Download citation
Download citation
link to html
In the title complex salt, tetra­kis[hexa­ammine­cobalt(III)] hexa­chloro­cadmate(II) bis­[aqua­tetra­chloro­thio­cyanato­cad­mate(II)] dichloride dihydrate, the discrete ions, i.e. [Co(NH3)6]3+, Cl-, [CdCl6]4- (located on an inversion centre) and [CdCl4(SCN)(H2O)]3-, together with cocrystallized water mol­ecules, are assembled by means of a network of hydrogen-bonding inter­actions. This is the first X-ray structure determination of a hexa­amminecobalt(III) salt with two different complex chloro­cadmium anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106044398/fa3042sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106044398/fa3042Isup2.hkl
Contains datablock I

Comment top

The octahedral hexaamminecobalt(III) cation serves as a powerful structure-determining component in a number of networks (Basolo, 1968; Reddy et al., 2003; Dalrymple et al., 2002; Takusagawa et al., 1988; Gorol et al., 2000; Sobolev & Figgis, 1997; Figgis et al., 1979; Dahm & Adam, 2001; Baldwin & Kastner, 2002; Dalrymple & Shimizu, 2006), both metal/ligand-bonded and hydrogen-bonded. This cation should provide two triangular triamine faces with nine N—H bonds each on the sides that can act as potential hydrogen-bond donors. These H atoms are almost spread around the central metal in a spherical manner and, therefore, it should be an ideal choice as a receptor if the counter-ion is equipped with multiple hydrogen acceptors for second-sphere coordination. In continuation of our interest in hexaaminecobalt(III) complex salts (Bala et al., 2006; Sharma, Bala, Sharma & Bond, 2005; Sharma, Bala, Sharma & Ferretti, 2005; Sharma et al., 2004; Sharma, Bala, Sharma, Rychlewska & Warzajtisc, 2005; Sharma, Bala, Sharma & Venugopalan, 2004a,b, 2005, 2006; Sharma, Bala, Sharma, Venugopalan, Salas & Quiros, 2005; Sharma, Bala, Sharma, Kariuki et al., 2005; Sharma, Bala, Sharma, Singh & Ferretti, 2006; Sharma, Bala, Sharma, Perez & Miguel, 2006) the present work reports the synthesis, spectroscopic characterization and crystal structure determination of a new complex salt [Co(NH3)6]4[CdCl6][CdCl4(SCN)(H2O)]2Cl2·2H2O, (I).

The vibrational spectrum shows that the stretching vibrations of the coordinated NH3 molecules are lower than those of the free NH3 molecules for two reasons, viz. the effect of coordination and the effect of the counter-ion. This is attributed to the weakening of the N—H bond owing to the formation of N—H···O and N—H···Cl hydrogen bonds. It is known that the antisymmetric stretch and symmetric NH3 stretch, NH3 degenerate deformation, NH3 symmetric deformation, and NH3 vibrations appear in the regions 3400–3000, 1650–1550, 1370–1200 and 800–900 cm−1, respectively, for [Co(NH3)6]Cl3 (Nakamoto, 1997); these values are comparable to those obtained for (I). The absorption band observed at 2096 cm-1 was assigned to the S-bonded SCN group because CN stretching frequencies are generally lower in N-bonded SCN complexes (2050 cm−1) than in S-coordinated (2100 cm−1) complexes (Addison et al., 2005). In (I), two types of water molecules are present, viz. free and coordinated. In general, the unligated water molecule absorbs in the range 3500–3300 (antisymmetric and symmetric stretch) and 1630–1600 cm−1 (OHO) bending. Here the stretching absorption frequency is observed at 3403 cm−1 (broad) and the bending absorption band perhaps is overlapped with NH3 degenerate deformation. Owing to instrumental limitations, the absorption bands in the lower region (i.e. less than 600 cm−1) could not be observed.

The two electronic transitions 1A1 g T1 g and 1A1 g 1T2 g for hexaamminecobalt(III) complexes are observed around 470 and 340 nm, respectively, producing the orange–yellow colour usual for a number of classical coordination compounds containing cobalt(III), as reported by Hendry & Ludi (1990). The λmax for lower energy was observed at 474 nm and higher energy at 338 nm (showing dd transitions typical for a low-spin CoIII d6 octahedral complex).

The 13C NMR spectrum shows a chemical shift value of 119 p.p.m., which is characteristic of the coordinated thiocyanate ion.

An ORTEPIII view (Burnett & Johnson, 1996) of the title compound is shown in Fig. 1. The asymmetric unit is quite complex, consisting of two hexaaminecobalt(III) cations and one-half of a hexachlorocadmate(II) ion, with the Cd atom located on an inversion centre, one aquatetrachlorothiocyanatocadmate(II) and one chloride counter-ion, together with a solvent water molecule. The coordination around the two Co and the two Cd atoms is slightly distorted octahedral, as shown by the values of the bond angles reported in Table 1. The Co—N distances, ranging from 1.956 (3) to 1.981 (3) Å, are in good agreement with those usually found in hexaamminecobalt(III) complexes. The Cd–ligand bond distances can be compared with those found in Cd complexes retrieved from the Cambridge Structural Database (CSD; Allen, 2002) and Inorganic Crystal Structure Database (ICSD, 2005). Out of a total of 23 structures containing [CdCl6]4− complexes, only three show the presence of isolated anions (Beck & Milius, 1986; Veal & Hodgson 1972; Wagner et al., 1996); the Cd—Cl distances in these compounds agree well with those reported in Table 1 for (I), ranging from 2.53 to 2.68 Å. As for the Cd—SCN bond length, the mean value of 2.72 (3) Å, calculated for a sample containing 68 entries (from the CSD), compares well with the length of 2.696 (1) Å reported in Table 1. The thiocyanate group is essentially linear, the S—C—N angle being 179.4 (6)°. Finally, a bibliographic search has been performed looking only for Cd complexes in which the water ligand is trans to chlorine to avoid bond length variations due to the trans influence. In the 24 structures retrieved, the Cd—O(water) bond distances vary in the quite large interval of 2.27–2.45 Å, the shortest distances being associated with water molecules trans to a Cl atom bridging two metal atoms. Accordingly, in the present compound, the relatively long value of 2.441 (4) Å is found.

The crystal architecture is built up by a complex three-dimensional hydrogen-bonding network. Hydrogen-bond parameters are reported in Table 2, and the unit-cell content, projected along the a axis, is shown in Fig. 2. A l l N atoms bound to the Co cations and the O atom of the coordinated water molecule [O1···Cl2 (x + 1, y, z + 1) = 3.138 (4) Å; O1···Cl8(x + 1/2,1/2 − y,1/2 + z) = 3.230 (5) Å] act as donors in hydrogen-bond interactions, mainly towards Cl acceptors. In only two interactions are different atoms, i.e. the O atom of the solvent molecule and atom N13 of the thiocyanate group, involved as hydrogen-bond acceptors. Both the coordinated and the non-coordinated Cl atoms interact with at least two D—H groups, this fact being attributable to the excess of donors with respect to acceptors. As for the N···halide distances, a comparison can be made with those recently reviewed by Steiner (1998), who reports mean values of 3.18 and 3.30 Å for Nsp2···Cl distances. In the present structure, longer distances are found in the range 3.190 (4)–3.593 (4) Å, possibly because amines, Nsp3—H, are weaker donors than Nsp2—H and, moreover, on account of the bifurcated nature of the hydrogen-bond interactions. As an example, the distances between N-donors and the isolated anion Cl8, involved in six hydrogen bonds, turn out to be very long, in the range 3.298 (3)–3.525 (3) Å. The uncoordinated water molecule is also involved in the three-dimensional network of intermolecular interactions through its O atom, acting both as a hydrogen-bond acceptor (N3—H33···O1W; see Table 2) and as a hydrogen-bond donor [O1W···N13(x − 1, y, z − 1) = 2.868 (7) Å; O1W···N12(x, y, z − 1) = 3.177 (5) Å], in such a way bridging both the cations and the aquatetrachlorothiocyanatocadmate complex. The N···O distances are typical of isolated hydrogen bonds, not assisted either by charge or by resonance (Gilli & Gilli, 2000).

Experimental top

Hexaamminecobalt(III) chloride (1.00 g, 0.0037 mol) was dissolved in 30 ml of hot water in a beaker by mechanical stirring. In another beaker, cadmium(II) chloride monohydrate (0.68 g, 0.0037 mol) and ammonium thiocyanate (1.14 g, 0.0150 mol) were dissolved in 20 ml of hot water. The two solutions were mixed and allowed to cool slowly. Shiny orange crystals appeared within 2 h, which were filtered off and dried in air. The red–orange coloured, clear supernatant solution gave a second crop of crystals. The overall yield was nearly quantitative, and the salt obtained decomposes at 408 K. Solubility (298 K) in water: 0.76 g/100 ml. Elemental analysis calcualted for C2H80Cd3Cl16Co4N26O4S2 (868.58): C 1.38, H 4.60, N 20.95, Co 13.56; found: C 1.32, H 4.56, N 20.89, Co 13.35%. IR ν 3403 (s, –OH), νas 3248 (b, –NH3), νs 3178 (b, –NH3), ν 2096 (s, –SCN), δd 1607 (b, –NH3), δs 1341 (s, –NH3), ρr 846 (s, –NH3) cm−1. UV–vis (solution): λmax = 474 (ε = 106.07 M−1L−1cm−1), 338 (ε = 86.87 M−1L−1cm−1). 13C NMR (D2O, 300 MHz): 119 (C, SCN) p.p.m.

Refinement top

Only one H atom, (H100 bound to atom O1) was found in the difference Fourier map; its coordinates were refined, keeping its displacement parameter fixed. H atoms belonging to ammonia groups were included in calculated positions, riding on their carrier atoms [Uiso(H) = 1.2Ueq(N)]. The H atoms of the solvent water molecule (bound to O1W) were not found in the difference Fourier map and were not included in the refinement. The highest difference peak is not close to any atom (within 2.76 Å).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97, PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEPIII (Burnett & Johnson, 1996) view of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are drawn as broken lines.
[Figure 2] Fig. 2. The packing of the title compound (view along a). N, O and Cl atoms are drawn as white, black and light grey spheres, respectively.
tetrakis[hexaamminecobalt(III)] hexachlorodadmate(II) bis[aquatetrachlorothiocyanatocadmate(II)] dichloride dihydrate top
Crystal data top
[Co(NH3)6]4[CdCl6][CdCl4(SCN)(H2O)]2Cl2·2H2OF(000) = 1724
Mr = 1735.18Dx = 2.021 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.8511 (1) ÅCell parameters from 17048 reflections
b = 28.6847 (4) Åθ = 3.3–28.0°
c = 11.9607 (2) ŵ = 3.10 mm1
β = 109.9580 (6)°T = 295 K
V = 2854.34 (7) Å3Prism, orange
Z = 20.29 × 0.22 × 0.11 mm
Data collection top
Nonius KappaCCD
diffractometer
6689 independent reflections
Radiation source: fine-focus sealed tube5417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ scans and ω scansθmax = 28.0°, θmin = 3.3°
Absorption correction: empirical (using intensity measurements)
(SORTAV; Blessing, 1995)
h = 1111
Tmin = 0.486, Tmax = 0.703k = 3237
17048 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.025P)2 + 5.6025P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
6689 reflectionsΔρmax = 1.45 e Å3
273 parametersΔρmin = 0.64 e Å3
Crystal data top
[Co(NH3)6]4[CdCl6][CdCl4(SCN)(H2O)]2Cl2·2H2OV = 2854.34 (7) Å3
Mr = 1735.18Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.8511 (1) ŵ = 3.10 mm1
b = 28.6847 (4) ÅT = 295 K
c = 11.9607 (2) Å0.29 × 0.22 × 0.11 mm
β = 109.9580 (6)°
Data collection top
Nonius KappaCCD
diffractometer
6689 independent reflections
Absorption correction: empirical (using intensity measurements)
(SORTAV; Blessing, 1995)
5417 reflections with I > 2σ(I)
Tmin = 0.486, Tmax = 0.703Rint = 0.047
17048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.45 e Å3
6689 reflectionsΔρmin = 0.64 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.00000.00000.02369 (9)
Cd20.66996 (3)0.146192 (10)0.44219 (3)0.02778 (8)
Co10.03984 (5)0.177168 (17)0.15783 (4)0.02080 (11)
Co20.35865 (5)0.049028 (16)0.71043 (4)0.01875 (11)
S10.86790 (14)0.22058 (4)0.48891 (11)0.0410 (3)
Cl10.29401 (10)0.02389 (4)0.03046 (9)0.0324 (2)
Cl20.09836 (12)0.08005 (4)0.10769 (9)0.0345 (2)
Cl30.03336 (12)0.03111 (4)0.21945 (9)0.0325 (2)
Cl40.89927 (11)0.08763 (4)0.45736 (10)0.0358 (2)
Cl50.47098 (12)0.07520 (4)0.40843 (9)0.0329 (2)
Cl60.44774 (11)0.19698 (3)0.47983 (9)0.0320 (2)
Cl70.57835 (12)0.16579 (4)0.21831 (9)0.0401 (3)
Cl80.10870 (12)0.31236 (4)0.34701 (11)0.0410 (3)
N10.1907 (4)0.12782 (11)0.1514 (3)0.0300 (7)
H110.29050.13900.17740.036*
H120.16660.11800.07680.036*
H130.18330.10410.19720.036*
N20.1369 (4)0.13209 (12)0.1167 (3)0.0304 (7)
H210.20970.14110.14850.037*
H220.09890.10420.14510.037*
H230.18240.13050.03800.037*
N30.0001 (4)0.19024 (12)0.0104 (3)0.0287 (7)
H310.01190.22080.02300.034*
H320.08920.17570.05460.034*
H330.08270.18020.03000.034*
N40.1150 (4)0.22577 (12)0.1636 (3)0.0338 (8)
H410.06720.24580.22190.041*
H420.19810.21260.17710.041*
H430.14940.24090.09450.041*
N50.2145 (4)0.22365 (12)0.1998 (3)0.0295 (7)
H510.19590.24520.24690.035*
H520.21870.23710.13380.035*
H530.30770.20960.23750.035*
N60.0838 (4)0.16311 (15)0.3268 (3)0.0423 (9)
H610.18790.16720.36700.051*
H620.05700.13370.33440.051*
H630.02630.18210.35560.051*
N70.3494 (4)0.01373 (11)0.7755 (3)0.0257 (7)
H710.29540.03280.71680.031*
H720.29970.01220.82880.031*
H730.44870.02450.81030.031*
N80.1571 (4)0.06538 (12)0.7361 (3)0.0288 (7)
H810.08980.07850.67060.035*
H820.17790.08530.79650.035*
H830.11250.03970.75290.035*
N90.2392 (4)0.02577 (12)0.5483 (3)0.0271 (7)
H910.29050.03410.49920.033*
H920.14070.03790.52320.033*
H930.23250.00520.54980.033*
N100.3613 (4)0.11115 (12)0.6425 (3)0.0307 (7)
H1010.40320.10930.58480.037*
H1020.42060.13030.69910.037*
H1030.26130.12210.61290.037*
N110.5622 (3)0.03310 (11)0.6878 (3)0.0251 (7)
H1110.56670.04710.62250.030*
H1120.56810.00240.68010.030*
H1130.64410.04270.75050.030*
N120.4830 (4)0.07250 (11)0.8695 (3)0.0267 (7)
H1210.51850.10110.86340.032*
H1220.56620.05370.90310.032*
H1230.42060.07330.91420.032*
N131.1226 (6)0.1853 (2)0.6825 (6)0.0804 (17)
C11.0184 (6)0.19987 (17)0.6038 (5)0.0475 (12)
O1W0.2863 (4)0.15709 (13)0.0762 (4)0.0569 (10)
O10.7322 (4)0.13494 (13)0.6555 (3)0.0516 (9)
H1000.816 (8)0.129 (2)0.720 (6)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02158 (18)0.0234 (2)0.0267 (2)0.00158 (14)0.00895 (14)0.00320 (15)
Cd20.02657 (14)0.02539 (16)0.03263 (16)0.00172 (11)0.01172 (11)0.00274 (12)
Co10.0197 (2)0.0207 (3)0.0228 (3)0.00152 (18)0.00816 (18)0.0006 (2)
Co20.0179 (2)0.0182 (3)0.0207 (2)0.00004 (17)0.00730 (18)0.00160 (19)
S10.0443 (6)0.0300 (6)0.0510 (7)0.0046 (4)0.0191 (5)0.0020 (5)
Cl10.0222 (4)0.0433 (6)0.0315 (5)0.0002 (4)0.0088 (4)0.0067 (4)
Cl20.0379 (5)0.0282 (5)0.0341 (5)0.0040 (4)0.0081 (4)0.0006 (4)
Cl30.0386 (5)0.0296 (5)0.0331 (5)0.0061 (4)0.0171 (4)0.0028 (4)
Cl40.0290 (5)0.0290 (5)0.0469 (6)0.0065 (4)0.0100 (4)0.0001 (4)
Cl50.0414 (5)0.0276 (5)0.0339 (5)0.0081 (4)0.0181 (4)0.0040 (4)
Cl60.0318 (5)0.0281 (5)0.0361 (5)0.0028 (4)0.0114 (4)0.0026 (4)
Cl70.0286 (5)0.0608 (8)0.0338 (6)0.0018 (5)0.0143 (4)0.0102 (5)
Cl80.0339 (5)0.0371 (6)0.0474 (7)0.0005 (4)0.0078 (4)0.0075 (5)
N10.0262 (16)0.0248 (18)0.039 (2)0.0009 (13)0.0108 (14)0.0047 (15)
N20.0282 (16)0.0277 (19)0.039 (2)0.0045 (13)0.0161 (14)0.0065 (15)
N30.0305 (17)0.0285 (18)0.0269 (17)0.0004 (13)0.0095 (13)0.0012 (14)
N40.0399 (19)0.0230 (18)0.046 (2)0.0008 (14)0.0244 (16)0.0021 (15)
N50.0292 (16)0.0268 (18)0.0340 (19)0.0042 (13)0.0127 (14)0.0013 (14)
N60.039 (2)0.060 (3)0.0286 (19)0.0106 (18)0.0125 (15)0.0071 (18)
N70.0249 (15)0.0218 (17)0.0293 (17)0.0020 (12)0.0079 (13)0.0030 (13)
N80.0250 (15)0.0324 (19)0.0323 (18)0.0042 (13)0.0140 (13)0.0041 (14)
N90.0246 (15)0.0289 (19)0.0265 (17)0.0002 (13)0.0068 (13)0.0019 (14)
N100.0337 (17)0.0278 (19)0.0344 (19)0.0035 (13)0.0165 (14)0.0057 (15)
N110.0208 (15)0.0247 (18)0.0296 (17)0.0004 (12)0.0084 (12)0.0000 (13)
N120.0256 (15)0.0253 (17)0.0284 (17)0.0021 (12)0.0082 (13)0.0025 (14)
N130.050 (3)0.085 (4)0.085 (4)0.007 (3)0.005 (3)0.009 (3)
C10.037 (3)0.036 (3)0.070 (4)0.006 (2)0.020 (2)0.016 (2)
O1W0.057 (2)0.049 (2)0.078 (3)0.0045 (17)0.040 (2)0.0096 (19)
O10.061 (2)0.056 (2)0.046 (2)0.0093 (18)0.0293 (17)0.0060 (18)
Geometric parameters (Å, º) top
Cd1—Cl12.5937 (9)N3—H320.8900
Cd1—Cl1i2.5937 (9)N3—H330.8900
Cd1—Cl22.631 (1)N4—H410.8900
Cd1—Cl2i2.6314 (10)N4—H420.8900
Cd1—Cl32.691 (1)N4—H430.8900
Cd1—Cl3i2.6914 (10)N5—H510.8900
Cd2—O12.441 (4)N5—H520.8900
Cd2—Cl72.581 (1)N5—H530.8900
Cd2—Cl42.593 (1)N6—H610.8900
Cd2—Cl62.607 (1)N6—H620.8900
Cd2—Cl52.633 (1)N6—H630.8900
Cd2—S12.696 (1)N7—H710.8900
Co1—N31.956 (3)N7—H720.8900
Co1—N21.958 (3)N7—H730.8900
Co1—N11.965 (3)N8—H810.8900
Co1—N61.966 (4)N8—H820.8900
Co1—N51.972 (3)N8—H830.8900
Co1—N41.973 (3)N9—H910.8900
Co2—N101.962 (3)N9—H920.8900
Co2—N121.964 (3)N9—H930.8900
Co2—N111.965 (3)N10—H1010.8900
Co2—N81.967 (3)N10—H1020.8900
Co2—N71.974 (3)N10—H1030.8900
Co2—N91.981 (3)N11—H1110.8900
S1—C11.663 (6)N11—H1120.8900
N1—H110.8900N11—H1130.8900
N1—H120.8900N12—H1210.8900
N1—H130.8900N12—H1220.8900
N2—H210.8900N12—H1230.8900
N2—H220.8900N13—C11.149 (7)
N2—H230.8900O1—H1000.88 (7)
N3—H310.8900
Cl1—Cd1—Cl1i180.00 (6)Co1—N2—H22109.5
Cl1—Cd1—Cl289.23 (3)H21—N2—H22109.5
Cl1i—Cd1—Cl290.77 (3)Co1—N2—H23109.5
Cl1—Cd1—Cl2i90.77 (3)H21—N2—H23109.5
Cl1i—Cd1—Cl2i89.23 (3)H22—N2—H23109.5
Cl2—Cd1—Cl2i180.00 (2)Co1—N3—H31109.5
Cl1—Cd1—Cl390.26 (3)Co1—N3—H32109.5
Cl1i—Cd1—Cl389.74 (3)H31—N3—H32109.5
Cl2—Cd1—Cl395.50 (3)Co1—N3—H33109.5
Cl2i—Cd1—Cl384.50 (3)H31—N3—H33109.5
Cl1—Cd1—Cl3i89.74 (3)H32—N3—H33109.5
Cl1i—Cd1—Cl3i90.26 (3)Co1—N4—H41109.5
Cl2—Cd1—Cl3i84.50 (3)Co1—N4—H42109.5
Cl2i—Cd1—Cl3i95.50 (3)H41—N4—H42109.5
Cl3—Cd1—Cl3i180.00 (6)Co1—N4—H43109.5
O1—Cd2—Cl7172.81 (9)H41—N4—H43109.5
O1—Cd2—Cl487.10 (9)H42—N4—H43109.5
Cl7—Cd2—Cl4100.07 (4)Co1—N5—H51109.5
O1—Cd2—Cl678.91 (9)Co1—N5—H52109.5
Cl7—Cd2—Cl693.96 (3)H51—N5—H52109.5
Cl4—Cd2—Cl6165.59 (4)Co1—N5—H53109.5
O1—Cd2—Cl587.62 (9)H51—N5—H53109.5
Cl7—Cd2—Cl593.01 (4)H52—N5—H53109.5
Cl4—Cd2—Cl588.64 (3)Co1—N6—H61109.5
Cl6—Cd2—Cl587.37 (3)Co1—N6—H62109.5
O1—Cd2—S189.38 (10)H61—N6—H62109.5
Cl7—Cd2—S189.68 (4)Co1—N6—H63109.5
Cl4—Cd2—S193.47 (3)H61—N6—H63109.5
Cl6—Cd2—S189.84 (3)H62—N6—H63109.5
Cl5—Cd2—S1176.25 (4)Co2—N7—H71109.5
N3—Co1—N291.2 (1)Co2—N7—H72109.5
N3—Co1—N189.1 (1)H71—N7—H72109.5
N2—Co1—N190.6 (1)Co2—N7—H73109.5
N3—Co1—N6178.74 (16)H71—N7—H73109.5
N2—Co1—N689.0 (1)H72—N7—H73109.5
N1—Co1—N689.6 (2)Co2—N8—H81109.5
N3—Co1—N589.0 (1)Co2—N8—H82109.5
N2—Co1—N5178.69 (14)H81—N8—H82109.5
N1—Co1—N590.7 (1)Co2—N8—H83109.5
N6—Co1—N590.8 (1)H81—N8—H83109.5
N3—Co1—N491.0 (1)H82—N8—H83109.5
N2—Co1—N488.3 (1)Co2—N9—H91109.5
N1—Co1—N4178.87 (14)Co2—N9—H92109.5
N6—Co1—N490.3 (2)H91—N9—H92109.5
N5—Co1—N490.4 (1)Co2—N9—H93109.5
N10—Co2—N1290.4 (1)H91—N9—H93109.5
N10—Co2—N1190.7 (1)H92—N9—H93109.5
N12—Co2—N1188.6 (1)Co2—N10—H101109.5
N10—Co2—N889.3 (1)Co2—N10—H102109.5
N12—Co2—N890.3 (1)H101—N10—H102109.5
N11—Co2—N8178.93 (15)Co2—N10—H103109.5
N10—Co2—N7178.30 (14)H101—N10—H103109.5
N12—Co2—N790.89 (14)H102—N10—H103109.5
N11—Co2—N790.3 (1)Co2—N11—H111109.5
N8—Co2—N789.6 (1)Co2—N11—H112109.5
N10—Co2—N988.8 (1)H111—N11—H112109.5
N12—Co2—N9178.17 (13)Co2—N11—H113109.5
N11—Co2—N989.7 (1)H111—N11—H113109.5
N8—Co2—N991.3 (1)H112—N11—H113109.5
N7—Co2—N989.9 (1)Co2—N12—H121109.5
C1—S1—Cd299.74 (17)Co2—N12—H122109.5
Co1—N1—H11109.5H121—N12—H122109.5
Co1—N1—H12109.5Co2—N12—H123109.5
H11—N1—H12109.5H121—N12—H123109.5
Co1—N1—H13109.5H122—N12—H123109.5
H11—N1—H13109.5N13—C1—S1179.4 (6)
H12—N1—H13109.5Cd2—O1—H100139 (4)
Co1—N2—H21109.5
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Cl70.892.543.424 (3)170
N1—H13···Cl30.892.543.327 (4)148
N2—H22···Cl30.892.423.302 (3)173
N2—H23···Cl20.892.563.190 (4)128
N3—H33···O1W0.892.163.052 (6)179
N4—H41···Cl80.892.593.455 (3)163
N5—H51···Cl80.892.523.403 (4)170
N5—H53···Cl70.892.783.562 (4)147
N6—H61···Cl60.892.393.263 (4)166
N9—H91···Cl50.892.513.371 (4)163
N10—H101···Cl50.892.573.421 (4)159
N11—H111···Cl50.892.543.381 (4)158
N2—H21···Cl7ii0.892.413.294 (4)176
N4—H42···Cl7ii0.892.573.460 (4)174
N8—H81···Cl4ii0.892.553.397 (3)160
N9—H92···Cl4ii0.892.463.339 (3)168
N10—H103···N13ii0.892.483.147 (7)131
N3—H31···Cl6iii0.892.393.264 (4)168
N3—H32···Cl8iii0.892.553.298 (3)142
N7—H73···Cl1iv0.892.413.230 (3)152
N7—H71···Cl4iv0.892.713.593 (4)173
N9—H93···Cl4iv0.892.633.468 (4)158
N11—H112···Cl5iv0.892.443.291 (3)161
N12—H122···Cl1iv0.892.543.370 (3)156
N7—H72···Cl1v0.892.643.424 (4)147
N12—H123···Cl1v0.892.503.264 (4)144
N8—H83···Cl3vi0.892.493.376 (4)175
N10—H102···Cl8vii0.892.573.455 (3)175
N12—H121···Cl8vii0.892.643.525 (3)177
N11—H113···Cl2viii0.892.573.436 (3)166
O1—H100···Cl2viii0.882.403.138 (4)141
Symmetry codes: (ii) x1, y, z; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(NH3)6]4[CdCl6][CdCl4(SCN)(H2O)]2Cl2·2H2O
Mr1735.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)8.8511 (1), 28.6847 (4), 11.9607 (2)
β (°) 109.9580 (6)
V3)2854.34 (7)
Z2
Radiation typeMo Kα
µ (mm1)3.10
Crystal size (mm)0.29 × 0.22 × 0.11
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SORTAV; Blessing, 1995)
Tmin, Tmax0.486, 0.703
No. of measured, independent and
observed [I > 2σ(I)] reflections
17048, 6689, 5417
Rint0.047
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.083, 1.05
No. of reflections6689
No. of parameters273
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.45, 0.64

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97, PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cd1—Cl12.5937 (9)Co1—N11.965 (3)
Cd1—Cl22.631 (1)Co1—N61.966 (4)
Cd1—Cl32.691 (1)Co1—N51.972 (3)
Cd2—O12.441 (4)Co1—N41.973 (3)
Cd2—Cl72.581 (1)Co2—N101.962 (3)
Cd2—Cl42.593 (1)Co2—N121.964 (3)
Cd2—Cl62.607 (1)Co2—N111.965 (3)
Cd2—Cl52.633 (1)Co2—N81.967 (3)
Cd2—S12.696 (1)Co2—N71.974 (3)
Co1—N31.956 (3)Co2—N91.981 (3)
Co1—N21.958 (3)
Cl1—Cd1—Cl289.23 (3)N3—Co1—N589.0 (1)
Cl1—Cd1—Cl390.26 (3)N1—Co1—N590.7 (1)
Cl2—Cd1—Cl395.50 (3)N6—Co1—N590.8 (1)
O1—Cd2—Cl487.10 (9)N3—Co1—N491.0 (1)
Cl7—Cd2—Cl4100.07 (4)N2—Co1—N488.3 (1)
O1—Cd2—Cl678.91 (9)N6—Co1—N490.3 (2)
Cl7—Cd2—Cl693.96 (3)N5—Co1—N490.4 (1)
O1—Cd2—Cl587.62 (9)N10—Co2—N1290.4 (1)
Cl7—Cd2—Cl593.01 (4)N10—Co2—N1190.7 (1)
Cl4—Cd2—Cl588.64 (3)N12—Co2—N1188.6 (1)
Cl6—Cd2—Cl587.37 (3)N10—Co2—N889.3 (1)
O1—Cd2—S189.38 (10)N12—Co2—N890.3 (1)
Cl7—Cd2—S189.68 (4)N12—Co2—N790.89 (14)
Cl4—Cd2—S193.47 (3)N11—Co2—N790.3 (1)
Cl6—Cd2—S189.84 (3)N8—Co2—N789.6 (1)
N3—Co1—N291.2 (1)N10—Co2—N988.8 (1)
N3—Co1—N189.1 (1)N11—Co2—N989.7 (1)
N2—Co1—N190.6 (1)N8—Co2—N991.3 (1)
N2—Co1—N689.0 (1)N7—Co2—N989.9 (1)
N1—Co1—N689.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Cl70.892.543.424 (3)170
N1—H13···Cl30.892.543.327 (4)148
N2—H22···Cl30.892.423.302 (3)173
N2—H23···Cl20.892.563.190 (4)128
N3—H33···O1W0.892.163.052 (6)179
N4—H41···Cl80.892.593.455 (3)163
N5—H51···Cl80.892.523.403 (4)170
N5—H53···Cl70.892.783.562 (4)147
N6—H61···Cl60.892.393.263 (4)166
N9—H91···Cl50.892.513.371 (4)163
N10—H101···Cl50.892.573.421 (4)159
N11—H111···Cl50.892.543.381 (4)158
N2—H21···Cl7i0.892.413.294 (4)176
N4—H42···Cl7i0.892.573.460 (4)174
N8—H81···Cl4i0.892.553.397 (3)160
N9—H92···Cl4i0.892.463.339 (3)168
N10—H103···N13i0.892.483.147 (7)131
N3—H31···Cl6ii0.892.393.264 (4)168
N3—H32···Cl8ii0.892.553.298 (3)142
N7—H73···Cl1iii0.892.413.230 (3)152
N7—H71···Cl4iii0.892.713.593 (4)173
N9—H93···Cl4iii0.892.633.468 (4)158
N11—H112···Cl5iii0.892.443.291 (3)161
N12—H122···Cl1iii0.892.543.370 (3)156
N7—H72···Cl1iv0.892.643.424 (4)147
N12—H123···Cl1iv0.892.503.264 (4)144
N8—H83···Cl3v0.892.493.376 (4)175
N10—H102···Cl8vi0.892.573.455 (3)175
N12—H121···Cl8vi0.892.643.525 (3)177
N11—H113···Cl2vii0.892.573.436 (3)166
O1—H100···Cl2vii0.882.403.138 (4)141
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x, y, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds