Download citation
Download citation
link to html
The polymeric title compounds, namely catena-poly[[[di-μ-but-2-enoato-κ3O:O,O′;κ3O,O′:O′-bis­[diaqua­dibut-2-enoato-κO2O,O′-neodymium(III)]]-μ-4,4′-bipyridyl N,N′-dioxide-κ2O:O′] 4,4′-bipyridyl N,N′-dioxide solvate] and the erbium(III) and yttrium(III) analogues, {[Ln2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2}n (Ln = Nd, Er and Y), form from [Ln2(bt)6(H2O)4] dimers (bt is but-2-enoate) bridged by 4,4′-bipyridyl dioxide (bno) spacers into sets of parallel chains; these linear arrays are inter­connected by aqua-mediated hydrogen bonds into broad two-dimensional structures, which in turn inter­act with each other though the hydrogen-bonded bridged bno solvent units. Both independent bno units in the structures are bisected by symmetry centres.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107045404/fa3117sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107045404/fa3117Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107045404/fa3117IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107045404/fa3117IIIsup4.hkl
Contains datablock III

CCDC references: 669152; 669153; 669154

Comment top

The construction of extended frameworks containing f elements bridged by carboxylate groups has attracted a great deal of interest because of the large variety of architectures that might result from the high and variable coordination numbers of the metal centers as well as the coordination versatility of the carboxylate ligands. In this respect, butenoic (crotonic) acid has proved to be highly efficient in coupling LnIII ions (Rizzi et al., 2003; Baggio et al., 2005). In addition, we have observed that the incorporation of diimines during the synthetic procedure might favour crystallization, either through their inclusion as neutral ligands or counter-ions or even as external crystallization agents (Atria et al., 2006). In particular, 4,4'-bipyridine and its derivatives appear to be quite suitable – owing to their well known spacer properties – for generating grid or cluster structures, which are interesting not only from a structural point of view but also for their potential application in ion exchange, catalysis, molecular absorption, optical, electronic and magnetic areas.

In this context, we have recently reported (Muñoz et al., 2005) the synthesis and full characterization of an Ln* series formulated as {[Ln(bt)3(H2O)(bpy)1/2]2}n [bt is butenoate (C4H5O2), bpy is 4,4'-bipyridine (C10H8N2), and Ln = Nd, Gd, Ho, Er and Y], structures which in what follows we shall refer to as (IV).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

EDITOR: please inclue the following as a footnote:

(*): In this paper, we shall give the term `Ln' a broader sense than normal, so as to include the whole lanthanide family plus the `outlier' yttrium species.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Complementing the former, we report here the syntheses and crystal structures of a related, isomorphous series of general formula {[Ln(bt)3(H2O)2(bno)1/2]2.(bno)}n [bno is 4,4'-bipyridyldioxide (C10H8N2O2), and Ln = Nd, (I), Er, (II), and Y, (III)], which exhibit close similarities to as well as interesting differences from the above-mentioned series (IV).

The compounds crystallize in the triclinic space group P1, and their asymmetric unit is composed of a nine-coordinate Ln cation, three butenoate ligands, two aqua ligands and one independent half of a whole bno unit, bisected by a symmetry centre. In what follows, we shall describe compound (I), the Nd compound, as representative of the whole series, pointing out any significant difference with the rest when pertinent. Fig. 1 shows a molecular plot of (I), and Tables 1, 3 and 5, give selected bond distances for all three isostructural compounds.

The cation coordination sites are provided by five carboxylate O atoms from one monocoordinated and two chelating butenoate units, one of which also acts in a bridging mode linking to a neighbouring Ln cation and thus providing a sixth site. The independent bno O atom and two aqua ligands complete the ninefold coordination.

Coordination distances span the ranges 2.377 (3)–2.671 (3) Å in (I), 2.262 (4)–2.773 (4) Å in (II) and 2.277 (2)–2.761 (3) Å in (III), which can be considered normal for this kind of complex. The carboxylate groups bite in rather dissimilar ways. That at C21 does so in a rather symmetric way, with bond differences in the range of 1–3% (percentages refer to the lower value in the pair). That at C11, instead, presents a pronounced asymmetry due to the involvement of atom O12 in bridging; the resulting differences in the chelating distances are 5.7, 16.2 and 15.1% in (I)–(III), respectively. Still larger are the differences between chelating (long) versus bridging (short) distances for atom O12, which amount to 7.7, 18.3 and 17.5%, respectively.

The [Ln(bt)3(H2O)2(bno)1/2] group already described acts as the elemental motif of a linear array, through the combined effects of two independent symmetry centres in the structure. That at (1, 1, 1/2) generates dimeric units by joining neighbouring coordination polyhedra through an [Ln—O]2 loop; these loops are characterized by Ln···Ln distances (Å)/O—Ln—O angles (°) of 4.373 (1)/63.9 (1), 4.369 (1)/63.0 (1) and 4.361 (1)/63.1 (1), respectively. The centre at (1/2, 1/2, 1/2), which duplicates the independent pyridyloxide group into a complete bno molecule, acts as the linkage between dimeric units, thus generating a linear chain that runs parallel to [110] and which is a distinctive feature in the structure (Fig. 2).

As expected from the existence of strong chelation restraints, the coordination polyhedron (Fig. 1) is rather difficult to describe within the limits of conventional geometries. However, it presents a good example of the applicability of the vector bond valence approach recently presented by Harvey et al. (2006). An extremely simplified idea of what is presented therein could be that if ligands are considered as `a whole' and their collective coordinative interaction represented by a unique coordination vector joining the ligands to the metal centre, in addition to some other surprising results, substantial simplifications in the geometry description can be achieved. A detailed application of the procedure is beyond the scope of this paper, but if in the case of the chelating carboxylates the direction of the `resultant interaction' is approximated by the Nd—Ccarboxylate vector (a very reasonable guess), the geometry ends up being described by a quite regular pentagonal bipyramid with the base defined by atoms C21, O41, O1W, O2W and O12i [internal angle sequence: 71.0 (2), 72.2 (2), 67.3 (2), 72.7 (2), 77.0 (2) °; mean deviation from the least-squares plane: 0.087 (1) Å], with atoms C11 and O31 at the apices, deviating 5.3 (1) and 11.9 (1)°, respectively, from the plane normal.

Tables 2, 4 and 6 give information on the strong hydrogen bonds having the aqua H atoms as donors; those corresponding to entries 1 and 2 are intrachain and shown in Fig. 1. Interchain interactions (entries 3 and 4) can be envisaged as a two-step process leading first to the formation of two-dimensional structures parallel to (001), by way of of the hydrogen bond involving atom H1WA (third entry). These two-dimensional structures, in turn, are interconnected by the bno ligand, acting as a hydrogen-bonded bridge between planar arrays, into a final hydrogen-bonded three-dimensional structure.

A second type of nonbonding interaction providing packing stability is the C31—O32···Cgii contact [Cg is the centroid of the N51/C51–C55 ring; symmetry code: (ii) −x + 1, −y + 2, −z + 2; Fig. 3], weaker in structure (I), more important in the remaining two, whose parameters are summarized in Table 7.

The similarities with the series of structures (IV) reported by Muñoz et al. (2005) are many, and evident by inspection of both molecular diagrams; however, there are important differences as well, such as those derived from the presence of the solvent unit in (I), defining completely different packing patterns, or those resulting from the more open space left to coordination when the –ONC5 group binds to the cation as in (I) instead of the –NC5 group in (IV). In the latter case, the three carboxylate groups chelate the cation; in the former, instead, one of them `opens' by freeing O32, thus leaving room for the coordination of an extra aqua ligand, to which the same O32 atom makes a very strong intramolecular hydrogen bond, closing a wider Ln—O—H···O—C—O—Ln loop.

Related literature top

For related literature, see: Baggio et al. (2005); Harvey et al. (2006); Muñoz, Atria, Baggio, Garland, Peña & Orrego (2005); Rizzi et al. (2003).

Experimental top

The three complexes were prepared using the same general method: a solution of 4,4'-dipyridyl N,N'-dioxide hydrate (1 mmol) in ethanol was added to an aqueous solution containing Ln2O3 (1 mmol) and crotonic acid (6 mmol). The resulting mixture was refluxed for 24 h, filtered while hot and then concentrated to 25 ml. The filtrate was left at room temperature. On standing, suitable crystals for single-crystal X-ray diffraction appeared and were used without further processing.

Refinement top

H atoms attached to carbon were placed at idealized positions (C—H = 0.96 Å for CH3 and C—H = 0.93 Å for CH) and allowed to ride. Those corresponding to aqua ligands were found in difference maps and refined with restrained O—H distances [0.85 (2) Å]. All H atoms were assigned Uiso(H) parameters of xUeq(host), with x = 1.2 except for methyl H atoms, for which x = 1.5.

Computing details top

For all compounds, data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2001); data reduction: SAINT-NT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 2001); software used to prepare material for publication: SHELXTL-NT (Bruker, 2001) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : A molecular ellipsoid plot of (1). The independent part is shown in full 30% probability level displacement ellipsoids (and bonds); the symmetry related part is shown in open ellipsoids (and bonds). Note the way in which dimers and, in a second instance, chains are formed. Broken lines repreent intramolecular hydrogen bonds. Symmetry codes as in Table 1.
[Figure 2] Fig. 2. : A linear chain in (I), running along [110].
[Figure 3] Fig. 3. : The packing of (I), projected onto the (110) plane, showing the packing interactions. Note in projection the chains, binding each other into planes parallel to (001) by way of the interchain hydrogen bond involving O11ii. Note also the bridging function of the bno solvent molecule, through the interplanar hydrogen bond involving atom O51ii. Single fine broken lines represent intramolecular hydrogen bonds, heavy broken lines intermolecular hydrogen bonds, and double broken lines the C—O···π bonds. Symmetry codes as in Table 2.
(I) catena-poly[[[di-µ-but-2-enoato-κ3O:O,O';κ3O,O':O'-bis[diaquadibut-2-enoato-κO;κ2O,O'-neodymium(III)]]-µ-4,4'-bipyridyl dioxide-κ2O:O'] 4,4'-bipyridyl dioxide solvate] top
Crystal data top
[Nd2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2Z = 1
Mr = 1247.40F(000) = 626
Triclinic, P1Dx = 1.634 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3495 (10) ÅCell parameters from 4712 reflections
b = 12.0160 (13) Åθ = 3.6–24.7°
c = 12.8534 (14) ŵ = 2.10 mm1
α = 84.498 (2)°T = 298 K
β = 70.535 (2)°Blocks, colourless
γ = 68.632 (2)°0.21 × 0.18 × 0.13 mm
V = 1267.3 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5490 independent reflections
Radiation source: fine-focus sealed tube4882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1212
Tmin = 0.64, Tmax = 0.77k = 1515
10743 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.86 w = 1/[σ2(Fo2) + (0.0427P)2 + 2.6202P]
where P = (Fo2 + 2Fc2)/3
5490 reflections(Δ/σ)max = 0.006
331 parametersΔρmax = 0.99 e Å3
6 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Nd2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2γ = 68.632 (2)°
Mr = 1247.40V = 1267.3 (2) Å3
Triclinic, P1Z = 1
a = 9.3495 (10) ÅMo Kα radiation
b = 12.0160 (13) ŵ = 2.10 mm1
c = 12.8534 (14) ÅT = 298 K
α = 84.498 (2)°0.21 × 0.18 × 0.13 mm
β = 70.535 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5490 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4882 reflections with I > 2σ(I)
Tmin = 0.64, Tmax = 0.77Rint = 0.026
10743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.86Δρmax = 0.99 e Å3
5490 reflectionsΔρmin = 0.57 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.85200 (2)0.889729 (17)0.518790 (15)0.02743 (7)
O110.7155 (3)1.0614 (2)0.4141 (2)0.0391 (6)
O120.9047 (3)1.0936 (2)0.4560 (2)0.0350 (6)
C110.8075 (4)1.1193 (3)0.4009 (3)0.0323 (8)
C120.8088 (6)1.2156 (4)0.3221 (4)0.0533 (12)
H120.87851.25610.31740.064*
C130.7196 (7)1.2481 (5)0.2589 (5)0.0706 (16)
H130.65061.20680.26420.085*
C140.7168 (12)1.3468 (8)0.1773 (7)0.132 (4)
H14A0.75631.40180.19790.199*
H14B0.60761.38810.17690.199*
H14C0.78461.31330.10490.199*
O211.0502 (3)0.8617 (2)0.3243 (2)0.0335 (6)
O221.0724 (3)0.6987 (2)0.4205 (2)0.0413 (6)
C211.1162 (4)0.7489 (3)0.3319 (3)0.0322 (8)
C221.2501 (5)0.6785 (4)0.2373 (4)0.0446 (10)
H221.28080.59570.23920.054*
C231.3271 (6)0.7232 (5)0.1525 (4)0.0563 (12)
H231.28780.80600.14860.068*
C241.4737 (7)0.6570 (6)0.0587 (5)0.0788 (18)
H24A1.56580.67350.06080.118*
H24B1.45440.68250.01010.118*
H24C1.49480.57270.06530.118*
O310.8545 (4)0.7376 (3)0.6515 (2)0.0458 (7)
O320.6197 (4)0.7860 (4)0.7873 (3)0.0815 (13)
C310.7643 (6)0.7204 (4)0.7446 (4)0.0505 (11)
C320.8347 (7)0.6161 (5)0.8070 (4)0.0697 (16)
H320.77210.61040.87930.084*
C330.9721 (7)0.5342 (5)0.7709 (4)0.0617 (13)
H331.03620.54230.69970.074*
C341.0426 (9)0.4250 (6)0.8310 (6)0.092 (2)
H34A0.96720.42630.90340.138*
H34B1.14230.42460.83710.138*
H34C1.06320.35450.79080.138*
O410.7395 (3)0.8063 (2)0.4107 (2)0.0390 (6)
N410.6756 (4)0.7218 (3)0.4357 (3)0.0306 (6)
C410.5452 (5)0.7351 (4)0.4073 (4)0.0405 (9)
H410.50120.80310.37100.049*
C420.4758 (5)0.6487 (4)0.4316 (4)0.0432 (10)
H420.38510.65940.41130.052*
C430.5377 (4)0.5463 (3)0.4855 (3)0.0308 (8)
C440.6744 (5)0.5350 (4)0.5116 (4)0.0404 (9)
H440.72180.46700.54660.048*
C450.7410 (5)0.6231 (4)0.4864 (4)0.0414 (9)
H450.83270.61400.50490.050*
O510.5314 (4)0.8810 (3)0.1492 (3)0.0619 (9)
N510.6597 (4)0.9114 (3)0.1090 (3)0.0464 (9)
C510.7411 (5)0.9207 (4)0.1735 (3)0.0459 (10)
H510.70630.90450.24810.055*
C520.8740 (5)0.9534 (4)0.1328 (3)0.0463 (10)
H520.92870.95800.18000.056*
C530.9300 (5)0.9802 (4)0.0221 (3)0.0409 (9)
C540.8465 (6)0.9640 (5)0.0433 (4)0.0574 (13)
H540.88140.97670.11870.069*
C550.7153 (6)0.9300 (5)0.0001 (4)0.0591 (13)
H550.66280.91940.04640.071*
O1W0.5639 (3)0.9276 (3)0.6254 (3)0.0505 (8)
H1WA0.485 (4)0.927 (4)0.608 (3)0.061*
H1WB0.563 (5)0.886 (4)0.683 (3)0.061*
O2W0.7594 (4)1.0102 (3)0.6894 (2)0.0492 (8)
H2WA0.807 (4)1.059 (3)0.688 (4)0.059*
H2WB0.670 (3)1.036 (4)0.741 (3)0.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.02384 (11)0.03345 (12)0.03163 (11)0.01625 (8)0.01130 (8)0.00408 (8)
O110.0320 (14)0.0426 (15)0.0558 (17)0.0217 (12)0.0233 (13)0.0105 (13)
O120.0308 (13)0.0423 (15)0.0430 (15)0.0193 (12)0.0191 (12)0.0029 (12)
C110.0269 (18)0.0347 (19)0.040 (2)0.0135 (15)0.0134 (15)0.0012 (16)
C120.058 (3)0.054 (3)0.070 (3)0.035 (2)0.037 (3)0.025 (2)
C130.080 (4)0.074 (4)0.089 (4)0.044 (3)0.058 (3)0.042 (3)
C140.181 (9)0.138 (7)0.156 (8)0.104 (7)0.128 (7)0.110 (7)
O210.0322 (13)0.0355 (14)0.0374 (14)0.0162 (11)0.0129 (11)0.0036 (11)
O220.0398 (15)0.0361 (15)0.0428 (16)0.0098 (12)0.0125 (13)0.0064 (12)
C210.0283 (18)0.037 (2)0.038 (2)0.0138 (16)0.0170 (16)0.0002 (16)
C220.041 (2)0.040 (2)0.047 (3)0.0091 (19)0.0113 (19)0.0062 (19)
C230.059 (3)0.059 (3)0.047 (3)0.025 (2)0.006 (2)0.009 (2)
C240.073 (4)0.092 (4)0.054 (3)0.030 (3)0.009 (3)0.024 (3)
O310.0463 (17)0.0515 (17)0.0409 (16)0.0251 (14)0.0102 (13)0.0136 (13)
O320.048 (2)0.112 (3)0.061 (2)0.020 (2)0.0060 (18)0.031 (2)
C310.051 (3)0.059 (3)0.045 (3)0.028 (2)0.015 (2)0.015 (2)
C320.061 (3)0.082 (4)0.048 (3)0.023 (3)0.003 (2)0.024 (3)
C330.069 (4)0.057 (3)0.056 (3)0.027 (3)0.013 (3)0.009 (2)
C340.096 (5)0.067 (4)0.106 (5)0.020 (4)0.041 (4)0.028 (4)
O410.0486 (16)0.0434 (15)0.0456 (16)0.0357 (13)0.0218 (13)0.0106 (12)
N410.0324 (16)0.0325 (16)0.0356 (17)0.0196 (13)0.0135 (13)0.0035 (13)
C410.040 (2)0.040 (2)0.052 (2)0.0209 (18)0.0251 (19)0.0152 (19)
C420.041 (2)0.043 (2)0.066 (3)0.0262 (19)0.034 (2)0.018 (2)
C430.0290 (18)0.0319 (19)0.039 (2)0.0167 (15)0.0144 (15)0.0033 (16)
C440.041 (2)0.035 (2)0.058 (3)0.0201 (18)0.029 (2)0.0140 (19)
C450.041 (2)0.043 (2)0.056 (3)0.0233 (19)0.028 (2)0.0110 (19)
O510.0479 (19)0.083 (2)0.057 (2)0.0418 (18)0.0039 (16)0.0114 (18)
N510.0379 (19)0.055 (2)0.043 (2)0.0213 (17)0.0038 (16)0.0009 (17)
C510.045 (2)0.060 (3)0.032 (2)0.025 (2)0.0057 (18)0.0042 (19)
C520.046 (2)0.067 (3)0.031 (2)0.027 (2)0.0128 (18)0.012 (2)
C530.035 (2)0.054 (2)0.033 (2)0.0154 (19)0.0113 (16)0.0068 (18)
C540.051 (3)0.098 (4)0.033 (2)0.040 (3)0.016 (2)0.016 (2)
C550.050 (3)0.094 (4)0.042 (3)0.037 (3)0.015 (2)0.006 (3)
O1W0.0278 (14)0.084 (2)0.0478 (18)0.0288 (15)0.0138 (13)0.0046 (16)
O2W0.0425 (17)0.069 (2)0.0434 (17)0.0376 (16)0.0011 (13)0.0139 (15)
Geometric parameters (Å, º) top
Nd1—O312.377 (3)C33—C341.506 (8)
Nd1—O2W2.466 (3)C33—H330.9300
Nd1—O412.461 (2)C34—H34A0.9600
Nd1—O1W2.471 (3)C34—H34B0.9600
Nd1—O12i2.480 (2)C34—H34C0.9600
Nd1—O112.528 (3)O41—N411.320 (4)
Nd1—O212.533 (3)N41—C411.337 (5)
Nd1—O222.546 (3)N41—C451.339 (5)
Nd1—O122.671 (3)C41—C421.374 (5)
O11—C111.252 (4)C41—H410.9300
O12—C111.267 (4)C42—C431.384 (5)
C11—C121.464 (6)C42—H420.9300
C12—C131.289 (6)C43—C441.383 (5)
C12—H120.9300C43—C43ii1.481 (7)
C13—C141.504 (7)C44—C451.377 (5)
C13—H130.9300C44—H440.9300
C14—H14A0.9600C45—H450.9300
C14—H14B0.9600O51—N511.308 (4)
C14—H14C0.9600N51—C511.334 (6)
O21—C211.278 (4)N51—C551.350 (6)
O22—C211.252 (5)C51—C521.362 (6)
C21—C221.474 (5)C51—H510.9300
C22—C231.281 (6)C52—C531.393 (5)
C22—H220.9300C52—H520.9300
C23—C241.501 (7)C53—C541.391 (6)
C23—H230.9300C53—C53iii1.473 (8)
C24—H24A0.9600C54—C551.359 (6)
C24—H24B0.9600C54—H540.9300
C24—H24C0.9600C55—H550.9300
O31—C311.262 (5)O1W—H1WA0.85 (4)
O32—C311.250 (6)O1W—H1WB0.85 (4)
C31—C321.485 (7)O2W—H2WA0.85 (4)
C32—C331.267 (7)O2W—H2WB0.85 (4)
C32—H320.9300
O31—Nd1—O2W79.78 (11)C23—C24—H24A109.5
O31—Nd1—O4193.90 (10)C23—C24—H24B109.5
O2W—Nd1—O41139.26 (10)H24A—C24—H24B109.5
O31—Nd1—O1W74.66 (11)C23—C24—H24C109.5
O2W—Nd1—O1W67.29 (10)H24A—C24—H24C109.5
O41—Nd1—O1W72.21 (10)H24B—C24—H24C109.5
O31—Nd1—O12i90.02 (9)C31—O31—Nd1138.5 (3)
O2W—Nd1—O12i72.66 (9)O32—C31—O31123.8 (4)
O41—Nd1—O12i148.01 (9)O32—C31—C32118.2 (4)
O1W—Nd1—O12i138.94 (10)O31—C31—C32117.9 (4)
O31—Nd1—O11153.82 (10)C33—C32—C31126.0 (5)
O2W—Nd1—O1194.42 (11)C33—C32—H32117.0
O41—Nd1—O1173.80 (9)C31—C32—H32117.0
O1W—Nd1—O1179.54 (10)C32—C33—C34126.8 (5)
O12i—Nd1—O11112.79 (8)C32—C33—H33116.6
O31—Nd1—O21124.68 (9)C34—C33—H33116.6
O2W—Nd1—O21140.67 (9)C33—C34—H34A109.5
O41—Nd1—O2174.95 (9)C33—C34—H34B109.5
O1W—Nd1—O21142.94 (9)H34A—C34—H34B109.5
O12i—Nd1—O2176.76 (8)C33—C34—H34C109.5
O11—Nd1—O2175.20 (9)H34A—C34—H34C109.5
O31—Nd1—O2273.64 (10)H34B—C34—H34C109.5
O2W—Nd1—O22140.60 (11)N41—O41—Nd1129.7 (2)
O41—Nd1—O2272.04 (10)O41—N41—C41118.7 (3)
O1W—Nd1—O22129.63 (11)O41—N41—C45121.2 (3)
O12i—Nd1—O2278.72 (9)C41—N41—C45120.1 (3)
O11—Nd1—O22121.77 (9)N41—C41—C42120.3 (4)
O21—Nd1—O2251.20 (8)N41—C41—H41119.8
O31—Nd1—O12147.20 (9)C42—C41—H41119.8
O2W—Nd1—O1273.84 (9)C41—C42—C43121.6 (3)
O41—Nd1—O12118.82 (8)C41—C42—H42119.2
O1W—Nd1—O12111.37 (10)C43—C42—H42119.2
O12i—Nd1—O1263.87 (10)C42—C43—C44116.3 (3)
O11—Nd1—O1249.44 (8)C42—C43—C43ii122.2 (4)
O21—Nd1—O1270.76 (8)C44—C43—C43ii121.4 (4)
O22—Nd1—O12116.57 (9)C45—C44—C43120.8 (4)
C11—O11—Nd198.2 (2)C45—C44—H44119.6
C11—O12—Nd1i148.7 (2)C43—C44—H44119.6
C11—O12—Nd191.0 (2)N41—C45—C44120.9 (3)
Nd1i—O12—Nd1116.13 (10)N41—C45—H45119.6
O11—C11—O12119.6 (3)C44—C45—H45119.6
O11—C11—C12122.2 (3)O51—N51—C51121.0 (4)
O12—C11—C12118.2 (3)O51—N51—C55120.1 (4)
C13—C12—C11124.3 (4)C51—N51—C55118.8 (4)
C13—C12—H12117.8N51—C51—C52121.6 (4)
C11—C12—H12117.8N51—C51—H51119.2
C12—C13—C14126.0 (5)C52—C51—H51119.2
C12—C13—H13117.0C51—C52—C53121.5 (4)
C14—C13—H13117.0C51—C52—H52119.3
C13—C14—H14A109.5C53—C52—H52119.3
C13—C14—H14B109.5C52—C53—C54115.1 (4)
H14A—C14—H14B109.5C52—C53—C53iii122.1 (5)
C13—C14—H14C109.5C54—C53—C53iii122.9 (5)
H14A—C14—H14C109.5C55—C54—C53121.7 (4)
H14B—C14—H14C109.5C55—C54—H54119.1
C21—O21—Nd194.2 (2)C53—C54—H54119.1
C21—O22—Nd194.2 (2)N51—C55—C54121.1 (4)
O22—C21—O21120.4 (3)N51—C55—H55119.4
O22—C21—C22119.9 (3)C54—C55—H55119.4
O21—C21—C22119.7 (3)Nd1—O1W—H1WA133 (3)
C23—C22—C21124.7 (4)Nd1—O1W—H1WB107 (3)
C23—C22—H22117.6H1WA—O1W—H1WB106 (4)
C21—C22—H22117.6Nd1—O2W—H2WA116 (3)
C22—C23—C24127.4 (5)Nd1—O2W—H2WB134 (3)
C22—C23—H23116.3H2WA—O2W—H2WB106 (4)
C24—C23—H23116.3
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O21i0.85 (4)1.87 (4)2.703 (4)168 (4)
O1W—H1WB···O320.85 (4)1.80 (4)2.625 (5)164 (4)
O1W—H1WA···O11iv0.85 (4)1.94 (4)2.779 (4)172 (5)
O2W—H2WB···O51iv0.85 (4)1.91 (4)2.753 (4)171 (4)
Symmetry codes: (i) x+2, y+2, z+1; (iv) x+1, y+2, z+1.
(II) catena-poly[[[di-µ-but-2-enoato-κ3O:O,O';κ3O,O':O'-bis[diaquadibut-2-enoato-κO;κ2O,O'-erbium(III)]]-µ-4,4'-bipyridyl dioxide-κ2O:O'] 4,4'-bipyridyl dioxide solvate] top
Crystal data top
[Er2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2Z = 1
Mr = 1293.44F(000) = 642
Triclinic, P1Dx = 1.731 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1731 (9) ÅCell parameters from 6237 reflections
b = 12.0358 (12) Åθ = 4.1–25.1°
c = 12.7221 (13) ŵ = 3.44 mm1
α = 85.728 (2)°T = 298 K
β = 71.181 (1)°Blocks, colourless
γ = 69.099 (1)°0.18 × 0.14 × 0.12 mm
V = 1240.7 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5394 independent reflections
Radiation source: fine-focus sealed tube4772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.56, Tmax = 0.67k = 1515
9217 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
5394 reflections(Δ/σ)max = 0.001
331 parametersΔρmax = 1.09 e Å3
6 restraintsΔρmin = 1.61 e Å3
Crystal data top
[Er2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2γ = 69.099 (1)°
Mr = 1293.44V = 1240.7 (2) Å3
Triclinic, P1Z = 1
a = 9.1731 (9) ÅMo Kα radiation
b = 12.0358 (12) ŵ = 3.44 mm1
c = 12.7221 (13) ÅT = 298 K
α = 85.728 (2)°0.18 × 0.14 × 0.12 mm
β = 71.181 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5394 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4772 reflections with I > 2σ(I)
Tmin = 0.56, Tmax = 0.67Rint = 0.032
9217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.09 e Å3
5394 reflectionsΔρmin = 1.61 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.84952 (2)0.889230 (18)0.521512 (16)0.03019 (9)
O110.7222 (4)1.0533 (3)0.4248 (3)0.0418 (8)
O120.9138 (4)1.0965 (4)0.4560 (3)0.0468 (9)
C110.8103 (5)1.1167 (4)0.4047 (4)0.0331 (10)
C120.8064 (10)1.2089 (6)0.3260 (6)0.0685 (19)
H120.87641.25050.32050.082*
C130.7188 (11)1.2385 (8)0.2646 (7)0.088 (3)
H130.64931.19690.26820.106*
C140.7182 (15)1.3397 (10)0.1828 (10)0.140 (5)
H14A0.77061.38840.20100.210*
H14B0.60671.38740.18830.210*
H14C0.77681.30630.10840.210*
O211.0396 (4)0.8627 (3)0.3338 (3)0.0312 (7)
O221.0650 (4)0.7024 (3)0.4287 (3)0.0408 (8)
C211.1071 (6)0.7511 (4)0.3402 (4)0.0329 (10)
C221.2422 (7)0.6788 (5)0.2444 (5)0.0475 (13)
H221.27460.59640.24660.057*
C231.3179 (8)0.7237 (6)0.1576 (5)0.0575 (16)
H231.27670.80600.15330.069*
C241.4652 (10)0.6560 (8)0.0638 (6)0.088 (3)
H24A1.56040.66920.06800.132*
H24B1.44760.68270.00560.132*
H24C1.48210.57260.06870.132*
O310.8454 (4)0.7488 (3)0.6498 (3)0.0443 (9)
O320.6091 (6)0.8020 (5)0.7890 (4)0.0757 (14)
C310.7531 (7)0.7342 (6)0.7441 (5)0.0523 (14)
C320.8237 (9)0.6288 (7)0.8056 (6)0.0683 (19)
H320.76010.62380.87810.082*
C330.9626 (9)0.5452 (6)0.7685 (6)0.0633 (18)
H331.02680.55250.69680.076*
C341.0345 (12)0.4370 (8)0.8262 (8)0.094 (3)
H34A0.95630.43540.89730.141*
H34B1.13280.43890.83650.141*
H34C1.06080.36700.78200.141*
O410.7417 (4)0.8064 (3)0.4151 (3)0.0370 (8)
N410.6770 (5)0.7221 (3)0.4387 (3)0.0304 (8)
C410.5455 (6)0.7335 (4)0.4091 (4)0.0398 (12)
H410.50160.80000.37180.048*
C420.4749 (6)0.6481 (5)0.4332 (5)0.0419 (12)
H420.38170.65870.41350.050*
C430.5390 (6)0.5457 (4)0.4864 (4)0.0316 (10)
C440.6777 (6)0.5365 (5)0.5135 (5)0.0415 (12)
H440.72610.46960.54870.050*
C450.7447 (6)0.6241 (5)0.4894 (5)0.0405 (12)
H450.83780.61590.50830.049*
O510.5304 (5)0.8752 (4)0.1544 (3)0.0597 (11)
N510.6594 (5)0.9064 (4)0.1121 (4)0.0445 (11)
C510.7466 (7)0.9165 (5)0.1754 (4)0.0468 (13)
H510.71550.89930.25010.056*
C520.8791 (6)0.9513 (5)0.1334 (4)0.0421 (12)
H520.93710.95640.17970.051*
C530.9298 (6)0.9791 (5)0.0226 (4)0.0379 (11)
C540.8420 (7)0.9625 (6)0.0418 (4)0.0516 (15)
H540.87470.97570.11740.062*
C550.7081 (7)0.9271 (6)0.0024 (5)0.0506 (14)
H550.65130.91750.04290.061*
O1W0.5649 (4)0.9358 (4)0.6189 (3)0.0504 (10)
H1WA0.481 (5)0.939 (5)0.602 (4)0.060*
H1WB0.564 (7)0.894 (5)0.676 (3)0.060*
O2W0.7644 (4)1.0099 (4)0.6826 (3)0.0450 (9)
H2WA0.808 (5)1.061 (4)0.684 (4)0.054*
H2WB0.672 (3)1.034 (4)0.733 (4)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.02365 (12)0.03802 (14)0.03297 (13)0.01541 (9)0.00872 (9)0.00060 (9)
O110.0291 (17)0.0361 (18)0.064 (2)0.0171 (15)0.0134 (17)0.0003 (17)
O120.0280 (17)0.071 (3)0.047 (2)0.0212 (18)0.0107 (16)0.0144 (19)
C110.026 (2)0.037 (3)0.037 (2)0.013 (2)0.0079 (19)0.001 (2)
C120.082 (5)0.059 (4)0.074 (5)0.026 (4)0.039 (4)0.016 (4)
C130.087 (6)0.088 (6)0.108 (7)0.043 (5)0.045 (5)0.019 (5)
C140.190 (13)0.127 (9)0.158 (11)0.075 (9)0.124 (10)0.094 (9)
O210.0278 (15)0.0344 (17)0.0353 (17)0.0151 (14)0.0100 (13)0.0003 (14)
O220.0382 (18)0.0393 (19)0.043 (2)0.0120 (16)0.0136 (16)0.0110 (16)
C210.032 (2)0.036 (3)0.037 (3)0.017 (2)0.014 (2)0.001 (2)
C220.044 (3)0.043 (3)0.049 (3)0.012 (3)0.009 (3)0.006 (3)
C230.061 (4)0.059 (4)0.048 (3)0.025 (3)0.004 (3)0.012 (3)
C240.083 (5)0.107 (7)0.054 (4)0.037 (5)0.015 (4)0.032 (4)
O310.0415 (19)0.054 (2)0.0380 (19)0.0239 (18)0.0061 (16)0.0041 (17)
O320.048 (3)0.098 (4)0.058 (3)0.017 (3)0.002 (2)0.015 (3)
C310.052 (3)0.069 (4)0.039 (3)0.029 (3)0.010 (3)0.008 (3)
C320.066 (4)0.080 (5)0.048 (4)0.028 (4)0.005 (3)0.022 (3)
C330.070 (5)0.063 (4)0.059 (4)0.034 (4)0.012 (3)0.008 (3)
C340.103 (7)0.078 (6)0.099 (7)0.029 (5)0.036 (6)0.025 (5)
O410.0411 (18)0.0399 (19)0.0444 (19)0.0296 (16)0.0168 (16)0.0105 (15)
N410.0316 (19)0.031 (2)0.036 (2)0.0176 (17)0.0121 (17)0.0009 (17)
C410.040 (3)0.037 (3)0.056 (3)0.020 (2)0.028 (2)0.016 (2)
C420.037 (3)0.045 (3)0.062 (3)0.026 (2)0.029 (3)0.017 (3)
C430.031 (2)0.030 (2)0.042 (3)0.0150 (19)0.017 (2)0.002 (2)
C440.038 (3)0.042 (3)0.057 (3)0.022 (2)0.025 (2)0.020 (3)
C450.040 (3)0.044 (3)0.055 (3)0.025 (2)0.029 (2)0.014 (2)
O510.047 (2)0.078 (3)0.057 (3)0.042 (2)0.0041 (19)0.009 (2)
N510.036 (2)0.057 (3)0.038 (2)0.023 (2)0.0002 (19)0.004 (2)
C510.046 (3)0.059 (3)0.034 (3)0.023 (3)0.007 (2)0.006 (2)
C520.041 (3)0.061 (3)0.030 (2)0.023 (3)0.013 (2)0.008 (2)
C530.034 (2)0.047 (3)0.029 (2)0.013 (2)0.006 (2)0.005 (2)
C540.047 (3)0.088 (4)0.029 (3)0.035 (3)0.013 (2)0.012 (3)
C550.043 (3)0.072 (4)0.039 (3)0.025 (3)0.011 (2)0.003 (3)
O1W0.0272 (18)0.076 (3)0.051 (2)0.0250 (19)0.0081 (17)0.001 (2)
O2W0.0389 (19)0.059 (2)0.042 (2)0.0330 (18)0.0029 (16)0.0139 (17)
Geometric parameters (Å, º) top
Er1—O312.262 (4)C33—C341.492 (11)
Er1—O12i2.344 (3)C33—H330.9300
Er1—O2W2.350 (3)C34—H34A0.9600
Er1—O412.361 (3)C34—H34B0.9600
Er1—O1W2.375 (3)C34—H34C0.9600
Er1—O112.387 (4)O41—N411.320 (5)
Er1—O212.423 (3)N41—C411.335 (6)
Er1—O222.465 (3)N41—C451.348 (6)
Er1—O122.773 (4)C41—C421.367 (7)
O11—C111.256 (5)C41—H410.9300
O12—C111.265 (6)C42—C431.392 (7)
C11—C121.437 (8)C42—H420.9300
C12—C131.241 (9)C43—C441.389 (7)
C12—H120.9300C43—C43ii1.478 (9)
C13—C141.542 (12)C44—C451.369 (7)
C13—H130.9300C44—H440.9300
C14—H14A0.9600C45—H450.9300
C14—H14B0.9600O51—N511.307 (5)
C14—H14C0.9600N51—C511.343 (7)
O21—C211.271 (6)N51—C551.354 (7)
O22—C211.242 (6)C51—C521.359 (7)
C22—C231.295 (7)C51—H510.9300
C22—H220.9300C52—C531.390 (6)
C23—C241.494 (9)C52—H520.9300
C23—H230.9300C53—C541.388 (7)
C24—H24A0.9600C53—C53iii1.478 (10)
C24—H24B0.9600C54—C551.378 (8)
C24—H24C0.9600C54—H540.9300
O31—C311.268 (6)C55—H550.9300
O32—C311.245 (7)O1W—H1WA0.85 (5)
C31—C321.494 (9)O1W—H1WB0.85 (5)
C32—C331.276 (8)O2W—H2WA0.85 (5)
C32—H320.9300O2W—H2WB0.85 (5)
O31—Er1—O12i90.99 (14)C23—C24—H24B109.5
O31—Er1—O2W80.74 (14)H24A—C24—H24B109.5
O12i—Er1—O2W72.71 (12)C23—C24—H24C109.5
O31—Er1—O4193.60 (12)H24A—C24—H24C109.5
O12i—Er1—O41146.49 (12)H24B—C24—H24C109.5
O2W—Er1—O41140.78 (12)C31—O31—Er1139.1 (4)
O31—Er1—O1W76.40 (14)O32—C31—O31124.5 (6)
O12i—Er1—O1W140.39 (13)O32—C31—C32118.2 (5)
O2W—Er1—O1W68.29 (13)O31—C31—C32117.3 (5)
O41—Er1—O1W72.64 (13)C33—C32—C31126.5 (6)
O31—Er1—O11153.43 (13)C33—C32—H32116.8
O12i—Er1—O11111.30 (13)C31—C32—H32116.8
O2W—Er1—O1191.96 (14)C32—C33—C34127.8 (7)
O41—Er1—O1175.96 (12)C32—C33—H33116.1
O1W—Er1—O1177.17 (13)C34—C33—H33116.1
O31—Er1—O21126.51 (12)C33—C34—H34A109.5
O12i—Er1—O2176.16 (11)C33—C34—H34B109.5
O2W—Er1—O21138.72 (11)H34A—C34—H34B109.5
O41—Er1—O2174.49 (11)C33—C34—H34C109.5
O1W—Er1—O21140.89 (12)H34A—C34—H34C109.5
O11—Er1—O2174.80 (11)H34B—C34—H34C109.5
O31—Er1—O2273.67 (12)N41—O41—Er1130.0 (3)
O12i—Er1—O2277.61 (12)O41—N41—C41119.1 (4)
O2W—Er1—O22140.11 (13)O41—N41—C45120.7 (4)
O41—Er1—O2271.96 (12)C41—N41—C45120.1 (4)
O1W—Er1—O22131.34 (14)N41—C41—C42120.5 (4)
O11—Er1—O22123.83 (12)N41—C41—H41119.7
O21—Er1—O2252.93 (11)C42—C41—H41119.7
O31—Er1—O12146.95 (12)C41—C42—C43121.7 (4)
O12i—Er1—O1262.99 (15)C41—C42—H42119.2
O2W—Er1—O1272.53 (12)C43—C42—H42119.2
O41—Er1—O12119.39 (11)C44—C43—C42115.8 (4)
O1W—Er1—O12109.96 (13)C44—C43—C43ii122.7 (5)
O11—Er1—O1248.72 (10)C42—C43—C43ii121.5 (5)
O21—Er1—O1269.46 (10)C45—C44—C43121.3 (5)
O22—Er1—O12116.13 (11)C45—C44—H44119.4
C11—O11—Er1105.4 (3)C43—C44—H44119.4
C11—O12—Er1i152.3 (3)N41—C45—C44120.6 (4)
C11—O12—Er186.6 (3)N41—C45—H45119.7
Er1i—O12—Er1117.01 (15)C44—C45—H45119.7
O11—C11—O12117.6 (5)O51—N51—C51121.0 (5)
O11—C11—C12125.5 (5)O51—N51—C55119.8 (5)
O12—C11—C12116.9 (5)C51—N51—C55119.2 (5)
C13—C12—C11126.5 (8)N51—C51—C52121.9 (5)
C13—C12—H12116.7N51—C51—H51119.1
C11—C12—H12116.7C52—C51—H51119.1
C12—C13—C14124.1 (9)C51—C52—C53121.4 (5)
C12—C13—H13117.9C51—C52—H52119.3
C14—C13—H13117.9C53—C52—H52119.3
C13—C14—H14A109.5C54—C53—C52115.4 (5)
C13—C14—H14B109.5C54—C53—C53iii122.9 (5)
H14A—C14—H14B109.5C52—C53—C53iii121.6 (6)
C13—C14—H14C109.5C55—C54—C53122.2 (5)
H14A—C14—H14C109.5C55—C54—H54118.9
H14B—C14—H14C109.5C53—C54—H54118.9
C21—O21—Er194.0 (3)N51—C55—C54119.9 (5)
C21—O22—Er192.8 (3)N51—C55—H55120.1
O22—C21—O21120.2 (4)C54—C55—H55120.1
C23—C22—C21123.8 (6)Er1—O1W—H1WA136 (4)
C23—C22—H22118.1Er1—O1W—H1WB104 (4)
C21—C22—H22118.1H1WA—O1W—H1WB105 (5)
C22—C23—C24126.2 (7)Er1—O2W—H2WA120 (3)
C22—C23—H23116.9Er1—O2W—H2WB130 (3)
C24—C23—H23116.9H2WA—O2W—H2WB105 (5)
C23—C24—H24A109.5
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O21i0.85 (5)1.88 (5)2.703 (4)164 (5)
O1W—H1WB···O320.85 (5)1.81 (5)2.650 (6)167 (5)
O1W—H1WA···O11iv0.85 (5)1.97 (5)2.819 (5)176 (5)
O2W—H2WB···O51iv0.85 (5)1.94 (5)2.769 (5)166 (5)
Symmetry codes: (i) x+2, y+2, z+1; (iv) x+1, y+2, z+1.
(III) catena-poly[[[di-µ-but-2-enoato-κ3O:O,O';κ3O,O':O'-bis[diaquadibut-2-enoato-κO;κ2O,O'-yttrium(III)]]-µ-4,4'-bipyridyl dioxide-κ2O:O'] 4,4'-bipyridyl dioxide solvate] top
Crystal data top
[Y2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2Z = 1
Mr = 1136.74F(000) = 584
Triclinic, P1Dx = 1.519 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1865 (13) ÅCell parameters from 7488 reflections
b = 12.0293 (17) Åθ = 4.2–24.8°
c = 12.7275 (18) ŵ = 2.40 mm1
α = 85.710 (2)°T = 298 K
β = 71.079 (2)°Blocks, colourless
γ = 69.175 (2)°0.14 × 0.14 × 0.13 mm
V = 1242.3 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5405 independent reflections
Radiation source: fine-focus sealed tube4364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1112
Tmin = 0.71, Tmax = 0.74k = 1515
10592 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0633P)2]
where P = (Fo2 + 2Fc2)/3
5405 reflections(Δ/σ)max = 0.001
331 parametersΔρmax = 0.89 e Å3
6 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Y2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2γ = 69.175 (2)°
Mr = 1136.74V = 1242.3 (3) Å3
Triclinic, P1Z = 1
a = 9.1865 (13) ÅMo Kα radiation
b = 12.0293 (17) ŵ = 2.40 mm1
c = 12.7275 (18) ÅT = 298 K
α = 85.710 (2)°0.14 × 0.14 × 0.13 mm
β = 71.079 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5405 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4364 reflections with I > 2σ(I)
Tmin = 0.71, Tmax = 0.74Rint = 0.030
10592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0486 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.89 e Å3
5405 reflectionsΔρmin = 0.48 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.84968 (3)0.88953 (3)0.52118 (3)0.03172 (12)
O110.7217 (3)1.0538 (2)0.4236 (2)0.0440 (6)
O120.9144 (3)1.0957 (2)0.4552 (2)0.0478 (6)
C110.8109 (4)1.1162 (3)0.4046 (3)0.0347 (7)
C120.8066 (6)1.2106 (4)0.3258 (4)0.0738 (13)
H120.87591.25280.32040.089*
C130.7175 (7)1.2397 (5)0.2646 (5)0.0929 (17)
H130.64651.19900.26970.112*
C140.7193 (10)1.3394 (6)0.1813 (7)0.146 (3)
H14A0.80101.37130.18240.219*
H14B0.61331.40150.20170.219*
H14C0.74481.30750.10790.219*
O211.0404 (3)0.86271 (19)0.33308 (18)0.0342 (5)
O221.0667 (3)0.7018 (2)0.4284 (2)0.0420 (6)
C211.1092 (4)0.7511 (3)0.3392 (3)0.0345 (7)
C221.2435 (5)0.6795 (3)0.2436 (3)0.0490 (9)
H221.27580.59710.24630.059*
C231.3186 (5)0.7226 (4)0.1577 (3)0.0605 (11)
H231.27730.80490.15350.073*
C241.4656 (7)0.6564 (5)0.0625 (4)0.0953 (18)
H24A1.56180.66560.06920.143*
H24B1.44990.68770.00630.143*
H24C1.47910.57340.06340.143*
O310.8452 (3)0.7479 (2)0.6500 (2)0.0464 (6)
O320.6093 (4)0.8018 (3)0.7882 (3)0.0790 (10)
C310.7531 (5)0.7348 (4)0.7446 (3)0.0534 (10)
C320.8244 (6)0.6293 (4)0.8060 (4)0.0705 (13)
H320.76150.62430.87870.085*
C330.9620 (6)0.5461 (4)0.7687 (4)0.0683 (12)
H331.02620.55340.69700.082*
C341.0330 (7)0.4375 (5)0.8265 (5)0.0955 (18)
H34A0.95590.43740.89850.143*
H34B1.13310.43780.83480.143*
H34C1.05560.36770.78340.143*
O410.7425 (3)0.8054 (2)0.41473 (19)0.0389 (5)
N410.6777 (3)0.7215 (2)0.4384 (2)0.0331 (6)
C410.5457 (4)0.7333 (3)0.4093 (3)0.0421 (8)
H410.50150.80010.37260.050*
C420.4751 (4)0.6476 (3)0.4333 (3)0.0444 (9)
H420.38240.65800.41340.053*
C430.5383 (4)0.5463 (3)0.4863 (3)0.0331 (7)
C440.6777 (4)0.5363 (3)0.5128 (3)0.0414 (8)
H440.72610.46900.54750.050*
C450.7445 (4)0.6236 (3)0.4888 (3)0.0424 (8)
H450.83750.61530.50760.051*
O510.5306 (3)0.8759 (3)0.1537 (2)0.0629 (8)
N510.6593 (4)0.9071 (3)0.1116 (3)0.0474 (8)
C510.7472 (5)0.9154 (3)0.1744 (3)0.0484 (9)
H510.71740.89610.24860.058*
C520.8788 (4)0.9511 (3)0.1331 (3)0.0455 (9)
H520.93580.95680.17970.055*
C530.9297 (4)0.9793 (3)0.0231 (3)0.0408 (8)
C540.8408 (5)0.9631 (4)0.0415 (3)0.0557 (10)
H540.87230.97700.11700.067*
C550.7089 (5)0.9274 (4)0.0036 (3)0.0562 (10)
H550.65260.91720.04180.067*
O1W0.5639 (3)0.9353 (3)0.6192 (2)0.0523 (7)
H1WA0.483 (3)0.936 (3)0.601 (3)0.063*
H1WB0.568 (5)0.888 (3)0.671 (3)0.063*
O2W0.7631 (3)1.0110 (2)0.6830 (2)0.0483 (6)
H2WA0.811 (3)1.057 (3)0.687 (3)0.058*
H2WB0.670 (2)1.034 (3)0.733 (2)0.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.02625 (17)0.0395 (2)0.03501 (19)0.01714 (13)0.01064 (13)0.00106 (13)
O110.0351 (12)0.0399 (13)0.0660 (17)0.0222 (11)0.0181 (12)0.0036 (12)
O120.0316 (12)0.0643 (17)0.0534 (16)0.0194 (12)0.0158 (11)0.0097 (13)
C110.0319 (16)0.0356 (18)0.0402 (19)0.0147 (14)0.0123 (15)0.0007 (14)
C120.082 (3)0.068 (3)0.080 (3)0.029 (3)0.037 (3)0.016 (3)
C130.092 (4)0.096 (4)0.113 (5)0.047 (3)0.051 (4)0.025 (4)
C140.197 (8)0.132 (6)0.169 (7)0.084 (6)0.129 (7)0.108 (6)
O210.0323 (11)0.0348 (13)0.0389 (13)0.0151 (10)0.0124 (10)0.0025 (10)
O220.0406 (13)0.0397 (13)0.0455 (15)0.0124 (11)0.0173 (11)0.0105 (11)
C210.0296 (16)0.0400 (19)0.0400 (19)0.0148 (15)0.0154 (15)0.0007 (15)
C220.050 (2)0.044 (2)0.051 (2)0.0146 (18)0.0134 (19)0.0041 (18)
C230.062 (3)0.064 (3)0.050 (3)0.024 (2)0.005 (2)0.010 (2)
C240.086 (4)0.109 (4)0.067 (3)0.035 (3)0.014 (3)0.030 (3)
O310.0456 (14)0.0540 (16)0.0419 (15)0.0264 (12)0.0083 (12)0.0086 (12)
O320.0479 (17)0.107 (3)0.064 (2)0.0214 (18)0.0033 (15)0.0200 (19)
C310.051 (2)0.070 (3)0.044 (2)0.032 (2)0.010 (2)0.007 (2)
C320.069 (3)0.083 (3)0.049 (3)0.030 (3)0.004 (2)0.018 (2)
C330.078 (3)0.072 (3)0.060 (3)0.037 (3)0.019 (3)0.011 (2)
C340.099 (4)0.082 (4)0.105 (5)0.028 (3)0.041 (4)0.021 (3)
O410.0465 (13)0.0405 (13)0.0474 (14)0.0315 (11)0.0223 (11)0.0131 (11)
N410.0343 (14)0.0353 (15)0.0366 (15)0.0197 (12)0.0126 (12)0.0044 (12)
C410.0413 (19)0.042 (2)0.057 (2)0.0220 (16)0.0279 (18)0.0142 (17)
C420.0390 (19)0.047 (2)0.065 (2)0.0241 (17)0.0327 (18)0.0168 (18)
C430.0323 (16)0.0327 (17)0.0394 (19)0.0168 (14)0.0123 (15)0.0025 (14)
C440.0426 (19)0.0382 (19)0.058 (2)0.0222 (16)0.0286 (18)0.0163 (17)
C450.0426 (19)0.041 (2)0.060 (2)0.0226 (16)0.0296 (18)0.0131 (17)
O510.0505 (16)0.081 (2)0.0583 (18)0.0412 (15)0.0038 (13)0.0083 (15)
N510.0396 (16)0.058 (2)0.0424 (18)0.0237 (15)0.0018 (14)0.0025 (15)
C510.053 (2)0.059 (2)0.034 (2)0.0267 (19)0.0077 (17)0.0106 (18)
C520.0421 (19)0.064 (2)0.0311 (19)0.0220 (18)0.0105 (16)0.0087 (17)
C530.0355 (18)0.053 (2)0.0328 (18)0.0169 (16)0.0099 (15)0.0092 (16)
C540.051 (2)0.089 (3)0.034 (2)0.035 (2)0.0117 (18)0.012 (2)
C550.047 (2)0.081 (3)0.048 (2)0.030 (2)0.0153 (19)0.002 (2)
O1W0.0324 (13)0.078 (2)0.0532 (17)0.0274 (14)0.0144 (12)0.0043 (14)
O2W0.0399 (14)0.0654 (18)0.0458 (15)0.0357 (13)0.0008 (11)0.0131 (13)
Geometric parameters (Å, º) top
Y1—O312.277 (2)C33—C341.494 (7)
Y1—O12i2.350 (2)C33—H330.9300
Y1—O2W2.360 (2)C34—H34A0.9600
Y1—O412.368 (2)C34—H34B0.9600
Y1—O1W2.388 (2)C34—H34C0.9600
Y1—O112.399 (2)O41—N411.316 (3)
Y1—O212.429 (2)N41—C411.337 (4)
Y1—O222.478 (2)N41—C451.343 (4)
Y1—O122.761 (3)C41—C421.369 (4)
O11—C111.255 (4)C41—H410.9300
O12—C111.259 (4)C42—C431.380 (5)
C11—C121.457 (5)C42—H420.9300
C12—C131.252 (7)C43—C441.390 (4)
C12—H120.9300C43—C43ii1.483 (6)
C13—C141.541 (7)C44—C451.365 (4)
C13—H130.9300C44—H440.9300
C14—H14A0.9600C45—H450.9300
C14—H14B0.9600O51—N511.303 (4)
C14—H14C0.9600N51—C551.334 (5)
O21—C211.273 (4)N51—C511.339 (5)
O22—C211.252 (4)C51—C521.359 (5)
C22—C231.273 (4)C51—H510.9300
C22—H220.9300C52—C531.382 (5)
C23—C241.499 (6)C52—H520.9300
C23—H230.9300C53—C541.397 (5)
C24—H24A0.9600C53—C53iii1.477 (6)
C24—H24B0.9600C54—C551.366 (5)
C24—H24C0.9600C54—H540.9300
O31—C311.263 (4)C55—H550.9300
O32—C311.240 (5)O1W—H1WA0.85 (3)
C31—C321.498 (6)O1W—H1WB0.85 (3)
C32—C331.268 (4)O2W—H2WA0.85 (3)
C32—H320.9300O2W—H2WB0.85 (3)
O31—Y1—O12i90.89 (9)C23—C24—H24B109.5
O31—Y1—O2W80.95 (9)H24A—C24—H24B109.5
O12i—Y1—O2W72.59 (8)C23—C24—H24C109.5
O31—Y1—O4193.21 (8)H24A—C24—H24C109.5
O12i—Y1—O41146.69 (9)H24B—C24—H24C109.5
O2W—Y1—O41140.68 (8)C31—O31—Y1138.5 (3)
O31—Y1—O1W76.24 (9)O32—C31—O31124.6 (4)
O12i—Y1—O1W140.14 (9)O32—C31—C32118.8 (4)
O2W—Y1—O1W68.24 (9)O31—C31—C32116.6 (4)
O41—Y1—O1W72.59 (9)C33—C32—C31126.5 (4)
O31—Y1—O11153.31 (9)C33—C32—H32116.7
O12i—Y1—O11111.66 (8)C31—C32—H32116.7
O2W—Y1—O1192.04 (9)C32—C33—C34127.6 (5)
O41—Y1—O1175.95 (8)C32—C33—H33116.2
O1W—Y1—O1177.24 (9)C34—C33—H33116.2
O31—Y1—O21126.33 (8)C33—C34—H34A109.5
O12i—Y1—O2176.51 (8)C33—C34—H34B109.5
O2W—Y1—O21138.88 (8)H34A—C34—H34B109.5
O41—Y1—O2174.50 (7)C33—C34—H34C109.5
O1W—Y1—O21140.92 (8)H34A—C34—H34C109.5
O11—Y1—O2174.82 (8)H34B—C34—H34C109.5
O31—Y1—O2273.48 (8)N41—O41—Y1130.26 (18)
O12i—Y1—O2277.61 (8)O41—N41—C41119.2 (3)
O2W—Y1—O22140.07 (9)O41—N41—C45120.8 (3)
O41—Y1—O2271.98 (8)C41—N41—C45120.0 (3)
O1W—Y1—O22131.26 (9)N41—C41—C42120.5 (3)
O11—Y1—O22123.84 (8)N41—C41—H41119.8
O21—Y1—O2252.92 (7)C42—C41—H41119.8
O31—Y1—O12147.25 (8)C41—C42—C43121.6 (3)
O12i—Y1—O1263.09 (10)C41—C42—H42119.2
O2W—Y1—O1272.73 (8)C43—C42—H42119.2
O41—Y1—O12119.51 (7)C42—C43—C44116.1 (3)
O1W—Y1—O12110.30 (9)C42—C43—C43ii122.0 (3)
O11—Y1—O1248.93 (7)C44—C43—C43ii121.9 (4)
O21—Y1—O1269.35 (7)C45—C44—C43121.0 (3)
O22—Y1—O12115.92 (8)C45—C44—H44119.5
C11—O11—Y1104.2 (2)C43—C44—H44119.5
C11—O12—Y1i152.6 (2)N41—C45—C44120.8 (3)
C11—O12—Y186.69 (19)N41—C45—H45119.6
Y1i—O12—Y1116.91 (10)C44—C45—H45119.6
O11—C11—O12118.7 (3)O51—N51—C55120.3 (3)
O11—C11—C12124.8 (3)O51—N51—C51121.0 (3)
O12—C11—C12116.6 (3)C55—N51—C51118.7 (3)
C13—C12—C11125.5 (5)N51—C51—C52121.9 (3)
C13—C12—H12117.2N51—C51—H51119.0
C11—C12—H12117.2C52—C51—H51119.0
C12—C13—C14123.5 (5)C51—C52—C53121.4 (3)
C12—C13—H13118.3C51—C52—H52119.3
C14—C13—H13118.3C53—C52—H52119.3
C13—C14—H14A109.5C52—C53—C54115.0 (3)
C13—C14—H14B109.5C52—C53—C53iii122.3 (4)
H14A—C14—H14B109.5C54—C53—C53iii122.6 (4)
C13—C14—H14C109.5C55—C54—C53121.6 (4)
H14A—C14—H14C109.5C55—C54—H54119.2
H14B—C14—H14C109.5C53—C54—H54119.2
C21—O21—Y194.41 (19)N51—C55—C54121.1 (4)
C21—O22—Y192.66 (19)N51—C55—H55119.4
O22—C21—O21119.9 (3)C54—C55—H55119.4
C23—C22—C21124.6 (4)Y1—O1W—H1WA134 (3)
C23—C22—H22117.7Y1—O1W—H1WB101 (3)
C21—C22—H22117.7H1WA—O1W—H1WB106 (3)
C22—C23—C24127.7 (5)Y1—O2W—H2WA121 (2)
C22—C23—H23116.2Y1—O2W—H2WB129 (2)
C24—C23—H23116.2H2WA—O2W—H2WB107 (3)
C23—C24—H24A109.5
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O21i0.84 (3)1.88 (3)2.697 (3)166 (3)
O1W—H1WB···O320.85 (3)1.81 (3)2.639 (4)167 (3)
O1W—H1WA···O11iv0.85 (3)1.96 (3)2.806 (3)173 (4)
O2W—H2WB···O51iv0.84 (3)1.94 (3)2.762 (4)166 (3)
Symmetry codes: (i) x+2, y+2, z+1; (iv) x+1, y+2, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Nd2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2[Er2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2[Y2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2
Mr1247.401293.441136.74
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)298298298
a, b, c (Å)9.3495 (10), 12.0160 (13), 12.8534 (14)9.1731 (9), 12.0358 (12), 12.7221 (13)9.1865 (13), 12.0293 (17), 12.7275 (18)
α, β, γ (°)84.498 (2), 70.535 (2), 68.632 (2)85.728 (2), 71.181 (1), 69.099 (1)85.710 (2), 71.079 (2), 69.175 (2)
V3)1267.3 (2)1240.7 (2)1242.3 (3)
Z111
Radiation typeMo KαMo KαMo Kα
µ (mm1)2.103.442.40
Crystal size (mm)0.21 × 0.18 × 0.130.18 × 0.14 × 0.120.14 × 0.14 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Multi-scan
(SADABS; Sheldrick, 2001)
Multi-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.64, 0.770.56, 0.670.71, 0.74
No. of measured, independent and
observed [I > 2σ(I)] reflections
10743, 5490, 4882 9217, 5394, 4772 10592, 5405, 4364
Rint0.0260.0320.030
(sin θ/λ)max1)0.6600.6600.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 0.86 0.038, 0.095, 1.06 0.048, 0.117, 1.03
No. of reflections549053945405
No. of parameters331331331
No. of restraints666
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.99, 0.571.09, 1.610.89, 0.48

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-NT (Bruker, 2001) and PLATON (Spek, 2003).

Selected bond lengths (Å) for (I) top
Nd1—O312.377 (3)Nd1—O112.528 (3)
Nd1—O2W2.466 (3)Nd1—O212.533 (3)
Nd1—O412.461 (2)Nd1—O222.546 (3)
Nd1—O1W2.471 (3)Nd1—O122.671 (3)
Nd1—O12i2.480 (2)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O21i0.85 (4)1.87 (4)2.703 (4)168 (4)
O1W—H1WB···O320.85 (4)1.80 (4)2.625 (5)164 (4)
O1W—H1WA···O11ii0.85 (4)1.94 (4)2.779 (4)172 (5)
O2W—H2WB···O51ii0.85 (4)1.91 (4)2.753 (4)171 (4)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.
Selected bond lengths (Å) for (II) top
Er1—O312.262 (4)Er1—O112.387 (4)
Er1—O12i2.344 (3)Er1—O212.423 (3)
Er1—O2W2.350 (3)Er1—O222.465 (3)
Er1—O412.361 (3)Er1—O122.773 (4)
Er1—O1W2.375 (3)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O21i0.85 (5)1.88 (5)2.703 (4)164 (5)
O1W—H1WB···O320.85 (5)1.81 (5)2.650 (6)167 (5)
O1W—H1WA···O11ii0.85 (5)1.97 (5)2.819 (5)176 (5)
O2W—H2WB···O51ii0.85 (5)1.94 (5)2.769 (5)166 (5)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.
Selected bond lengths (Å) for (III) top
Y1—O312.277 (2)Y1—O112.399 (2)
Y1—O12i2.350 (2)Y1—O212.429 (2)
Y1—O2W2.360 (2)Y1—O222.478 (2)
Y1—O412.368 (2)Y1—O122.761 (3)
Y1—O1W2.388 (2)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O21i0.84 (3)1.88 (3)2.697 (3)166 (3)
O1W—H1WB···O320.85 (3)1.81 (3)2.639 (4)167 (3)
O1W—H1WA···O11ii0.85 (3)1.96 (3)2.806 (3)173 (4)
O2W—H2WB···O51ii0.84 (3)1.94 (3)2.762 (4)166 (3)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.
C31-O32···Cg2ii contacts in all three structures (Å, °) top
CompoundO32···Cg2O32···Cg2(perp)Offset angle
(I)4.033 (4)3.63125.7
(II)3.864 (6)3.52124.35
(III)3.871 (4)3.52924.28
Symmetry code: (ii) −x + 1, −y + 2, −z + 1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds