Download citation
Download citation
link to html
The mol­ecule of the title compound, [Hg(C13H9N2O2S)2], has approximate twofold rotation symmetry, with the Hg atom in an essentially linear two-coordinate HgS2 environment supported by secondary π inter­actions with the nitro­phenyl rings of both ligands. The ligands are in the imine–thiol­ate rather than the amine–thione tautomeric form.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010704694X/fa3119sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010704694X/fa3119Isup2.hkl
Contains datablock I

CCDC reference: 669155

Comment top

The fact that mercury(II) ions interact with many biological molecules through coordination with deprotonated thiol, imidazole, disulfide, thioether, amino or carboxylate groups is well known, and a great deal of effort has been devoted to the characterization of these interactions in model molecules and in proteins (Popovic et al., 2000; Kajdan et al., 2000). Interest in the structural chemistry of mercury(II) complexes with ligands containing S-donor atoms, such as thioamides, is related not only to the toxicological behaviour of the metal and to the detoxification of mercury, but also to their industrial applications, especially in semiconductors or in photovoltaic devices (Hadjikakou et al., 2003). Consequently, a number of attempts have been made to explore the coordination chemistry of mercury(II) with diverse sulfur-containing ligands, such as aromatic thiolates (Bell, Branston et al., 2001; Bell, Coles et al., 2001; Bell et al., 2004; Blower & Dilworth, 1987). Extensive use of thionates as bridging ligands stems from the presence of the thioamide NCS group. Parent ligands adopt the thione form in the solid but may exist, at least in part, as the thiol form in solution, particularly in non-polar solvents (Cotton & Walton, 1993). This work describes the synthesis and crystal structure of a mercury(II) complex of such a ligand, the title compound, (I), which is only the second example to be crystallographically characterized.

The molecular structure of (I) is shown in Fig. 1. The molecule has no crystallographic symmetry, but the molecular symmetry is close to C2, with approximately linear coordination of Hg. The Hg—S distances (Table 1) agree well with those in similar mercury(II) complexes, e.g. 2.344 (3)–2.351 (3) Å (Bell, Coles et al., 2001) and 2.338 (3)–2.345 (3) Å (Popovic et al., 2002); the mean value for Hg—S distances in HgII arenethionate complexes in the compilation of Orpen et al. (1989) is 2.362 Å. The S—C distances are indicative of single bonds, also in reasonable agreement with the mean value of 1.761 Å reported for related systems by Orpen et al. (1989).

The phenyl and nitrophenyl rings make dihedral angles of 19.2 (2) and 68.51 (8)°, respectively, with the SC(N)C thionate unit in the S1 ligand, and the corresponding angles in the S2 ligand are 40.71 (15) and 75.21 (9)°. The dihedral angles between the two aromatic rings within each ligand are 86.75 (12) and 65.28 (12)°, and the nitro group is essentially coplanar with its parent benzene ring in each case, with dihedral angles of 3.0 (2) and 8.3 (3)°. The C—S···S···C pseudo-torsion angle indicating the relative twist of the two ligands in their coordination of Hg is 70.5 (2)°.

The most closely related previous mercury(II) complex to be crystallographically characterized has two thioacetanilide ligands (Avalos et al., 1997). It is much less symmetrical, having a weak π coordination of the phenyl ring of one ligand to Hg, while the other is oriented well away from the metal. In the title complex, both nitrophenyl groups lie in orientations such that the shortest Hg···C distance is close to 3 Å [Hg1···C8 = 2.979 (4) and Hg1···C21 = 3.008 (4) Å] and this Hg···C vector is approximately perpendicular to the ring. The most significant intermolecular interactions include a short S2···O4(1/2 − x, 1/2 + y, 3/2 − z) contact of 3.050 (4) Å, some C—H···π interactions with H···ring-centroid distances < 3 Å, and a slipped π-stacking interaction between centrosymmetrically related nitrophenyl rings (C21–C26), with a centroid-to-centroid distance of 3.906 (2) Å and a perpendicular interplanar distance of 3.466 Å, the lateral slippage being 1.802 Å.

Experimental top

Mercury(II) oxide (0.216 g, 1 mmol) was added to a solution of N-(2-methylphenyl) 4-nitrothiobenzamide (0.273 g, 1 mmol) at ambient temperature in chloroform (35 ml) and stirred for 130 min. The completion of the reaction was followed by thin-layer chromatography with CCl4–CH3OH (15:1 v/v) as eluent. The mixture was filtered through Celite to remove unreacted mercury(II) compounds. The pale-yellow crystals which formed by slow evaporation were separated, recrystallized from chloroform as fine pale-yellow crystals and dried in vacuo (yield 95%, m.p. 466–468 K). Analysis, calculated for C26H18N4O4S2Hg: C 45.28, H 2.96, N 7.55, Hg 26.95%; found: C 45.12, H 3.12, N 7.35, Hg 27.08%.

Refinement top

All H atoms were located in a difference map, idealized and treated as riding, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The crystal was a non-merohedral twin and the overlap of inequivalent reflections was treated by ROTWIN (Pink & Young, 2000). The largest residual difference electron-density features lie 1.0–1.3 Å from Hg.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2005); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2005) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
Bis[N-(4-nitrophenyl)thiobenzamidato]mercury(II) top
Crystal data top
[Hg(C13H9N2O2S)2]F(000) = 1384
Mr = 715.15Dx = 1.906 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 204 reflections
a = 9.7351 (8) Åθ = 2.5–27.5°
b = 14.3655 (14) ŵ = 6.39 mm1
c = 17.9804 (12) ÅT = 150 K
β = 97.648 (6)°Needle, pale yellow
V = 2492.2 (4) Å30.57 × 0.19 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
4332 independent reflections
Radiation source: sealed tube3779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.1°, θmin = 4.5°
Absorption correction: numerical
(SHELXTL; Sheldrick, 2005)
h = 1111
Tmin = 0.088, Tmax = 0.414k = 1717
27468 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0152P)2 + 3.6857P]
where P = (Fo2 + 2Fc2)/3
4332 reflections(Δ/σ)max = 0.003
337 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Hg(C13H9N2O2S)2]V = 2492.2 (4) Å3
Mr = 715.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7351 (8) ŵ = 6.39 mm1
b = 14.3655 (14) ÅT = 150 K
c = 17.9804 (12) Å0.57 × 0.19 × 0.15 mm
β = 97.648 (6)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4332 independent reflections
Absorption correction: numerical
(SHELXTL; Sheldrick, 2005)
3779 reflections with I > 2σ(I)
Tmin = 0.088, Tmax = 0.414Rint = 0.028
27468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.11Δρmax = 1.07 e Å3
4332 reflectionsΔρmin = 0.78 e Å3
337 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.365692 (16)0.553143 (12)0.704857 (8)0.02291 (6)
S10.45050 (11)0.40043 (8)0.71002 (6)0.0262 (2)
C10.5596 (4)0.3923 (3)0.6390 (2)0.0193 (9)
C20.5843 (4)0.2943 (3)0.6155 (2)0.0204 (9)
C30.6984 (4)0.2753 (3)0.5782 (2)0.0219 (9)
H30.76020.32410.56950.026*
C40.7224 (5)0.1859 (3)0.5536 (2)0.0280 (10)
H40.80020.17390.52830.034*
C50.6340 (5)0.1147 (3)0.5658 (3)0.0385 (12)
H50.64890.05390.54780.046*
C60.5231 (5)0.1321 (3)0.6046 (3)0.0461 (14)
H60.46360.08250.61440.055*
C70.4979 (5)0.2214 (3)0.6293 (3)0.0352 (11)
H70.42120.23250.65580.042*
C80.6172 (4)0.5519 (3)0.6269 (2)0.0183 (8)
C90.5556 (4)0.6170 (3)0.5733 (2)0.0223 (9)
H90.50990.59580.52640.027*
C100.5616 (4)0.7109 (3)0.5891 (2)0.0234 (9)
H100.51920.75450.55350.028*
C110.6300 (4)0.7410 (3)0.6572 (2)0.0194 (9)
C120.6925 (4)0.6793 (3)0.7108 (2)0.0222 (9)
H120.73880.70170.75730.027*
C130.6861 (4)0.5842 (3)0.6956 (2)0.0223 (9)
H130.72840.54120.73170.027*
N10.6190 (3)0.4581 (2)0.60686 (18)0.0201 (7)
N20.6331 (4)0.8405 (3)0.6742 (2)0.0262 (8)
O10.6957 (3)0.8671 (2)0.73455 (18)0.0351 (8)
O20.5717 (4)0.8940 (2)0.6275 (2)0.0427 (9)
S20.27669 (11)0.70401 (8)0.71190 (6)0.0283 (3)
C140.1559 (4)0.7195 (3)0.6289 (2)0.0232 (9)
C150.1133 (4)0.8184 (3)0.6176 (2)0.0230 (9)
C160.0266 (4)0.8363 (3)0.5934 (2)0.0270 (10)
H160.08990.78610.58370.032*
C170.0730 (5)0.9272 (3)0.5837 (3)0.0379 (12)
H170.16850.93900.56800.045*
C180.0187 (5)1.0010 (3)0.5966 (3)0.0359 (11)
H180.01381.06320.59010.043*
C190.1571 (5)0.9837 (3)0.6188 (3)0.0321 (11)
H190.22031.03420.62650.038*
C200.2054 (5)0.8934 (3)0.6303 (2)0.0275 (10)
H200.30080.88230.64670.033*
C210.1093 (4)0.5626 (3)0.5915 (2)0.0232 (9)
C220.1784 (4)0.5074 (3)0.5436 (2)0.0255 (9)
H220.22840.53630.50790.031*
C230.1741 (5)0.4113 (3)0.5481 (2)0.0277 (10)
H230.22080.37400.51580.033*
C240.1010 (4)0.3701 (3)0.6004 (2)0.0268 (10)
C250.0322 (5)0.4226 (3)0.6485 (3)0.0317 (11)
H250.01780.39300.68380.038*
C260.0374 (4)0.5180 (3)0.6445 (3)0.0292 (10)
H260.00820.55440.67790.035*
N30.1004 (4)0.6585 (3)0.58198 (19)0.0260 (8)
N40.0957 (4)0.2685 (3)0.6056 (2)0.0377 (10)
O30.1700 (4)0.2228 (3)0.5688 (2)0.0496 (10)
O40.0177 (4)0.2327 (3)0.6465 (2)0.0488 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02093 (9)0.02133 (10)0.02660 (10)0.00489 (7)0.00359 (6)0.00331 (7)
S10.0322 (6)0.0198 (6)0.0286 (6)0.0066 (5)0.0116 (4)0.0046 (4)
C10.018 (2)0.018 (2)0.020 (2)0.0030 (17)0.0028 (15)0.0008 (16)
C20.020 (2)0.020 (2)0.020 (2)0.0021 (18)0.0007 (15)0.0007 (16)
C30.025 (2)0.018 (2)0.021 (2)0.0041 (18)0.0012 (16)0.0013 (16)
C40.030 (2)0.026 (3)0.028 (2)0.008 (2)0.0027 (18)0.0015 (18)
C50.039 (3)0.017 (3)0.058 (3)0.009 (2)0.000 (2)0.011 (2)
C60.035 (3)0.017 (3)0.087 (4)0.006 (2)0.013 (3)0.001 (3)
C70.029 (2)0.017 (2)0.061 (3)0.001 (2)0.013 (2)0.002 (2)
C80.021 (2)0.017 (2)0.018 (2)0.0007 (17)0.0057 (15)0.0015 (16)
C90.028 (2)0.022 (2)0.016 (2)0.0005 (18)0.0000 (16)0.0035 (16)
C100.025 (2)0.016 (2)0.028 (2)0.0024 (18)0.0011 (17)0.0021 (17)
C110.017 (2)0.014 (2)0.028 (2)0.0005 (16)0.0041 (16)0.0041 (16)
C120.021 (2)0.021 (2)0.022 (2)0.0018 (17)0.0021 (16)0.0082 (17)
C130.020 (2)0.024 (2)0.022 (2)0.0024 (17)0.0002 (16)0.0021 (17)
N10.0242 (18)0.0140 (19)0.0222 (19)0.0017 (14)0.0034 (13)0.0017 (14)
N20.0250 (19)0.0149 (19)0.039 (2)0.0017 (16)0.0055 (16)0.0031 (16)
O10.0412 (19)0.0214 (18)0.041 (2)0.0061 (14)0.0011 (14)0.0130 (14)
O20.048 (2)0.0167 (18)0.060 (2)0.0031 (16)0.0056 (17)0.0002 (16)
S20.0291 (6)0.0234 (6)0.0307 (6)0.0100 (5)0.0030 (4)0.0095 (4)
C140.020 (2)0.027 (3)0.024 (2)0.0046 (18)0.0051 (16)0.0012 (18)
C150.029 (2)0.025 (2)0.016 (2)0.0065 (19)0.0060 (16)0.0033 (17)
C160.029 (2)0.023 (2)0.028 (2)0.001 (2)0.0001 (18)0.0020 (18)
C170.036 (3)0.033 (3)0.043 (3)0.011 (2)0.003 (2)0.007 (2)
C180.054 (3)0.021 (3)0.034 (3)0.004 (2)0.008 (2)0.005 (2)
C190.043 (3)0.022 (2)0.033 (3)0.006 (2)0.013 (2)0.0033 (19)
C200.025 (2)0.028 (3)0.031 (3)0.001 (2)0.0089 (18)0.0052 (19)
C210.022 (2)0.019 (2)0.027 (2)0.0006 (18)0.0041 (16)0.0031 (17)
C220.029 (2)0.028 (3)0.020 (2)0.0011 (19)0.0037 (17)0.0022 (18)
C230.031 (2)0.024 (2)0.027 (2)0.0031 (19)0.0015 (18)0.0065 (18)
C240.026 (2)0.016 (2)0.035 (3)0.0016 (18)0.0101 (18)0.0000 (18)
C250.029 (2)0.033 (3)0.033 (3)0.009 (2)0.0042 (19)0.003 (2)
C260.024 (2)0.032 (3)0.032 (3)0.001 (2)0.0062 (18)0.0026 (19)
N30.030 (2)0.019 (2)0.029 (2)0.0014 (16)0.0004 (15)0.0040 (15)
N40.035 (2)0.027 (2)0.045 (3)0.003 (2)0.0199 (19)0.0037 (19)
O30.061 (2)0.028 (2)0.055 (2)0.0067 (18)0.0110 (19)0.0059 (17)
O40.046 (2)0.033 (2)0.063 (3)0.0171 (17)0.0126 (18)0.0139 (18)
Geometric parameters (Å, º) top
Hg1—S12.3415 (11)N2—O21.233 (5)
Hg1—S22.3438 (11)S2—C141.787 (4)
S1—C11.770 (4)C14—C151.486 (6)
C1—C21.499 (6)C14—N31.284 (5)
C1—N11.285 (5)C15—C161.397 (6)
C2—C31.399 (6)C15—C201.400 (6)
C2—C71.386 (6)C16—H160.950
C3—H30.950C16—C171.386 (6)
C3—C41.388 (6)C17—H170.950
C4—H40.950C17—C181.385 (7)
C4—C51.373 (7)C18—H180.950
C5—H50.950C18—C191.377 (7)
C5—C61.383 (7)C19—H190.950
C6—H60.950C19—C201.386 (7)
C6—C71.390 (7)C20—H200.950
C7—H70.950C21—C221.406 (6)
C8—C91.418 (6)C21—C261.410 (6)
C8—C131.403 (6)C21—N31.390 (6)
C8—N11.395 (5)C22—H220.950
C9—H90.950C22—C231.384 (6)
C9—C101.377 (6)C23—H230.950
C10—H100.950C23—C241.385 (6)
C10—C111.382 (6)C24—C251.384 (7)
C11—C121.389 (6)C24—N41.464 (6)
C11—N21.462 (5)C25—H250.950
C12—H120.950C25—C261.374 (7)
C12—C131.393 (6)C26—H260.950
C13—H130.950N4—O31.233 (6)
N2—O11.232 (5)N4—O41.237 (6)
S1—Hg1—S2174.37 (4)Hg1—S2—C14106.10 (15)
Hg1—S1—C1105.98 (14)S2—C14—C15112.0 (3)
S1—C1—C2113.6 (3)S2—C14—N3129.5 (3)
S1—C1—N1128.7 (3)C15—C14—N3118.5 (4)
C2—C1—N1117.8 (4)C14—C15—C16117.5 (4)
C1—C2—C3119.1 (4)C14—C15—C20123.5 (4)
C1—C2—C7122.3 (4)C16—C15—C20119.1 (4)
C3—C2—C7118.6 (4)C15—C16—H16120.0
C2—C3—H3119.7C15—C16—C17120.1 (4)
C2—C3—C4120.7 (4)H16—C16—C17120.0
H3—C3—C4119.7C16—C17—H17119.7
C3—C4—H4119.9C16—C17—C18120.5 (4)
C3—C4—C5120.2 (4)H17—C17—C18119.7
H4—C4—C5119.9C17—C18—H18120.2
C4—C5—H5120.2C17—C18—C19119.6 (5)
C4—C5—C6119.6 (4)H18—C18—C19120.2
H5—C5—C6120.2C18—C19—H19119.6
C5—C6—H6119.6C18—C19—C20120.8 (4)
C5—C6—C7120.7 (5)H19—C19—C20119.6
H6—C6—C7119.6C15—C20—C19119.9 (4)
C2—C7—C6120.1 (4)C15—C20—H20120.1
C2—C7—H7120.0C19—C20—H20120.1
C6—C7—H7120.0C22—C21—C26118.6 (4)
C9—C8—C13119.3 (4)C22—C21—N3120.8 (4)
C9—C8—N1118.7 (3)C26—C21—N3120.3 (4)
C13—C8—N1121.7 (4)C21—C22—H22119.8
C8—C9—H9119.9C21—C22—C23120.4 (4)
C8—C9—C10120.2 (4)H22—C22—C23119.8
H9—C9—C10119.9C22—C23—H23120.4
C9—C10—H10120.3C22—C23—C24119.2 (4)
C9—C10—C11119.4 (4)H23—C23—C24120.4
H10—C10—C11120.3C23—C24—C25121.8 (4)
C10—C11—C12122.0 (4)C23—C24—N4119.7 (4)
C10—C11—N2119.1 (4)C25—C24—N4118.6 (4)
C12—C11—N2118.9 (4)C24—C25—H25120.5
C11—C12—H12120.5C24—C25—C26119.1 (4)
C11—C12—C13119.0 (4)H25—C25—C26120.5
H12—C12—C13120.5C21—C26—C25121.0 (4)
C8—C13—C12120.1 (4)C21—C26—H26119.5
C8—C13—H13120.0C25—C26—H26119.5
C12—C13—H13120.0C14—N3—C21125.6 (4)
C1—N1—C8124.9 (3)C24—N4—O3117.9 (4)
C11—N2—O1118.8 (4)C24—N4—O4118.9 (4)
C11—N2—O2118.2 (4)O3—N4—O4123.2 (4)
O1—N2—O2123.1 (4)
Hg1—S1—C1—C2160.0 (2)Hg1—S2—C14—C15167.9 (2)
Hg1—S1—C1—N120.8 (4)Hg1—S2—C14—N315.0 (4)
S1—C1—C2—C3160.6 (3)S2—C14—C15—C16138.5 (3)
S1—C1—C2—C719.5 (5)S2—C14—C15—C2041.1 (5)
N1—C1—C2—C318.8 (5)N3—C14—C15—C1639.0 (5)
N1—C1—C2—C7161.2 (4)N3—C14—C15—C20141.4 (4)
C1—C2—C3—C4178.1 (4)C14—C15—C16—C17178.4 (4)
C7—C2—C3—C41.8 (6)C20—C15—C16—C171.2 (6)
C2—C3—C4—C50.1 (6)C15—C16—C17—C181.0 (7)
C3—C4—C5—C61.8 (7)C16—C17—C18—C190.3 (7)
C4—C5—C6—C71.9 (8)C17—C18—C19—C201.6 (7)
C1—C2—C7—C6178.2 (4)C18—C19—C20—C151.4 (6)
C3—C2—C7—C61.7 (7)C14—C15—C20—C19179.6 (4)
C5—C6—C7—C20.2 (8)C16—C15—C20—C190.0 (6)
C13—C8—C9—C100.9 (6)C26—C21—C22—C230.8 (6)
N1—C8—C9—C10174.8 (4)N3—C21—C22—C23173.0 (4)
C8—C9—C10—C110.9 (6)C21—C22—C23—C240.0 (6)
C9—C10—C11—C120.5 (6)C22—C23—C24—C250.2 (6)
C9—C10—C11—N2178.5 (4)C22—C23—C24—N4180.0 (4)
C10—C11—C12—C130.1 (6)C23—C24—C25—C260.3 (7)
N2—C11—C12—C13178.1 (4)N4—C24—C25—C26179.5 (4)
C11—C12—C13—C80.1 (6)C24—C25—C26—C211.1 (7)
C9—C8—C13—C120.5 (6)C22—C21—C26—C251.3 (6)
N1—C8—C13—C12174.2 (4)N3—C21—C26—C25172.4 (4)
S1—C1—N1—C85.4 (6)S2—C14—N3—C219.1 (7)
C2—C1—N1—C8173.8 (3)C15—C14—N3—C21167.8 (4)
C9—C8—N1—C1118.3 (4)C22—C21—N3—C14115.0 (5)
C13—C8—N1—C168.0 (5)C26—C21—N3—C1471.4 (6)
C10—C11—N2—O1179.0 (4)C23—C24—N4—O38.0 (6)
C10—C11—N2—O21.4 (6)C23—C24—N4—O4172.0 (4)
C12—C11—N2—O12.9 (6)C25—C24—N4—O3171.8 (4)
C12—C11—N2—O2176.7 (4)C25—C24—N4—O48.2 (6)

Experimental details

Crystal data
Chemical formula[Hg(C13H9N2O2S)2]
Mr715.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)9.7351 (8), 14.3655 (14), 17.9804 (12)
β (°) 97.648 (6)
V3)2492.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.39
Crystal size (mm)0.57 × 0.19 × 0.15
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionNumerical
(SHELXTL; Sheldrick, 2005)
Tmin, Tmax0.088, 0.414
No. of measured, independent and
observed [I > 2σ(I)] reflections
27468, 4332, 3779
Rint0.028
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.054, 1.11
No. of reflections4332
No. of parameters337
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.78

Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg et al., 2003), DIAMOND (Brandenburg, 2007), SHELXTL (Sheldrick, 2005) and local programs.

Selected geometric parameters (Å, º) top
Hg1—S12.3415 (11)C1—N11.285 (5)
Hg1—S22.3438 (11)S2—C141.787 (4)
S1—C11.770 (4)C14—N31.284 (5)
S1—Hg1—S2174.37 (4)Hg1—S2—C14106.10 (15)
Hg1—S1—C1105.98 (14)S2—C14—C15112.0 (3)
S1—C1—C2113.6 (3)S2—C14—N3129.5 (3)
S1—C1—N1128.7 (3)C15—C14—N3118.5 (4)
C2—C1—N1117.8 (4)C14—N3—C21125.6 (4)
C1—N1—C8124.9 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds