)
Na30.0320 (4)0.0812 (7)0.0214 (5)0.0400 (4)0.0132 (4)0.0167 (5)
O10.0158 (6)0.0075 (6)0.0143 (7)0.0039 (4)0.0062 (5)0.0020 (5)
O20.0267 (6)0.0380 (8)0.0132 (8)0.0242 (5)0.0108 (5)0.0066 (6)
O30.0163 (6)0.0146 (6)0.0139 (7)0.0055 (5)0.0075 (5)0.0000 (6)
O40.0171 (6)0.0234 (7)0.0082 (7)0.0120 (5)0.0002 (5)0.0052 (6)
O50.0153 (5)0.0109 (6)0.0116 (7)0.0016 (5)0.0087 (5)0.0036 (5)
O60.0165 (5)0.0259 (6)0.0108 (7)0.0152 (4)0.0012 (5)0.0066 (5)
O70.0207 (6)0.0336 (7)0.0146 (8)0.0202 (5)0.0020 (5)0.0079 (6)
O80.0143 (5)0.0114 (6)0.0217 (8)0.0047 (4)0.0091 (5)0.0007 (6)
O90.0240 (6)0.0130 (6)0.0174 (7)0.0068 (5)0.0130 (5)0.0011 (6)
O100.0194 (6)0.0237 (7)0.0100 (7)0.0115 (5)0.0057 (5)0.0011 (6)
B10.0126 (7)0.0105 (8)0.0090 (9)0.0080 (6)0.0053 (6)0.0022 (7)
B20.0121 (8)0.0131 (9)0.0098 (10)0.0061 (6)0.0033 (7)0.0024 (8)
B30.0179 (8)0.0139 (9)0.0102 (10)0.0110 (6)0.0079 (7)0.0065 (8)
B40.0101 (8)0.0114 (9)0.0108 (11)0.0057 (6)0.0025 (8)0.0043 (8)
B50.0117 (8)0.0110 (9)0.0153 (11)0.0020 (7)0.0084 (7)0.0004 (8)
Geometric parameters (Å, º) top
Sr1—O8i2.460 (3)Na3—O4vii2.348 (3)
Sr1—O2ii2.482 (3)Na3—O52.442 (3)
Sr1—O1iii2.584 (4)Na3—O10vii2.637 (3)
Sr1—O72.620 (3)Na3—O42.725 (4)
Sr1—O3iv2.652 (3)Na3—O7vi3.159 (4)
Sr1—O3iii2.694 (4)B1—O11.492 (3)
Sr1—O102.695 (3)B1—O41.456 (3)
Sr1—O5i2.792 (4)B1—O51.484 (3)
Na1—O82.251 (3)B1—O61.461 (4)
Na1—O8v2.302 (4)B2—O51.400 (4)
Na1—O1vi2.444 (3)B2—O81.324 (3)
Na1—O10vii2.462 (4)B2—O91.402 (3)
Na1—O3viii2.469 (3)B3—O21.312 (4)
Na1—O6vi2.723 (4)B3—O61.376 (4)
Na2—O62.334 (4)B3—O71.431 (3)
Na2—O9ix2.429 (3)B4—O11.391 (4)
Na2—O10i2.438 (3)B4—O31.331 (3)
Na2—O3ix2.569 (4)B4—O91.392 (3)
Na2—O9x2.575 (4)B5—O41.380 (4)
Na2—O22.717 (4)B5—O71.416 (4)
Na2—O3x3.011 (4)B5—O101.328 (3)
Na3—O2i2.266 (3)
O8i—Sr1—O2ii84.49 (10)O6—Na2—O9x152.35 (9)
O8i—Sr1—O1iii131.63 (9)O9ix—Na2—O9x99.67 (11)
O2ii—Sr1—O1iii83.33 (11)O10i—Na2—O9x87.80 (11)
O8i—Sr1—O7121.08 (9)O3ix—Na2—O9x85.81 (11)
O2ii—Sr1—O782.80 (10)O6—Na2—O255.06 (10)
O1iii—Sr1—O7103.48 (12)O9ix—Na2—O2125.56 (10)
O8i—Sr1—O3iv87.96 (10)O10i—Na2—O299.96 (11)
O2ii—Sr1—O3iv156.21 (7)O3ix—Na2—O2173.25 (8)
O1iii—Sr1—O3iv84.96 (12)O9x—Na2—O2100.06 (12)
O7—Sr1—O3iv120.15 (9)O6—Na2—O3x107.99 (11)
O8i—Sr1—O3iii79.24 (10)O9ix—Na2—O3x79.35 (10)
O2ii—Sr1—O3iii86.95 (11)O10i—Na2—O3x133.76 (10)
O1iii—Sr1—O3iii53.53 (10)O3ix—Na2—O3x109.79 (10)
O7—Sr1—O3iii155.93 (6)O9x—Na2—O3x48.91 (8)
O3iv—Sr1—O3iii69.47 (11)O2—Na2—O3x76.78 (10)
O8i—Sr1—O10140.33 (7)O2i—Na3—O4vii102.28 (11)
O2ii—Sr1—O10126.88 (8)O2i—Na3—O5112.84 (11)
O1iii—Sr1—O1081.02 (11)O4vii—Na3—O5135.23 (10)
O7—Sr1—O1052.81 (8)O2i—Na3—O10vii145.97 (10)
O3iv—Sr1—O1071.16 (9)O4vii—Na3—O10vii56.90 (10)
O3iii—Sr1—O10120.92 (9)O5—Na3—O10vii99.54 (10)
O8i—Sr1—O5i52.70 (9)O2i—Na3—O493.76 (12)
O2ii—Sr1—O5i104.55 (11)O4vii—Na3—O497.60 (12)
O1iii—Sr1—O5i171.81 (6)O5—Na3—O454.64 (10)
O7—Sr1—O5i75.75 (12)O10vii—Na3—O4114.14 (10)
O3iv—Sr1—O5i88.42 (12)O2i—Na3—O7vi74.94 (11)
O3iii—Sr1—O5i128.08 (10)O4vii—Na3—O7vi86.36 (12)
O10—Sr1—O5i92.29 (11)O5—Na3—O7vi128.23 (10)
O8—Na1—O8v91.76 (11)O10vii—Na3—O7vi76.97 (10)
O8—Na1—O1vi150.64 (8)O4—Na3—O7vi168.61 (8)
O8v—Na1—O1vi89.45 (11)O4—B1—O6112.1 (2)
O8—Na1—O10vii96.99 (11)O4—B1—O5108.4 (2)
O8v—Na1—O10vii165.23 (9)O6—B1—O5108.65 (18)
O1vi—Na1—O10vii88.73 (11)O4—B1—O1109.57 (18)
O8—Na1—O3viii117.29 (10)O6—B1—O1108.2 (2)
O8v—Na1—O3viii87.18 (12)O5—B1—O1109.9 (2)
O1vi—Na1—O3viii92.07 (11)O8—B2—O5119.2 (2)
O10vii—Na1—O3viii78.24 (11)O8—B2—O9122.8 (3)
O8—Na1—O6vi95.81 (11)O5—B2—O9118.0 (2)
O8v—Na1—O6vi93.54 (12)O2—B3—O6122.7 (2)
O1vi—Na1—O6vi54.84 (9)O2—B3—O7121.9 (3)
O10vii—Na1—O6vi97.37 (11)O6—B3—O7115.4 (2)
O3viii—Na1—O6vi146.87 (9)O3—B4—O1121.8 (2)
O6—Na2—O9ix88.34 (12)O3—B4—O9119.0 (3)
O6—Na2—O10i106.88 (11)O1—B4—O9118.9 (2)
O9ix—Na2—O10i131.00 (11)O10—B5—O4123.8 (3)
O6—Na2—O3ix119.90 (12)O10—B5—O7119.0 (3)
O9ix—Na2—O3ix55.91 (9)O4—B5—O7117.3 (2)
O10i—Na2—O3ix76.77 (11)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+2, z+1; (iv) x, y, z+1; (v) x+1, y, z; (vi) x, y1, z; (vii) x, y+1, z+1; (viii) x, y+1, z; (ix) x+1, y+1, z; (x) x+1, y, z.

Experimental details

(I_200K)(I_250K)(I_293K)
Crystal data
Chemical formulaNa3SrB5O10Na3SrB5O10Na3SrB5O10
Mr370.64370.64370.64
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)200250293
a, b, c (Å)7.277 (2), 7.601 (2), 9.728 (2)7.279 (2), 7.601 (1), 9.735 (2)7.288 (7), 7.611 (8), 9.754 (9)
α, β, γ (°)81.062 (16), 70.538 (15), 61.636 (15)81.092 (16), 70.565 (15), 61.668 (14)81.28 (8), 70.72 (7), 61.68 (7)
V3)446.43 (19)447.08 (16)449.6 (8)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)6.236.226.19
Crystal size (mm)0.1 × 0.1 × 0.020.1 × 0.1 × 0.020.1 × 0.1 × 0.02
Data collection
DiffractometerStoe IPDS II
diffractometer
Stoe IPDS II
diffractometer
Stoe IPDS II
diffractometer
Absorption correctionNumerical
via equivalents (X-SHAPE and X-RED; Stoe & Cie, 1996)
Numerical
via equivalents (X-SHAPE and X-RED; Stoe & Cie, 1996)
Numerical
via equivalents (X-SHAPE and X-RED; Stoe & Cie, 1996)
Tmin, Tmax0.335, 0.5110.336, 0.5120.337, 0.513
No. of measured, independent and
observed [I > 2σ(I)] reflections
11007, 2049, 1595 9384, 2373, 1704 12682, 2385, 1720
Rint0.1360.1500.169
(sin θ/λ)max1)0.6490.6820.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.089, 1.08 0.058, 0.101, 1.05 0.059, 0.103, 1.06
No. of reflections204923732385
No. of parameters172172172
No. of restraints444
Δρmax, Δρmin (e Å3)0.75, 0.940.82, 0.840.81, 0.88

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Balls&Sticks (Version 1.42; Ozawa & Kang, 2004), WinGX (Version 1.64; Farrugia, 1999).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds