Download citation
Download citation
link to html
The title compound, C20H14O2S, has been obtained in two monoclinic forms, which differ in their unit-cell dimensions, compactness of packing and conformation. Pairwise association of mol­ecules occurs via complementary O—H...O hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107032738/fa3098sup1.cif
Contains datablocks Ia, Ib, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107032738/fa3098Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107032738/fa3098Ibsup3.hkl
Contains datablock Ib

CCDC references: 659143; 659144

Comment top

1,1'-Thiobis(2-naphthol), (I), has been obtained in two crystalline forms (Fig. 1, and Tables 1 and 3) with distinctly different unit cells. At first sight, form (Ia), with a short a axis, appears to exhibit a more compact packing than does form (Ib), with a short b axis, as is depicted in Figs. 2 and 3. However, simulated radial distribution functions of the two structures indicate a larger number of intermolecular contacts in the 3.5–5.0 Å range, suggesting that (Ib) possesses a slightly more compact structure.

Despite this, four contacts of 3.349 (2)–3.490 (2) Å occur between S1 and C12–C15 in the neighboring molecule at (1 + x, y, z) in (Ia), whereas in (Ib), S1 forms contacts with only C5 in the molecule at (x, 1 + y, z), at a distance of 3.344 (2) Å. These S····C contacts propagate parallel to a in (Ia) and parallel to b in (Ib). Additionally, besides the H1····O2 hydrogen bond that is seen in both forms (Tables 2 and 4), the pattern of potential interactions of H2 with its surroundings differs between (Ia) and (Ib). In the former, there is an intermolecular contact of 2.46 (3) Å with O1ii [O2—H2····O1ii = 134 (3)°; symmetry code: (ii) 1 − x, −y, −z] and an intramolecular contact of 2.41 (2) Å with S1 [O2—H2····S1 = 125 (2)°], while in the latter the closest contacts are both intramolecular [H2····O1 = 2.50 (2) Å and O2—H2····O1 = 104 (2) °; H2····S1 = 2.40 (2) Å and O2—H2····S1 = 126 (2)°]. In both instances, the H2····S1 contacts are comparable to previously reported O—H····S hydrogen bonds (Allen et al., 1997). The torsional orientation of the O2—H2 bond in both forms suggests a weak bifurcated hydrogen bond.

In both forms, the naphthyl groups are planar to within 0.004–0.01 Å, with dihedral angles between the mean planes of 100.0 (1)° for (Ia) and 96.5 (1)° in (Ib). Modest differences in the overall conformations of the molecule between the two forms are also seen in the C2—C1—S1—C11 and C12—C11—S1—C1 torsion angles, which are −64.8 (2) and 112.5 (2)°, respectively, in (Ia) and −60.5 (2) and 105.6 (2)°, respectively, in (Ib).

Experimental top

Form (Ia) was obtained in an attempt to grow crystals of Fe{η 5-C5H4P(—OC10H6(µ-S)C10H6O–)} (Punji et al., 2007) from a mixture of dichloromethane and petroleum ether. Form (Ib) was obtained in an attempt to crystallize {(–OC10H6(µ-S)C10H6O–)P( S)}2[µ-(–OC10 H6(µ-S)C10H6O–)] (Punji et al., 2007) in similar fashion. Both were additionally characterized by comparison of their melting points with that of an authentic sample.

Refinement top

H atoms attached to C atoms were placed in calculated positions (C—H = 0.95 Å) and included as riding contributions, with Uiso(H) values of 1.2Ueq of the attached C atoms. H atoms attached to O atoms were refined with isotropic displacement parameters.

Computing details top

Data collection: SMART (Bruker, 2000) for (Ia); APEX2 (Bruker, 2006) for (Ib). Cell refinement: SAINT-Plus (Bruker, 2004) for (Ia); APEX2 for (Ib). Data reduction: SAINT-Plus for (Ia); SAINT-Plus (Bruker, 2006) for (Ib). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: SHELXTL (Bruker, 2000) for (Ia); APEX2 for (Ib). Software used to prepare material for publication: SHELXTL for (Ia); APEX2 for (Ib).

Figures top
[Figure 1] Fig. 1. A perspective view of (Ib). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn arbitrarily small for clarity.
[Figure 2] Fig. 2. The molecular packing for (Ia), viewed down the b axis.
[Figure 3] Fig. 3. The molecular packing for (Ib), viewed down the b axis.
(Ia) 1,1'-thiobis(2-naphthol) top
Crystal data top
C20H14O2SF(000) = 664
Mr = 318.37Dx = 1.444 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4149 reflections
a = 4.8053 (6) Åθ = 2.4–28.2°
b = 11.420 (1) ŵ = 0.23 mm1
c = 26.732 (3) ÅT = 100 K
β = 93.181 (2)°Plate, light brown
V = 1464.7 (3) Å30.22 × 0.10 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3339 independent reflections
Radiation source: fine-focus sealed tube2472 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
phi and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 66
Tmin = 0.953, Tmax = 0.987k = 1414
12389 measured reflectionsl = 3334
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.3449P]
where P = (Fo2 + 2Fc2)/3
3339 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H14O2SV = 1464.7 (3) Å3
Mr = 318.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8053 (6) ŵ = 0.23 mm1
b = 11.420 (1) ÅT = 100 K
c = 26.732 (3) Å0.22 × 0.10 × 0.07 mm
β = 93.181 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3339 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2472 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.987Rint = 0.052
12389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.37 e Å3
3339 reflectionsΔρmin = 0.25 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached carbon atoms. Those attached to oxygen were refined with isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63179 (10)0.06039 (4)0.091079 (18)0.01418 (14)
O10.1705 (3)0.10880 (12)0.01702 (6)0.0190 (3)
H10.022 (7)0.123 (2)0.0006 (11)0.050 (9)*
O20.3124 (3)0.14148 (13)0.04670 (5)0.0176 (3)
H20.442 (6)0.095 (2)0.0387 (10)0.041 (8)*
C10.4929 (4)0.20012 (16)0.07384 (7)0.0137 (4)
C20.2772 (4)0.20957 (17)0.03784 (7)0.0149 (4)
C30.1780 (4)0.32021 (18)0.02190 (7)0.0164 (4)
H30.02620.32540.00230.020*
C40.2980 (4)0.41948 (18)0.04092 (7)0.0182 (4)
H40.23050.49350.02940.022*
C50.5229 (4)0.41472 (17)0.07776 (7)0.0148 (4)
C60.6486 (4)0.51749 (18)0.09808 (8)0.0197 (5)
H60.58280.59190.08680.024*
C70.8636 (4)0.51122 (18)0.13375 (7)0.0192 (5)
H70.94630.58090.14710.023*
C80.9620 (4)0.40112 (18)0.15064 (8)0.0190 (4)
H81.11090.39700.17550.023*
C90.8459 (4)0.30034 (17)0.13173 (7)0.0161 (4)
H90.91650.22690.14340.019*
C100.6204 (4)0.30343 (17)0.09482 (7)0.0140 (4)
C110.3527 (4)0.01347 (17)0.11877 (7)0.0146 (4)
C120.2380 (4)0.10835 (17)0.09357 (7)0.0146 (4)
C130.0309 (4)0.17787 (17)0.11432 (8)0.0175 (4)
H130.04630.24280.09620.021*
C140.0580 (4)0.15143 (18)0.16057 (8)0.0189 (5)
H140.19740.19860.17440.023*
C150.0531 (4)0.05489 (18)0.18849 (8)0.0175 (4)
C160.0407 (4)0.02594 (19)0.23601 (8)0.0213 (5)
H160.17840.07310.25030.026*
C170.0642 (4)0.0693 (2)0.26174 (8)0.0230 (5)
H170.00100.08810.29370.028*
C180.2681 (4)0.13923 (19)0.24090 (8)0.0215 (5)
H180.33910.20560.25880.026*
C190.3661 (4)0.11332 (18)0.19518 (8)0.0181 (4)
H190.50590.16120.18190.022*
C200.2612 (4)0.01570 (17)0.16735 (7)0.0149 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0135 (2)0.0136 (2)0.0152 (3)0.0004 (2)0.00109 (18)0.0009 (2)
O10.0200 (8)0.0170 (7)0.0191 (8)0.0012 (6)0.0068 (6)0.0000 (6)
O20.0204 (8)0.0175 (8)0.0149 (7)0.0027 (6)0.0003 (6)0.0011 (6)
C10.0145 (10)0.0143 (10)0.0122 (10)0.0009 (8)0.0007 (8)0.0021 (8)
C20.0152 (10)0.0178 (10)0.0119 (10)0.0006 (8)0.0017 (8)0.0011 (8)
C30.0145 (10)0.0218 (11)0.0128 (10)0.0025 (8)0.0018 (8)0.0017 (8)
C40.0195 (11)0.0180 (11)0.0172 (11)0.0040 (8)0.0022 (8)0.0034 (8)
C50.0152 (10)0.0140 (10)0.0153 (10)0.0013 (8)0.0030 (8)0.0003 (8)
C60.0240 (11)0.0145 (10)0.0211 (11)0.0002 (9)0.0058 (9)0.0009 (8)
C70.0236 (11)0.0170 (10)0.0172 (11)0.0058 (9)0.0027 (9)0.0039 (8)
C80.0166 (11)0.0241 (11)0.0163 (10)0.0025 (9)0.0011 (8)0.0001 (9)
C90.0162 (10)0.0173 (10)0.0147 (10)0.0004 (8)0.0005 (8)0.0012 (8)
C100.0149 (10)0.0155 (10)0.0119 (10)0.0006 (8)0.0035 (8)0.0000 (8)
C110.0136 (10)0.0141 (9)0.0159 (10)0.0011 (8)0.0010 (8)0.0046 (8)
C120.0150 (10)0.0147 (10)0.0140 (10)0.0029 (8)0.0008 (8)0.0028 (8)
C130.0191 (11)0.0124 (10)0.0205 (11)0.0012 (8)0.0037 (9)0.0033 (8)
C140.0175 (11)0.0178 (11)0.0211 (11)0.0002 (9)0.0007 (9)0.0082 (9)
C150.0155 (10)0.0197 (10)0.0170 (10)0.0034 (9)0.0015 (8)0.0057 (9)
C160.0198 (11)0.0270 (12)0.0174 (11)0.0028 (9)0.0016 (9)0.0067 (9)
C170.0234 (12)0.0311 (12)0.0145 (11)0.0065 (10)0.0001 (8)0.0006 (9)
C180.0218 (11)0.0240 (11)0.0182 (11)0.0024 (9)0.0041 (9)0.0033 (9)
C190.0176 (11)0.0188 (10)0.0174 (10)0.0015 (8)0.0027 (8)0.0019 (9)
C200.0143 (10)0.0158 (10)0.0140 (10)0.0046 (8)0.0036 (8)0.0028 (8)
Geometric parameters (Å, º) top
S1—C111.780 (2)C8—H80.9500
S1—C11.780 (2)C9—C101.425 (3)
O1—C21.366 (2)C9—H90.9500
O1—H10.83 (3)C11—C121.375 (3)
O2—C121.375 (2)C11—C201.433 (3)
O2—H20.86 (3)C12—C131.411 (3)
C1—C21.379 (3)C13—C141.364 (3)
C1—C101.430 (3)C13—H130.9500
C2—C31.408 (3)C14—C151.419 (3)
C3—C41.358 (3)C14—H140.9500
C3—H30.9500C15—C161.411 (3)
C4—C51.422 (3)C15—C201.425 (3)
C4—H40.9500C16—C171.368 (3)
C5—C61.415 (3)C16—H160.9500
C5—C101.421 (3)C17—C181.403 (3)
C6—C71.369 (3)C17—H170.9500
C6—H60.9500C18—C191.366 (3)
C7—C81.409 (3)C18—H180.9500
C7—H70.9500C19—C201.417 (3)
C8—C91.364 (3)C19—H190.9500
C11—S1—C1104.60 (9)C9—C10—C1122.96 (17)
C2—O1—H1109.7 (19)C12—C11—C20119.49 (18)
C12—O2—H2106.4 (18)C12—C11—S1117.42 (15)
C2—C1—C10119.89 (17)C20—C11—S1122.87 (15)
C2—C1—S1120.49 (15)C11—C12—O2123.10 (18)
C10—C1—S1119.46 (14)C11—C12—C13121.56 (18)
O1—C2—C1117.98 (17)O2—C12—C13115.34 (18)
O1—C2—C3121.30 (17)C14—C13—C12119.68 (19)
C1—C2—C3120.68 (18)C14—C13—H13120.2
C4—C3—C2120.41 (18)C12—C13—H13120.2
C4—C3—H3119.8C13—C14—C15121.39 (19)
C2—C3—H3119.8C13—C14—H14119.3
C3—C4—C5121.19 (18)C15—C14—H14119.3
C3—C4—H4119.4C16—C15—C14121.73 (19)
C5—C4—H4119.4C16—C15—C20119.40 (19)
C6—C5—C10119.51 (18)C14—C15—C20118.86 (18)
C6—C5—C4121.74 (18)C17—C16—C15120.8 (2)
C10—C5—C4118.74 (18)C17—C16—H16119.6
C7—C6—C5120.94 (19)C15—C16—H16119.6
C7—C6—H6119.5C16—C17—C18119.9 (2)
C5—C6—H6119.5C16—C17—H17120.0
C6—C7—C8119.79 (19)C18—C17—H17120.0
C6—C7—H7120.1C19—C18—C17121.0 (2)
C8—C7—H7120.1C19—C18—H18119.5
C9—C8—C7120.76 (19)C17—C18—H18119.5
C9—C8—H8119.6C18—C19—C20120.6 (2)
C7—C8—H8119.6C18—C19—H19119.7
C8—C9—C10121.02 (18)C20—C19—H19119.7
C8—C9—H9119.5C19—C20—C15118.27 (18)
C10—C9—H9119.5C19—C20—C11122.71 (18)
C5—C10—C9117.97 (17)C15—C20—C11119.02 (18)
C5—C10—C1119.06 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.83 (3)2.00 (3)2.826 (2)171 (3)
Symmetry code: (i) x, y, z.
(Ib) 1,1'-thiobis(2-naphthol) top
Crystal data top
C20H14O2SF(000) = 664
Mr = 318.37Dx = 1.448 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5540 reflections
a = 13.6508 (9) Åθ = 3.0–28.2°
b = 5.2192 (3) ŵ = 0.23 mm1
c = 21.265 (1) ÅT = 100 K
β = 105.409 (1)°Column, colourless
V = 1460.59 (15) Å30.20 × 0.09 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3330 independent reflections
Radiation source: fine-focus sealed tube2828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1717
Tmin = 0.922, Tmax = 0.988k = 66
23840 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0147P)2 + 2.0538P]
where P = (Fo2 + 2Fc2)/3
3330 reflections(Δ/σ)max = 0.001
216 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C20H14O2SV = 1460.59 (15) Å3
Mr = 318.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.6508 (9) ŵ = 0.23 mm1
b = 5.2192 (3) ÅT = 100 K
c = 21.265 (1) Å0.20 × 0.09 × 0.05 mm
β = 105.409 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3330 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2828 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.988Rint = 0.039
23840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.32 e Å3
3330 reflectionsΔρmin = 0.31 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. H-atoms attached to oxygen were refined with isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70872 (3)0.40125 (9)0.95382 (2)0.01721 (11)
O10.92640 (10)0.3062 (3)0.96499 (7)0.0215 (3)
H10.988 (2)0.298 (6)0.9612 (12)0.045 (8)*
O20.87525 (10)0.6943 (3)1.04306 (7)0.0209 (3)
H20.846 (2)0.685 (6)1.0036 (14)0.051 (9)*
C10.76113 (14)0.1558 (4)0.91397 (9)0.0174 (4)
C20.86561 (14)0.1377 (4)0.92395 (8)0.0174 (4)
C30.90827 (14)0.0575 (4)0.89310 (9)0.0193 (4)
H30.98000.07270.90190.023*
C40.84691 (15)0.2230 (4)0.85097 (9)0.0204 (4)
H40.87640.35350.83080.024*
C50.73946 (14)0.2039 (4)0.83666 (9)0.0186 (4)
C60.67535 (15)0.3720 (4)0.79194 (9)0.0227 (4)
H60.70460.50000.77080.027*
C70.57191 (16)0.3536 (4)0.77853 (10)0.0250 (4)
H70.52980.46700.74800.030*
C80.52810 (15)0.1657 (4)0.81014 (10)0.0238 (4)
H80.45620.15470.80120.029*
C90.58777 (14)0.0013 (4)0.85365 (9)0.0202 (4)
H90.55670.12780.87410.024*
C100.69569 (14)0.0120 (4)0.86864 (9)0.0171 (4)
C110.76333 (13)0.3332 (4)1.03806 (9)0.0174 (4)
C120.83999 (14)0.4917 (4)1.07206 (9)0.0176 (4)
C130.88508 (14)0.4567 (4)1.13942 (9)0.0206 (4)
H130.93910.56481.16190.025*
C140.85056 (14)0.2669 (4)1.17185 (9)0.0214 (4)
H140.88120.24391.21710.026*
C150.76989 (14)0.1024 (4)1.13979 (9)0.0195 (4)
C160.73244 (15)0.0933 (4)1.17345 (10)0.0232 (4)
H160.76170.11551.21890.028*
C170.65475 (15)0.2509 (4)1.14146 (10)0.0247 (4)
H170.63060.38151.16460.030*
C180.61079 (15)0.2183 (4)1.07393 (10)0.0224 (4)
H180.55700.32781.05190.027*
C190.64475 (14)0.0304 (4)1.03978 (9)0.0194 (4)
H190.61390.01100.99440.023*
C200.72507 (14)0.1352 (4)1.07113 (9)0.0170 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0170 (2)0.0198 (2)0.0149 (2)0.00341 (18)0.00420 (16)0.00071 (19)
O10.0159 (7)0.0264 (8)0.0220 (7)0.0010 (6)0.0048 (6)0.0041 (6)
O20.0195 (7)0.0227 (7)0.0204 (7)0.0013 (6)0.0052 (6)0.0020 (6)
C10.0198 (9)0.0197 (10)0.0133 (8)0.0039 (8)0.0054 (7)0.0022 (7)
C20.0185 (9)0.0214 (10)0.0126 (8)0.0005 (8)0.0048 (7)0.0011 (7)
C30.0189 (9)0.0230 (10)0.0173 (9)0.0040 (8)0.0072 (7)0.0025 (8)
C40.0243 (10)0.0201 (10)0.0187 (9)0.0047 (8)0.0092 (8)0.0020 (8)
C50.0226 (9)0.0204 (10)0.0140 (8)0.0007 (8)0.0067 (7)0.0031 (8)
C60.0276 (10)0.0225 (10)0.0187 (9)0.0002 (8)0.0076 (8)0.0017 (8)
C70.0263 (10)0.0264 (11)0.0205 (9)0.0047 (9)0.0028 (8)0.0027 (9)
C80.0200 (9)0.0283 (11)0.0217 (9)0.0013 (8)0.0031 (8)0.0019 (9)
C90.0194 (9)0.0227 (10)0.0190 (9)0.0022 (8)0.0058 (7)0.0018 (8)
C100.0203 (9)0.0181 (9)0.0133 (8)0.0016 (7)0.0050 (7)0.0045 (7)
C110.0148 (8)0.0224 (10)0.0156 (8)0.0051 (7)0.0048 (7)0.0008 (8)
C120.0155 (8)0.0194 (9)0.0199 (9)0.0037 (7)0.0081 (7)0.0017 (8)
C130.0156 (9)0.0280 (11)0.0176 (9)0.0047 (8)0.0031 (7)0.0055 (8)
C140.0197 (9)0.0302 (11)0.0138 (8)0.0086 (8)0.0040 (7)0.0001 (8)
C150.0168 (9)0.0244 (10)0.0186 (9)0.0074 (8)0.0068 (7)0.0015 (8)
C160.0253 (10)0.0267 (11)0.0201 (9)0.0095 (9)0.0104 (8)0.0040 (9)
C170.0266 (10)0.0234 (11)0.0295 (11)0.0070 (9)0.0167 (9)0.0072 (9)
C180.0204 (9)0.0213 (10)0.0280 (10)0.0007 (8)0.0109 (8)0.0010 (9)
C190.0177 (9)0.0229 (10)0.0184 (9)0.0044 (8)0.0063 (7)0.0010 (8)
C200.0165 (8)0.0195 (10)0.0163 (8)0.0051 (7)0.0068 (7)0.0011 (7)
Geometric parameters (Å, º) top
S1—C111.784 (2)C8—H80.9500
S1—C11.787 (2)C9—C101.424 (3)
O1—C21.356 (2)C9—H90.9500
O1—H10.86 (3)C11—C121.378 (3)
O2—C121.374 (2)C11—C201.425 (3)
O2—H20.83 (3)C12—C131.413 (3)
C1—C21.388 (2)C13—C141.361 (3)
C1—C101.427 (3)C13—H130.9500
C2—C31.418 (3)C14—C151.420 (3)
C3—C41.361 (3)C14—H140.9500
C3—H30.9500C15—C161.418 (3)
C4—C51.420 (3)C15—C201.436 (2)
C4—H40.9500C16—C171.372 (3)
C5—C61.414 (3)C16—H160.9500
C5—C101.428 (3)C17—C181.412 (3)
C6—C71.368 (3)C17—H170.9500
C6—H60.9500C18—C191.372 (3)
C7—C81.409 (3)C18—H180.9500
C7—H70.9500C19—C201.416 (3)
C8—C91.371 (3)C19—H190.9500
C11—S1—C1102.73 (9)C1—C10—C5119.07 (17)
C2—O1—H1110.6 (19)C12—C11—C20120.21 (17)
C12—O2—H2106 (2)C12—C11—S1117.64 (15)
C2—C1—C10119.67 (17)C20—C11—S1121.99 (14)
C2—C1—S1120.05 (15)O2—C12—C11122.28 (17)
C10—C1—S1120.17 (14)O2—C12—C13116.39 (17)
O1—C2—C1118.85 (17)C11—C12—C13121.32 (18)
O1—C2—C3120.48 (17)C14—C13—C12119.45 (19)
C1—C2—C3120.64 (18)C14—C13—H13120.3
C4—C3—C2120.27 (18)C12—C13—H13120.3
C4—C3—H3119.9C13—C14—C15121.73 (18)
C2—C3—H3119.9C13—C14—H14119.1
C3—C4—C5121.09 (18)C15—C14—H14119.1
C3—C4—H4119.5C16—C15—C14122.07 (18)
C5—C4—H4119.5C16—C15—C20119.06 (18)
C6—C5—C4121.34 (18)C14—C15—C20118.87 (18)
C6—C5—C10119.55 (18)C17—C16—C15121.11 (18)
C4—C5—C10119.11 (18)C17—C16—H16119.4
C7—C6—C5121.13 (19)C15—C16—H16119.4
C7—C6—H6119.4C16—C17—C18119.72 (19)
C5—C6—H6119.4C16—C17—H17120.1
C6—C7—C8119.67 (19)C18—C17—H17120.1
C6—C7—H7120.2C19—C18—C17120.82 (19)
C8—C7—H7120.2C19—C18—H18119.6
C9—C8—C7120.89 (19)C17—C18—H18119.6
C9—C8—H8119.6C18—C19—C20121.01 (18)
C7—C8—H8119.6C18—C19—H19119.5
C8—C9—C10120.92 (19)C20—C19—H19119.5
C8—C9—H9119.5C19—C20—C11123.35 (17)
C10—C9—H9119.5C19—C20—C15118.27 (18)
C9—C10—C1123.10 (18)C11—C20—C15118.38 (17)
C9—C10—C5117.83 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.86 (3)1.90 (3)2.7581 (19)175 (3)
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

(Ia)(Ib)
Crystal data
Chemical formulaC20H14O2SC20H14O2S
Mr318.37318.37
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)100100
a, b, c (Å)4.8053 (6), 11.420 (1), 26.732 (3)13.6508 (9), 5.2192 (3), 21.265 (1)
β (°) 93.181 (2) 105.409 (1)
V3)1464.7 (3)1460.59 (15)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.230.23
Crystal size (mm)0.22 × 0.10 × 0.070.20 × 0.09 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.953, 0.9870.922, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
12389, 3339, 2472 23840, 3330, 2828
Rint0.0520.039
(sin θ/λ)max1)0.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.106, 1.02 0.044, 0.091, 1.09
No. of reflections33393330
No. of parameters216216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.250.32, 0.31

Computer programs: SMART (Bruker, 2000), APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2004), APEX2, SAINT-Plus (Bruker, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) for (Ia) top
S1—C111.780 (2)S1—C11.780 (2)
C11—S1—C1104.60 (9)
Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.83 (3)2.00 (3)2.826 (2)171 (3)
Symmetry code: (i) x, y, z.
Selected geometric parameters (Å, º) for (Ib) top
S1—C111.784 (2)S1—C11.787 (2)
C11—S1—C1102.73 (9)
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.86 (3)1.90 (3)2.7581 (19)175 (3)
Symmetry code: (i) x+2, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds