Download citation
Download citation
link to html
Two new oxo complexes, namely hexa-μ2-acetato-acetato­aquabis­(di-3-pyridylamine)di-μ3-oxo-tetra­iron(III) chloride mono­hydrate ethanol 1.25-solvate, [Fe4(C2H3O2)7O2(C10H9N3)2(H2O)]Cl·1.25C2H6O·H2O, (I), containing a tetra­nuclear [Fe43-O)2]8+ unit, and 2-methyl­imidazolium hexa-μ2-acetato-acetatodiaqua-μ3-oxo-triiron(III) chloride dihydrate, (C4H7N2)[Fe3(C2H3O2)7O(H2O)2]Cl·2H2O, (II), with a trinuclear [Fe33-O)]7+ unit, are presented. Both structures are formed by two well differentiated entities, viz. a compact isolated cluster composed of FeIII ions coordinated to O2− and CH3CO2 anions, and an external group formed by a central Cl ion surrounded by different solvent groups to which the anion is bound through hydrogen bonding. In the case of (I), charge balance cannot be achieved within the groups, so the structure is macroscopically ionic; in the case of (II), in contrast, each group is locally neutral owing to the inter­nal compensation of charges. The trinuclear complex crystallizes with the metal cluster, chloride anion and 2-methyl­imidazolium cation bisected by a crystallographic mirror plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106020087/fa3019sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106020087/fa3019Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106020087/fa3019IIsup3.hkl
Contains datablock II

CCDC references: 616114; 616115

Comment top

Molecules containing one or more oxo-bridged Fe atoms have been the subject of extensive investigation in a variety of contexts, viz. biological [due to the fact that polynuclear oxo-bridged FeIII units are frequently found in active sites of different proteins (Gilles et al., 2002)], technological [as in the design of new molecule-based magnets (Podgajny et al., 2002; Marchivie et al., 2002; Sokol et al., 2002; Larrionava et al., 2000)], physico-chemical {valence trapping problems in mixed valence [FeIIFeIII2O]+6 trinuclear carboxylate complexes (Oh et al., 1984; Woehler et al., 1987)], etc.

As a contribution to the general understanding of oxo-bridged polynuclear iron complexes, we present here the crystal structures of two oxo-bridged FeIII ionic complexes, viz. [Fe4O2(CH3COO)7(BPA)2(H2O)]+·Cl·1.25CH3CH2OH·H2O (BPA is bipyridylamine), (I), and [Fe3O(CH3COO)7(H2O)]·Cl·(MeImid)+·H2O, (II) (MeImid+ is 2-methylimidazolinium).

In a general overview, the two structures can be defined as similar in their gross features, being formed by isolated clusters composed of FeIII ions coordinated to oxo2− and acetate anions, stabilized by an external group of different solvates having a central Cl to which they attach through a variety of hydrogen-bonding interactions (see below).

A charge-balance analysis, however, shows the structures to be rather different in that the metal cluster in (I) does not balance the twelve positive charges furnished by the metals with the eleven negative ones provided by the anions (two oxo and seven acetate units). The result is a singly charged cationic cluster externally balanced by a Cl anion. The cluster in (II), however, is neutral owing to the presence of three Fe3+ ion on one hand and one oxo2− and seven acetate ions on the other; the external part, in turn, also presents electrostatic balance with the Cl hydrogen bonded to an MeImid+ group.

In addition to the coulomb forces present, both group types interact with each other via hydrogen bonding through a definite number of hydrogen bonding `active sites'. Figs. 1 and 4 present complete views of both structures in terms of this latter description, while Figs. 2 and 5 show schematic sketchs of the corresponding metal clusters. It can be readily seen that each one of the general organizational features mentioned so far is achieved in each structure in a different way, according to the number and nature of their ligands/solvates. We shall now describe this fact in detail.

In compound (I), the isolated cationic clusters are composed of four FeIII cations, coordinated to two oxo2− groups, seven CH3CO2 anions, two BPA bases and one water molecule. The internal charge balance gives a net cationic charge of +1.

The cation comprises an innermost core of two Fe atoms (Fe1 and Fe4) doubly bridged by atoms O1 and O2, the oxo units, which in turn connect outwards to the remaining Fe atoms (one each), Fe2 and Fe3, to fulfill their µ3 coordination. To these outermost Fe atoms, the trinitrogenated BPA bases chelate via the pyridyl atoms N11, N12 and N21, N22, respectively. Adjacent Fe atoms are in turn connected by a different number of acetate bridges: The pairs Fe1,Fe2 and Fe3,Fe4 are doubly bridged by acetates 6, 8 and 4, 5, respectively, while the pairs Fe1, Fe3 and Fe4, Fe2 are singly bridged by acetates 3 and 7, respectively. The central pair Fe1, Fe4 is the only exception to this rather symmetric coordination, their bridging being achieved through a larger, hydrogen-bonded loop involving acetate 9 (singly bound to Fe1) and aqua atom O1W, bound to Fe4. As a consequence of the tight binding resulting from this latter bridge and the double oxo bridges, there is a rather short Fe1···Fe4 distance in the innermost Fe2O2 loop [2.924 (1) Å], a value in the lower 7 t h percentile of homologous distances reported for similar loops in the November 2005 version of the Cambridge Structural Database (CSD; Allen, 2002).

All four iron environments are slightly distorted octahedral; as a measure of this distortion, the maximum deviations from the ideal 180° angles are 14.7 (2), 12.95 (19), 12.65 (19) and 9.5 (2)°, respectively, for the sequence Fe1–Fe4.

The Fe—O bond distances also present differences, but with similarly coordinated cations showing analogous trends; thus, the environments for the iron pair Fe1/Fe4 are alike, as are those for Fe2/Fe3.

The first group (Fe1/Fe4) is characterized by three sets of rather similar bond lengths [short, medium and long, with mean values 1.95 (3), 1.99 (2) and 2.06 (2) Å; Table 1], the first corresponding to the oxo bonds, and the other two showing no obvious characteristic telling them apart. The second group also has three sets of distances, the oxo distances being by far the shortest [mean 1.825 (5) Å], the remaning acetate O atoms filling the second [mean 2.027 (9) Å] and finally the BPA N atoms the third [mean 2.17 (2) Å].

The six chelating acetate groups exhibit rather erratic behaviour regarding delocalization of the double bond, as inferred from the differences in their C—O distances, which range from some 0.3% of their mean value (almost complete delocalization) climbing to 9.5% (almost a pure single/double bond situation). Even though this is a rather extreme case for a chelating acetate, it is by no means unique: we could trace in the CSD (Allen, 2002) chelating acetates with asymmetries as large as 10.2% (CSD code ACENOL). The singly coordinated Ac9 seems to lie somewhere in between the two extreme cases, with a 3.7% difference.

The stabilizing `anionic group' in (1) consists of a chloride anion and three solvent molecules [one water and two depleted ethanol sites, with occupation factors 0.52 (2) and 0.73 (2), these latter four molecules strongly linked to each other through hydrogen bonding into a unique, rather `linear' entity as shown in Fig. 1].

In spite of the fact that H atoms attached to O atoms could not be confidently found in the difference Fourier map, a plausible interaction scheme can be envisaged from the short D···A distances between the two clusters.

The cationic group presents three different active sites (Fig. 1), represented by both amino N atoms N31 and N32 (acting as donors) and the set composed of aqua O1W (acting as a donor), and the uncoordinated carboxylate atom O29, a double acceptor of both an intermolecular hydrogen bond from O2W in the anionic group and the only intramolecular hydrogen bond in the cation, from O1W (entries 1–5 in Table 2).

The anionic group, in turn, presents three weak internal interactions attributable to hydrogen bonding and contributing to its internal coherence (entries 6–8 in Table 2).

The final result is a packing structure composed of cationic and anionic sheets parallel to (101), as shown in Fig. 3.

In the case of (II), the isolated metal clusters are composed of three FeIII cations, centrally coordinated by a single oxo2− group, seven CH3CO2 anions, and two water molecules, rendering a neutral environment around the metals.

The group is, however, much more symmetric than its counterpart in (I), being bisected by a mirror plane that passes though one of the Fe atoms (Fe2) and the central oxo O1 atom, and which bisects acetate ions Ac3, Ac4 and Ac5 [symmetry code (i) x, 3/2 − y, z].

The innermost core consists of the Fe3O group. In addition to this oxo bridging, all pairs of Fe atoms are doubly bridged by acetate anions, as follows: Fe1 and Fe2 by acetate ions Ac1 and Ac2; Fe1 and Fe1i by acetate ions Ac3 and Ac4. Finally, atom Fe1 (Fe1i) coordinates to aqua ligand O1W (O1Wi), while atom Fe2 binds to the monocoordinated acetate Ac5. This completes the distorted octahedral environment for each Fe atom (Table 3, and Figs. 4 and 5).

Though to a lesser degree than in (I), the six chelating acetate groups also display a variety of double-bond behaviours, from perfect 100% delocalization in the symmetric Ac3 and Ac4 ions, up to larger differences as in Ac2 (4.2%). The singly coordinated Ac5 ion has an asymmetry of 3.4%.

The `solvate part' in (II) lies, as the iron cluster does, on a symmetry plane passing through Cl1 and the MeImid+ cation. The ensemble is completed by two hydration water molecules (atoms O2W and O2Wii in Fig 4), one on each side of the plane.

As with (I), we were unable to find the H atoms involved in hydrogen-bonding interactions in (II), but here again the interaction scheme could be ascertained from the short D···A distances between the clusters. In this case, the cationic group has five active sites (see Fig. 4), represented by O1W as a double donor, O13 as an acceptor, and lastly O15 and O25 as joint acceptors of a single bifurcated interaction with the N1/H1 group (entries 3–7 in Table 4). The anionic group, in turn, is stabilized by two internal hydrogen bonds to Cl1 (entries 1 and 2 in Table 4).

The resulting packing scheme is a three-dimensional structure composed of anionic cages where the cations lodge (Fig. 6).

Experimental top

The syntheses were performed according to the procedure reported by McCuster et al. (1991). However, only in the case of (I) did the corresponding amine (BPA) appear, as expected, in a coordinated mode. In the case of (II), the MeImid group did not bind to the cation, ending up as a solvate. For the preparation of (I) and (II), to an orange solution of FeCl3·6H2O (2.67 mmol) in ethanol (50 ml) were added sodium acetate (6.63 mmol) and 1.43 mmol of the respective amine, BPA in the case of (1), MeImid in that of (2). The resultant solutions were stirred at room temperature for 10 min. Following the literature method, an excess of KClO4 was added to the reaction mixture, and the resulting solutions were stirred overnight at room temperature. In both cases, a fine red–brown solid was collected by filtration. Recrystallization from an EtOH/Et2O mixture provided the poorly diffracting crystals used for data collection.

Refinement top

H atoms attached to C and N atoms were placed at calculated positions (N—H = 0.86 Å, C—Haromatic = 0.93 Å and C—Hmethyl = 0.96 Å) and allowed to ride. Even though located in a poorly defined, rather shallow, electron density plateau, H atoms from the methyl groups were also included [AFIX 137 in SHELXL97 (Sheldrick, 1997)] because of their incidence in the refinement. Those attached to O, however, were excluded, because they could not be confidently located from the difference Fourier syntheses. It was therefore preferred to derive a hydrogen-bonding description mainly in terms of short O···O/O···N contacts. All H atoms included were assigned a Uiso(H) value of xUeq(host), with x = 1.2 for aromatic H atoms and x = 1.5 for methyl H atoms. The quality of the crystals obtained was extremely poor and only with rather long measurement times (20 and 25 s per frame, respectively) was it possible to account for an observed/unique ratio larger than 0.5 (about 0.55 in both cases).

Computing details top

For both compounds, data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2000); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-NT (Bruker, 2000); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. : A molecular ellipsoid plot of (I) (30% probability level), showing the complete tetrameric cation and the three symmetry-related `anionic groups' hydrogen bonded to it. Independent atoms are drawn in principal axis displacement ellipsoids, while their symmetry-related counterparts are shown as open ones. Heavy broken lines denote interactions internal to the `anionic groups'; light broken lines denote those involving the cation. C atoms are not labelled for clarity. Symmetry codes are as in Table 2.
[Figure 2] Fig. 2. : A schematic view of the tetrameric core in (I), with H and some C atoms omitted, for clarity. Double dashed lines denote the intramolecular hydrogen bond connecting atom O1W and acetate ion 9.
[Figure 3] Fig. 3. : A packing plot of (I), viewed along b and showing the way in which both cationic and anionic groups form sheets parallel to (101), the anions (in bold lines) passing through the cell center, and the cations (in light lines) lying immediately above/below the cell center.
[Figure 4] Fig. 4. : A molecular ellipsoid plot of (II) (30% probability level), showing the complete trimeric cation and the four symmetry-related `anionic groups' hydrogen bonded to it. Independent atoms drawn in principal axis displacement ellipsoids, while their symmetry-related counterparts are shown as open ones. Heavy broken lines denote interactions internal to the `anionic groups'; light broken lines those involving the cation. C atoms are not labelled for clarity. Symmetry codes are as in Table 4.
[Figure 5] Fig. 5. : A schematic view of the trimeric core in (II), with H and some C atoms omitted, for clarity.
[Figure 6] Fig. 6. : A packing plot of (II), viewed along c and showing the anionic cages (in bolder lines) in which the cationic groups (in lighter lines) lodge.
(I) hexa-µ2-acetato-acetatoaqua(di-3-pyridylamine)di-µ3-oxo-tetrairon(III) chloride monohydrate ethanol 1.25-solvate top
Crystal data top
[Fe4(C2H3O2)7O2(C10H9N3)2(H2O)]Cl·1.25C2H6O·H2OF(000) = 2346
Mr = 1140.18Dx = 1.494 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3678 reflections
a = 16.044 (4) Åθ = 2.3–23.7°
b = 17.619 (4) ŵ = 1.25 mm1
c = 17.942 (5) ÅT = 295 K
β = 91.571 (5)°Plates, red
V = 5070 (2) Å30.23 × 0.15 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
8964 independent reflections
Radiation source: fine-focus sealed tube4931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1919
Tmin = 0.79, Tmax = 0.90k = 2021
8964 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0623P)2]
where P = (Fo2 + 2Fc2)/3
8964 reflections(Δ/σ)max = 0.007
635 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Fe4(C2H3O2)7O2(C10H9N3)2(H2O)]Cl·1.25C2H6O·H2OV = 5070 (2) Å3
Mr = 1140.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.044 (4) ŵ = 1.25 mm1
b = 17.619 (4) ÅT = 295 K
c = 17.942 (5) Å0.23 × 0.15 × 0.08 mm
β = 91.571 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8964 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4931 reflections with I > 2σ(I)
Tmin = 0.79, Tmax = 0.90Rint = 0.072
8964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.01Δρmax = 0.48 e Å3
8964 reflectionsΔρmin = 0.50 e Å3
635 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.66459 (6)0.68617 (5)0.14334 (5)0.0350 (3)
Fe20.61716 (6)0.68213 (6)0.03867 (5)0.0376 (3)
Fe30.60828 (6)0.83537 (6)0.25238 (5)0.0367 (3)
Fe40.65251 (6)0.83606 (6)0.07391 (5)0.0377 (3)
O10.6626 (3)0.7281 (3)0.0438 (2)0.0373 (12)
O20.6581 (3)0.7931 (3)0.1719 (2)0.0377 (12)
N110.5681 (3)0.6267 (3)0.1389 (3)0.0422 (15)
N210.7188 (4)0.7056 (3)0.1103 (3)0.0427 (15)
N310.6378 (3)0.7040 (3)0.2217 (3)0.0422 (15)
H31N0.62830.73320.25940.051*
C110.5104 (4)0.5703 (4)0.1296 (4)0.0454 (19)
H110.50330.55150.08170.054*
C210.4637 (5)0.5409 (5)0.1851 (5)0.069 (3)
H210.42680.50120.17740.083*
C310.4733 (6)0.5730 (5)0.2555 (5)0.078 (3)
H310.43910.55640.29480.094*
C410.5315 (5)0.6285 (5)0.2688 (4)0.063 (2)
H410.53920.64870.31600.075*
C510.5767 (3)0.6513 (3)0.2080 (3)0.0334 (16)
C610.7123 (3)0.7164 (3)0.1830 (3)0.0328 (16)
C710.7792 (5)0.7411 (4)0.2229 (4)0.051 (2)
H710.77250.74920.27390.061*
C810.8554 (5)0.7539 (5)0.1889 (4)0.063 (2)
H810.90060.77040.21590.076*
C910.8626 (4)0.7413 (4)0.1129 (4)0.054 (2)
H910.91270.75000.08690.065*
C1010.7940 (4)0.7158 (4)0.0769 (4)0.047 (2)
H1010.79970.70480.02630.056*
N120.5555 (4)0.8822 (3)0.3530 (3)0.0469 (16)
N220.7162 (3)0.8153 (3)0.3279 (3)0.0398 (14)
N320.6349 (3)0.8076 (3)0.4342 (3)0.0584 (19)
H32N0.63080.78120.47430.070*
C120.4927 (4)0.9325 (4)0.3444 (4)0.0452 (19)
H120.48290.95370.29750.054*
C220.4437 (6)0.9533 (5)0.3998 (5)0.074 (3)
H220.40110.98850.39220.089*
C320.4589 (6)0.9205 (6)0.4692 (5)0.081 (3)
H320.42510.93310.50860.097*
C420.5194 (4)0.8725 (5)0.4801 (5)0.056 (2)
H420.53080.85210.52710.068*
C520.5655 (3)0.8531 (4)0.4205 (4)0.0358 (17)
C620.7092 (4)0.7946 (4)0.3988 (3)0.0386 (18)
C720.7754 (5)0.7619 (4)0.4381 (4)0.052 (2)
H720.76860.74620.48710.063*
C820.8478 (5)0.7531 (4)0.4068 (4)0.051 (2)
H820.89250.73130.43320.061*
C920.8565 (4)0.7765 (4)0.3345 (5)0.055 (2)
H920.90770.77200.31170.066*
C1020.7891 (4)0.8064 (5)0.2958 (4)0.058 (2)
H1020.79460.82070.24630.070*
O130.5599 (3)0.7384 (3)0.2923 (2)0.0420 (12)
O230.6437 (3)0.6502 (3)0.2467 (2)0.0411 (12)
C130.5928 (4)0.6743 (4)0.2919 (4)0.0292 (15)
C230.5564 (6)0.6202 (5)0.3479 (5)0.088 (3)
H23A0.58990.57510.35100.132*
H23B0.50050.60700.33240.132*
H23C0.55570.64410.39600.132*
O140.4984 (3)0.8581 (3)0.1968 (3)0.0467 (13)
O240.5247 (3)0.8410 (3)0.0769 (3)0.0441 (12)
C140.4778 (4)0.8545 (4)0.1287 (4)0.0377 (17)
C240.3843 (5)0.8663 (5)0.1087 (5)0.083 (3)
H24A0.37840.88580.05880.124*
H24B0.36080.90180.14290.124*
H24C0.35550.81870.11190.124*
O150.6495 (3)0.9420 (3)0.2342 (3)0.0532 (14)
O250.6537 (3)0.9438 (3)0.1102 (3)0.0508 (14)
C150.6682 (4)0.9719 (4)0.1736 (4)0.0425 (19)
C250.7044 (6)1.0485 (5)0.1773 (5)0.091 (3)
H25A0.74531.05070.21720.137*
H25B0.66111.08480.18600.137*
H25C0.73031.05990.13100.137*
O160.6716 (3)0.5804 (3)0.0182 (3)0.0484 (13)
O260.6747 (3)0.5770 (3)0.1060 (3)0.0514 (14)
C160.6895 (4)0.5501 (4)0.0451 (4)0.0345 (17)
C260.7319 (5)0.4761 (5)0.0465 (5)0.072 (3)
H26A0.76800.47300.08990.107*
H26B0.76420.47080.00250.107*
H26C0.69110.43630.04790.107*
O170.5614 (3)0.7756 (3)0.0833 (2)0.0419 (12)
O270.6338 (3)0.8703 (3)0.0315 (3)0.0433 (13)
C170.5875 (6)0.8450 (5)0.0773 (5)0.059 (2)
C270.5389 (7)0.8980 (5)0.1295 (6)0.105 (4)
H27A0.56030.94870.12420.157*
H27B0.48110.89730.11720.157*
H27C0.54480.88140.18010.157*
O180.5103 (3)0.6509 (3)0.0116 (3)0.0426 (13)
O280.5361 (3)0.6708 (3)0.1331 (3)0.0426 (12)
C180.4935 (4)0.6544 (4)0.0785 (4)0.0426 (19)
C280.4003 (5)0.6371 (5)0.0950 (5)0.073 (3)
H28A0.39650.61640.14430.110*
H28B0.37860.60110.05930.110*
H28C0.36840.68310.09150.110*
O190.7851 (3)0.6747 (3)0.1648 (3)0.0618 (15)
O290.8769 (4)0.7410 (4)0.1001 (4)0.102 (2)
C190.8620 (5)0.6903 (6)0.1468 (5)0.064 (2)
C290.9240 (5)0.6392 (5)0.1775 (5)0.084 (3)
H29A0.97780.65290.15970.127*
H29B0.91090.58820.16240.127*
H29C0.92460.64240.23100.127*
O1A0.1618 (10)0.5819 (9)0.1995 (10)0.144 (6)0.52 (2)
C1A0.2417 (11)0.5563 (10)0.2101 (14)0.114 (8)0.52 (2)
H1AA0.26760.58710.24900.137*0.52 (2)
H1AB0.27110.56670.16470.137*0.52 (2)
C2A0.2570 (10)0.4789 (10)0.2290 (11)0.097 (7)0.52 (2)
H2AA0.31020.47460.25430.145*0.52 (2)
H2AB0.25680.44880.18430.145*0.52 (2)
H2AC0.21410.46120.26100.145*0.52 (2)
O1B0.8904 (5)0.9528 (5)0.0365 (6)0.085 (3)0.73 (2)
C1B0.8796 (11)0.9820 (10)0.0352 (7)0.141 (7)0.73 (2)
H1BA0.86280.94110.06850.169*0.73 (2)
H1BB0.93271.00120.05160.169*0.73 (2)
C2B0.8183 (11)1.0424 (10)0.0416 (10)0.170 (9)0.73 (2)
H2BA0.81921.06380.09070.255*0.73 (2)
H2BB0.83121.08100.00540.255*0.73 (2)
H2BC0.76381.02220.03280.255*0.73 (2)
Cl10.15592 (15)0.74444 (16)0.10728 (12)0.0861 (8)
O1W0.7793 (3)0.8503 (3)0.0692 (3)0.0618 (15)
O2W0.9975 (5)0.8290 (4)0.0347 (4)0.113 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0299 (5)0.0343 (6)0.0406 (6)0.0005 (5)0.0013 (4)0.0018 (5)
Fe20.0360 (6)0.0397 (7)0.0373 (6)0.0015 (5)0.0028 (5)0.0002 (5)
Fe30.0297 (5)0.0385 (7)0.0419 (6)0.0030 (5)0.0014 (5)0.0041 (5)
Fe40.0402 (6)0.0362 (6)0.0367 (6)0.0042 (5)0.0005 (5)0.0016 (5)
O10.026 (3)0.049 (3)0.037 (3)0.014 (2)0.001 (2)0.006 (2)
O20.027 (2)0.049 (3)0.037 (3)0.002 (2)0.014 (2)0.010 (2)
N110.044 (4)0.036 (4)0.046 (4)0.014 (3)0.013 (3)0.000 (3)
N210.056 (4)0.041 (4)0.031 (3)0.003 (3)0.012 (3)0.002 (3)
N310.043 (4)0.048 (4)0.036 (3)0.004 (3)0.004 (3)0.011 (3)
C110.043 (4)0.046 (5)0.046 (5)0.007 (4)0.013 (4)0.014 (4)
C210.062 (6)0.070 (6)0.077 (7)0.029 (5)0.021 (5)0.010 (5)
C310.086 (7)0.075 (7)0.072 (7)0.026 (6)0.007 (6)0.029 (5)
C410.079 (6)0.080 (7)0.031 (5)0.017 (5)0.014 (4)0.008 (4)
C510.021 (3)0.037 (4)0.042 (4)0.012 (3)0.006 (3)0.003 (3)
C610.031 (4)0.042 (4)0.026 (4)0.012 (3)0.000 (3)0.002 (3)
C710.054 (5)0.057 (5)0.040 (4)0.009 (4)0.003 (4)0.001 (4)
C810.028 (4)0.103 (7)0.059 (6)0.002 (4)0.005 (4)0.003 (5)
C910.028 (4)0.070 (5)0.064 (5)0.010 (4)0.004 (4)0.004 (4)
C1010.022 (4)0.048 (5)0.068 (5)0.007 (3)0.012 (4)0.009 (4)
N120.061 (4)0.047 (4)0.033 (4)0.009 (3)0.004 (3)0.005 (3)
N220.048 (4)0.038 (4)0.033 (3)0.001 (3)0.010 (3)0.006 (3)
N320.066 (5)0.071 (5)0.039 (4)0.008 (4)0.012 (3)0.008 (3)
C120.023 (4)0.057 (5)0.056 (5)0.006 (4)0.009 (3)0.009 (4)
C220.090 (7)0.070 (7)0.062 (6)0.009 (5)0.010 (5)0.005 (5)
C320.089 (8)0.101 (8)0.053 (6)0.004 (6)0.023 (5)0.011 (6)
C420.030 (4)0.068 (6)0.071 (6)0.011 (4)0.003 (4)0.009 (5)
C520.012 (3)0.044 (5)0.052 (5)0.002 (3)0.006 (3)0.006 (4)
C620.025 (4)0.042 (5)0.049 (5)0.018 (3)0.005 (3)0.003 (4)
C720.052 (5)0.061 (6)0.043 (5)0.007 (4)0.002 (4)0.006 (4)
C820.032 (4)0.053 (5)0.068 (6)0.017 (4)0.004 (4)0.002 (4)
C920.019 (4)0.068 (6)0.079 (6)0.010 (4)0.007 (4)0.007 (5)
C1020.032 (4)0.088 (7)0.055 (5)0.008 (4)0.022 (4)0.019 (4)
O130.055 (3)0.038 (3)0.034 (3)0.014 (3)0.007 (2)0.004 (2)
O230.022 (2)0.057 (3)0.044 (3)0.017 (2)0.009 (2)0.003 (2)
C130.026 (3)0.015 (4)0.047 (4)0.003 (3)0.000 (3)0.004 (3)
C230.099 (8)0.088 (8)0.079 (7)0.018 (6)0.042 (6)0.031 (6)
O140.032 (3)0.058 (4)0.050 (3)0.019 (2)0.002 (2)0.005 (3)
O240.051 (3)0.041 (3)0.041 (3)0.000 (2)0.007 (2)0.003 (2)
C140.026 (4)0.044 (5)0.043 (5)0.005 (3)0.005 (3)0.004 (4)
C240.047 (5)0.119 (8)0.083 (7)0.021 (5)0.004 (5)0.014 (6)
O150.074 (4)0.039 (3)0.047 (3)0.010 (3)0.003 (3)0.001 (3)
O250.064 (4)0.042 (3)0.046 (3)0.001 (3)0.006 (3)0.001 (3)
C150.045 (4)0.037 (5)0.045 (5)0.024 (4)0.005 (4)0.009 (4)
C250.109 (8)0.079 (8)0.087 (7)0.021 (6)0.019 (6)0.013 (6)
O160.058 (3)0.038 (3)0.050 (3)0.013 (3)0.005 (3)0.006 (3)
O260.076 (4)0.043 (3)0.036 (3)0.011 (3)0.009 (3)0.003 (2)
C160.038 (4)0.022 (4)0.044 (5)0.017 (3)0.012 (4)0.010 (3)
C260.076 (6)0.057 (6)0.081 (6)0.027 (5)0.009 (5)0.005 (5)
O170.043 (3)0.038 (3)0.044 (3)0.001 (2)0.006 (2)0.001 (2)
O270.027 (3)0.059 (4)0.044 (3)0.013 (2)0.011 (2)0.000 (3)
C170.081 (7)0.045 (6)0.053 (6)0.004 (5)0.010 (5)0.021 (4)
C270.113 (9)0.078 (8)0.120 (9)0.012 (6)0.051 (7)0.026 (6)
O180.028 (3)0.060 (4)0.040 (3)0.023 (2)0.006 (2)0.005 (2)
O280.016 (2)0.060 (4)0.052 (3)0.013 (2)0.001 (2)0.005 (3)
C180.033 (4)0.046 (5)0.049 (5)0.027 (4)0.003 (4)0.005 (4)
C280.045 (5)0.101 (8)0.074 (6)0.017 (5)0.001 (5)0.007 (5)
O190.041 (3)0.070 (4)0.075 (4)0.024 (3)0.003 (3)0.014 (3)
O290.052 (4)0.148 (7)0.106 (5)0.012 (4)0.007 (4)0.060 (5)
C190.051 (5)0.086 (7)0.056 (6)0.011 (5)0.015 (4)0.004 (5)
C290.041 (5)0.127 (9)0.085 (7)0.032 (5)0.017 (5)0.017 (6)
O1A0.120 (13)0.109 (12)0.200 (16)0.027 (11)0.028 (13)0.027 (11)
C1A0.096 (16)0.091 (17)0.157 (19)0.046 (14)0.022 (15)0.023 (14)
C2A0.072 (13)0.113 (16)0.105 (15)0.043 (12)0.001 (11)0.002 (13)
O1B0.052 (5)0.089 (7)0.113 (8)0.018 (5)0.011 (5)0.029 (6)
C1B0.122 (15)0.121 (15)0.181 (18)0.034 (12)0.030 (14)0.021 (13)
C2B0.139 (16)0.193 (19)0.177 (18)0.018 (15)0.012 (14)0.035 (15)
Cl10.0620 (15)0.145 (2)0.0512 (14)0.0106 (15)0.0009 (11)0.0209 (14)
O1W0.026 (3)0.075 (4)0.084 (4)0.016 (3)0.002 (3)0.007 (3)
O2W0.119 (6)0.109 (6)0.112 (6)0.008 (5)0.002 (5)0.013 (4)
Geometric parameters (Å, º) top
Fe1—O11.933 (4)C82—H820.9300
Fe1—O21.956 (5)C92—C1021.374 (10)
Fe1—O191.971 (5)C92—H920.9300
Fe1—O231.996 (5)C102—H1020.9300
Fe1—O262.044 (5)O13—C131.246 (7)
Fe1—O282.082 (4)O23—C131.242 (7)
Fe2—O11.820 (4)C13—C231.514 (10)
Fe2—O162.024 (5)C23—H23A0.9600
Fe2—O172.028 (5)C23—H23B0.9600
Fe2—O182.035 (4)C23—H23C0.9600
Fe2—N212.145 (5)O14—C141.258 (7)
Fe2—N112.175 (5)O24—C141.235 (8)
Fe3—O21.828 (4)C14—C241.547 (9)
Fe3—O132.016 (5)C24—H24A0.9600
Fe3—O152.021 (5)C24—H24B0.9600
Fe3—O142.041 (5)C24—H24C0.9600
Fe3—N122.176 (6)O15—C151.253 (8)
Fe3—N222.198 (5)O25—C151.257 (8)
Fe4—O21.915 (4)C15—C251.469 (10)
Fe4—O11.986 (5)C25—H25A0.9600
Fe4—O272.000 (5)C25—H25B0.9600
Fe4—O252.006 (5)C25—H25C0.9600
Fe4—O1W2.054 (5)O16—C161.279 (8)
Fe4—O242.055 (5)O26—C161.221 (7)
N11—C511.325 (6)C16—C261.471 (9)
N11—C111.371 (6)C26—H26A0.9600
N21—C611.318 (6)C26—H26B0.9600
N21—C1011.344 (6)C26—H26C0.9600
N31—C511.376 (4)O17—C171.297 (9)
N31—C611.384 (4)O27—C171.179 (9)
N31—H31N0.8600C17—C271.522 (11)
C11—C211.335 (10)C27—H27A0.9600
C11—H110.9300C27—H27B0.9600
C21—C311.395 (11)C27—H27C0.9600
C21—H210.9300O18—C181.239 (8)
C31—C411.377 (11)O28—C181.213 (8)
C31—H310.9300C18—C281.564 (9)
C41—C511.355 (9)C28—H28A0.9600
C41—H410.9300C28—H28B0.9600
C61—C711.378 (9)C28—H28C0.9600
C71—C811.370 (10)O19—C191.313 (9)
C71—H710.9300O29—C191.251 (10)
C81—C911.384 (10)C19—C291.441 (11)
C81—H810.9300C29—H29A0.9600
C91—C1011.368 (9)C29—H29B0.9600
C91—H910.9300C29—H29C0.9600
C101—H1010.9300O1A—C1A1.367 (9)
N12—C521.322 (6)C1A—C2A1.424 (9)
N12—C121.348 (6)C1A—H1AA0.9700
N22—C1021.327 (6)C1A—H1AB0.9700
N22—C621.331 (6)C2A—H2AA0.9600
N32—C621.384 (4)C2A—H2AB0.9600
N32—C521.388 (4)C2A—H2AC0.9600
N32—H32N0.8600O1B—C1B1.392 (9)
C12—C221.336 (10)C1B—C2B1.450 (9)
C12—H120.9300C1B—H1BA0.9700
C22—C321.388 (11)C1B—H1BB0.9700
C22—H220.9300C2B—H2BA0.9600
C32—C421.298 (11)C2B—H2BB0.9600
C32—H320.9300C2B—H2BC0.9600
C42—C521.361 (9)Fe1—Fe23.3335 (16)
C42—H420.9300Fe1—Fe33.4134 (16)
C62—C721.384 (9)Fe1—Fe42.9243 (16)
C72—C821.314 (10)Fe2—Fe43.4199 (17)
C72—H720.9300Fe3—Fe43.2990 (16)
C82—C921.373 (10)Fe2—Fe35.8840 (16)
O1—Fe1—O282.83 (18)C22—C32—H32119.3
O1—Fe1—O19102.2 (2)C32—C42—C52117.7 (8)
O2—Fe1—O1996.1 (2)C32—C42—H42121.1
O1—Fe1—O23168.76 (18)C52—C42—H42121.1
O2—Fe1—O2392.89 (19)N12—C52—C42124.6 (6)
O19—Fe1—O2388.57 (19)N12—C52—N32117.6 (6)
O1—Fe1—O2693.20 (18)C42—C52—N32117.2 (6)
O2—Fe1—O26175.74 (19)N22—C62—N32119.3 (6)
O19—Fe1—O2683.2 (2)N22—C62—C72121.2 (6)
O23—Fe1—O2691.30 (19)N32—C62—C72119.5 (6)
O1—Fe1—O2888.64 (18)C82—C72—C62120.4 (7)
O2—Fe1—O2895.12 (18)C82—C72—H72119.8
O19—Fe1—O28165.3 (2)C62—C72—H72119.8
O23—Fe1—O2881.37 (18)C72—C82—C92118.9 (7)
O26—Fe1—O2886.3 (2)C72—C82—H82120.6
O1—Fe2—O1694.9 (2)C92—C82—H82120.6
O1—Fe2—O1797.01 (19)C82—C92—C102119.6 (7)
O16—Fe2—O17167.05 (19)C82—C92—H92120.2
O1—Fe2—O1894.78 (18)C102—C92—H92120.2
O16—Fe2—O1892.6 (2)N22—C102—C92121.2 (7)
O17—Fe2—O1891.5 (2)N22—C102—H102119.4
O1—Fe2—N2196.2 (2)C92—C102—H102119.4
O16—Fe2—N2187.0 (2)C13—O13—Fe3126.8 (4)
O17—Fe2—N2186.6 (2)C13—O23—Fe1129.0 (4)
O18—Fe2—N21169.0 (2)O23—C13—O13126.8 (6)
O1—Fe2—N11177.6 (2)O23—C13—C23119.4 (6)
O16—Fe2—N1184.1 (2)O13—C13—C23113.3 (6)
O17—Fe2—N1183.86 (19)C13—C23—H23A109.5
O18—Fe2—N1187.4 (2)C13—C23—H23B109.5
N21—Fe2—N1181.7 (2)H23A—C23—H23B109.5
O2—Fe3—O1396.69 (19)C13—C23—H23C109.5
O2—Fe3—O1595.7 (2)H23A—C23—H23C109.5
O13—Fe3—O15167.35 (19)H23B—C23—H23C109.5
O2—Fe3—O1494.85 (18)C14—O14—Fe3131.7 (4)
O13—Fe3—O1490.3 (2)C14—O24—Fe4131.0 (5)
O15—Fe3—O1491.2 (2)O24—C14—O14126.2 (6)
O2—Fe3—N12176.1 (2)O24—C14—C24117.3 (7)
O13—Fe3—N1282.2 (2)O14—C14—C24116.5 (6)
O15—Fe3—N1285.3 (2)C14—C24—H24A109.5
O14—Fe3—N1288.9 (2)C14—C24—H24B109.5
O2—Fe3—N2293.85 (19)H24A—C24—H24B109.5
O13—Fe3—N2287.1 (2)C14—C24—H24C109.5
O15—Fe3—N2289.6 (2)H24A—C24—H24C109.5
O14—Fe3—N22171.1 (2)H24B—C24—H24C109.5
N12—Fe3—N2282.4 (2)C15—O15—Fe3128.1 (5)
O2—Fe4—O182.50 (18)C15—O25—Fe4131.8 (5)
O2—Fe4—O27171.92 (18)O15—C15—O25125.3 (7)
O1—Fe4—O2792.45 (19)O15—C15—C25116.7 (7)
O2—Fe4—O2594.38 (19)O25—C15—C25117.8 (7)
O1—Fe4—O25174.03 (19)C15—C25—H25A109.5
O27—Fe4—O2591.2 (2)C15—C25—H25B109.5
O2—Fe4—O1W93.68 (19)H25A—C25—H25B109.5
O1—Fe4—O1W91.0 (2)C15—C25—H25C109.5
O27—Fe4—O1W92.71 (19)H25A—C25—H25C109.5
O25—Fe4—O1W84.1 (2)H25B—C25—H25C109.5
O2—Fe4—O2490.85 (18)C16—O16—Fe2128.0 (4)
O1—Fe4—O2497.82 (18)C16—O26—Fe1132.7 (5)
O27—Fe4—O2483.57 (18)O26—C16—O16126.1 (7)
O25—Fe4—O2487.3 (2)O26—C16—C26115.5 (7)
O1W—Fe4—O24170.5 (2)O16—C16—C26118.5 (6)
Fe2—O1—Fe1125.3 (2)C16—C26—H26A109.5
Fe2—O1—Fe4127.8 (2)C16—C26—H26B109.5
Fe1—O1—Fe496.51 (18)H26A—C26—H26B109.5
Fe3—O2—Fe4123.6 (2)C16—C26—H26C109.5
Fe3—O2—Fe1128.8 (3)H26A—C26—H26C109.5
Fe4—O2—Fe198.12 (19)H26B—C26—H26C109.5
C51—N11—C11116.1 (5)C17—O17—Fe2126.5 (5)
C51—N11—Fe2125.6 (4)C17—O27—Fe4128.3 (5)
C11—N11—Fe2117.1 (4)O27—C17—O17127.6 (7)
C61—N21—C101117.9 (6)O27—C17—C27120.0 (8)
C61—N21—Fe2125.4 (4)O17—C17—C27111.6 (8)
C101—N21—Fe2116.5 (5)C17—C27—H27A109.5
C51—N31—C61128.7 (6)C17—C27—H27B109.5
C51—N31—H31N115.6H27A—C27—H27B109.5
C61—N31—H31N115.6C17—C27—H27C109.5
C21—C11—N11123.8 (7)H27A—C27—H27C109.5
C21—C11—H11118.1H27B—C27—H27C109.5
N11—C11—H11118.1C18—O18—Fe2128.6 (4)
C11—C21—C31116.4 (8)C18—O28—Fe1129.6 (5)
C11—C21—H21121.8O28—C18—O18131.4 (6)
C31—C21—H21121.8O28—C18—C28114.5 (7)
C41—C31—C21122.5 (8)O18—C18—C28114.0 (6)
C41—C31—H31118.7C18—C28—H28A109.5
C21—C31—H31118.7C18—C28—H28B109.5
C51—C41—C31114.9 (7)H28A—C28—H28B109.5
C51—C41—H41122.5C18—C28—H28C109.5
C31—C41—H41122.6H28A—C28—H28C109.5
N11—C51—C41126.1 (6)H28B—C28—H28C109.5
N11—C51—N31118.8 (5)C19—O19—Fe1148.6 (6)
C41—C51—N31115.1 (6)O29—C19—O19120.9 (8)
N21—C61—C71121.1 (6)O29—C19—C29124.0 (8)
N21—C61—N31121.2 (5)O19—C19—C29114.7 (9)
C71—C61—N31117.6 (6)C19—C29—H29A109.5
C81—C71—C61121.3 (7)C19—C29—H29B109.5
C81—C71—H71119.3H29A—C29—H29B109.5
C61—C71—H71119.3C19—C29—H29C109.5
C71—C81—C91117.5 (7)H29A—C29—H29C109.5
C71—C81—H81121.2H29B—C29—H29C109.5
C91—C81—H81121.2O1A—C1A—C2A120.2 (14)
C101—C91—C81118.1 (7)O1A—C1A—H1AA107.3
C101—C91—H91121.0C2A—C1A—H1AA107.3
C81—C91—H91121.0O1A—C1A—H1AB107.3
N21—C101—C91123.9 (7)C2A—C1A—H1AB107.3
N21—C101—H101118.1H1AA—C1A—H1AB106.9
C91—C101—H101118.1C1A—C2A—H2AA109.5
C52—N12—C12115.5 (6)C1A—C2A—H2AB109.5
C52—N12—Fe3125.0 (4)H2AA—C2A—H2AB109.5
C12—N12—Fe3117.5 (5)C1A—C2A—H2AC109.5
C102—N22—C62118.7 (6)H2AA—C2A—H2AC109.5
C102—N22—Fe3116.1 (5)H2AB—C2A—H2AC109.5
C62—N22—Fe3123.2 (4)O1B—C1B—C2B114.3 (11)
C62—N32—C52135.3 (6)O1B—C1B—H1BA108.7
C62—N32—H32N112.4C2B—C1B—H1BA108.7
C52—N32—H32N112.4O1B—C1B—H1BB108.7
C22—C12—N12123.3 (8)C2B—C1B—H1BB108.7
C22—C12—H12118.3H1BA—C1B—H1BB107.6
N12—C12—H12118.3C1B—C2B—H2BA109.5
C12—C22—C32117.4 (9)C1B—C2B—H2BB109.5
C12—C22—H22121.3H2BA—C2B—H2BB109.5
C32—C22—H22121.3C1B—C2B—H2BC109.5
C42—C32—C22121.3 (9)H2BA—C2B—H2BC109.5
C42—C32—H32119.3H2BB—C2B—H2BC109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N31—H31N···Cl1i0.862.483.221 (6)145
N32—H32N···Cl1ii0.862.453.246 (6)154
O1W···O29??2.534 (9)?
O1W···O1B??2.618 (10)?
O2W···O29??2.765 (10)?
O2W···Cl1??3.196 (8)?
O1A···Cl1??3.313 (15)?
O1B···O2W??2.774 (11)?
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2.
(II) 2-methylimidazolium hexa-µ2-acetato-acetatodiaqua-µ3-oxo-triiron(III) chloride dihydrate top
Crystal data top
(C4H7N2)[Fe3(C2H3O2)7O(H2O)2]Cl·2H2OF(000) = 1620
Mr = 787.49Dx = 1.675 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1322 reflections
a = 32.147 (6) Åθ = 2.9–23.9°
b = 12.048 (2) ŵ = 1.54 mm1
c = 8.0652 (16) ÅT = 295 K
V = 3123.6 (11) Å3Block, red
Z = 40.26 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2877 independent reflections
Radiation source: fine-focus sealed tube1584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 3738
Tmin = 0.68, Tmax = 0.73k = 1414
5673 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0993P)2 + 17.3868P]
where P = (Fo2 + 2Fc2)/3
2877 reflections(Δ/σ)max = 0.013
225 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
(C4H7N2)[Fe3(C2H3O2)7O(H2O)2]Cl·2H2OV = 3123.6 (11) Å3
Mr = 787.49Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 32.147 (6) ŵ = 1.54 mm1
b = 12.048 (2) ÅT = 295 K
c = 8.0652 (16) Å0.26 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2877 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1584 reflections with I > 2σ(I)
Tmin = 0.68, Tmax = 0.73Rint = 0.079
5673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0993P)2 + 17.3868P]
where P = (Fo2 + 2Fc2)/3
2877 reflectionsΔρmax = 0.89 e Å3
225 parametersΔρmin = 0.79 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.15105 (3)0.61315 (8)1.08730 (11)0.0245 (2)
Fe20.07772 (4)0.75000.88154 (16)0.0244 (3)
O10.12758 (17)0.75001.0192 (8)0.0263 (16)
O1W0.18246 (13)0.4661 (4)1.1581 (6)0.0343 (13)
O110.10002 (14)0.6286 (4)0.7317 (6)0.0381 (13)
O210.14458 (15)0.5287 (4)0.8741 (6)0.0401 (13)
C110.1241 (2)0.5475 (5)0.7467 (7)0.0290 (17)
C210.1296 (3)0.4716 (6)0.6037 (8)0.052 (2)
H21A0.14120.51200.51200.079*
H21B0.10320.44130.57240.079*
H21C0.14810.41240.63410.079*
O120.04943 (13)0.6332 (4)1.0263 (6)0.0353 (13)
O220.09833 (14)0.5462 (4)1.1763 (6)0.0422 (14)
C120.06033 (17)0.5677 (5)1.1361 (8)0.0268 (16)
C220.02711 (18)0.5105 (6)1.2318 (8)0.0381 (19)
H22A0.01160.56421.29450.057*
H22B0.03950.45761.30600.057*
H22C0.00880.47271.15670.057*
O130.20923 (13)0.6585 (4)1.0038 (6)0.0427 (14)
C130.2271 (2)0.75000.9800 (13)0.036 (3)
C230.2717 (2)0.75000.9331 (14)0.043 (3)
H23A0.28720.79361.01140.064*0.50
H23B0.27480.78120.82430.064*0.50
H23C0.28200.67520.93340.064*0.50
O140.16757 (15)0.6574 (4)1.3165 (6)0.0393 (13)
C140.1737 (3)0.75001.3862 (10)0.036 (3)
C240.1906 (3)0.75001.5580 (9)0.053 (4)
H24A0.21730.78561.55880.080*0.50
H24B0.19340.67491.59620.080*0.50
H24C0.17190.78951.62980.080*0.50
O150.02623 (17)0.75000.7451 (8)0.0250 (16)
O250.0213 (2)0.75000.5473 (10)0.054 (2)
C150.0166 (3)0.75000.5887 (11)0.040 (3)
C250.0501 (3)0.75000.4605 (11)0.040 (3)
H25A0.07440.78610.50390.061*0.50
H25B0.04060.78900.36390.061*0.50
H25C0.05680.67490.43120.061*0.50
C10.0911 (2)0.25001.1040 (11)0.043 (3)
C20.0771 (3)0.25000.8327 (14)0.064 (4)
H20.08080.25000.71830.076*
C30.0407 (3)0.25000.9196 (15)0.091 (6)
H30.01400.25000.87450.109*
C40.1144 (4)0.25001.2666 (14)0.068 (4)
H4A0.13820.20221.25810.101*0.50
H4B0.09640.22371.35320.101*0.50
H4C0.12340.32411.29180.101*0.50
N10.0502 (3)0.25001.0820 (14)0.081 (4)
H1N0.03220.25001.16100.097*
N20.1077 (2)0.25000.9558 (10)0.047 (3)
H2N0.13400.25000.93680.057*
Cl10.20342 (8)0.25000.9160 (4)0.0503 (8)
O2W0.24374 (17)0.4883 (5)0.7884 (9)0.076 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0196 (4)0.0252 (5)0.0289 (4)0.0000 (4)0.0008 (4)0.0016 (5)
Fe20.0219 (6)0.0251 (7)0.0261 (7)0.0000.0007 (6)0.000
O10.018 (3)0.030 (3)0.031 (3)0.0000.002 (3)0.000
O1W0.026 (2)0.030 (3)0.047 (3)0.008 (2)0.005 (2)0.008 (2)
O110.036 (2)0.048 (3)0.031 (2)0.004 (3)0.004 (2)0.001 (3)
O210.051 (3)0.027 (3)0.042 (3)0.007 (2)0.010 (2)0.002 (2)
C110.038 (4)0.024 (3)0.025 (3)0.003 (3)0.002 (3)0.005 (3)
C210.091 (6)0.036 (4)0.030 (4)0.019 (4)0.009 (4)0.018 (4)
O120.025 (2)0.037 (3)0.045 (3)0.007 (2)0.001 (2)0.009 (2)
O220.033 (2)0.043 (3)0.050 (3)0.005 (2)0.009 (2)0.016 (3)
C120.027 (3)0.020 (3)0.034 (4)0.002 (3)0.000 (3)0.008 (3)
C220.032 (3)0.047 (4)0.035 (4)0.012 (3)0.009 (3)0.024 (4)
O130.025 (2)0.044 (3)0.059 (3)0.008 (2)0.018 (2)0.008 (3)
C130.023 (5)0.049 (6)0.037 (6)0.0000.002 (5)0.000
C230.034 (5)0.040 (6)0.054 (7)0.0000.017 (5)0.000
O140.053 (3)0.035 (3)0.029 (2)0.004 (3)0.003 (2)0.005 (2)
C140.021 (4)0.049 (6)0.039 (6)0.0000.002 (5)0.000
C240.040 (6)0.106 (11)0.013 (5)0.0000.003 (5)0.000
O150.016 (3)0.029 (3)0.030 (3)0.0000.001 (3)0.000
O250.046 (4)0.063 (5)0.053 (5)0.0000.010 (4)0.000
C150.029 (5)0.066 (7)0.024 (5)0.0000.007 (5)0.000
C250.045 (6)0.051 (7)0.025 (5)0.0000.002 (5)0.000
C10.030 (5)0.027 (5)0.071 (8)0.0000.024 (5)0.000
C20.034 (6)0.069 (9)0.087 (10)0.0000.026 (7)0.000
C30.020 (5)0.092 (11)0.161 (16)0.0000.013 (9)0.000
C40.094 (10)0.048 (8)0.061 (8)0.0000.016 (8)0.000
N10.054 (6)0.060 (7)0.128 (10)0.0000.052 (7)0.000
N20.019 (4)0.050 (6)0.073 (7)0.0000.004 (5)0.000
Cl10.0360 (13)0.0395 (15)0.075 (2)0.0000.0005 (15)0.000
O2W0.058 (3)0.046 (4)0.125 (5)0.010 (3)0.050 (4)0.004 (4)
Geometric parameters (Å, º) top
Fe1—O11.894 (3)O14—C141.264 (6)
Fe1—O141.996 (5)C14—O14i1.264 (6)
Fe1—O212.009 (5)C14—C241.489 (9)
Fe1—O222.009 (5)C24—H24A0.9600
Fe1—O132.062 (5)C24—H24B0.9600
Fe1—O1W2.118 (5)C24—H24C0.9600
Fe2—O11.950 (6)O15—C151.298 (10)
Fe2—O151.988 (6)O25—C151.264 (11)
Fe2—O112.029 (5)C15—C251.492 (9)
Fe2—O122.042 (5)C25—H25A0.9600
O11—C111.253 (8)C25—H25B0.9600
O21—C111.241 (7)C25—H25C0.9600
C11—C211.482 (7)C1—N21.308 (11)
C21—H21A0.9600C1—N11.325 (11)
C21—H21B0.9600C1—C41.510 (12)
C21—H21C0.9600C2—C31.366 (12)
O12—C121.237 (7)C2—N21.397 (11)
O22—C121.290 (7)C2—H20.9300
C12—C221.487 (7)C3—N11.346 (13)
C22—H22A0.9600C3—H30.9300
C22—H22B0.9600C4—H4A0.9600
C22—H22C0.9600C4—H4B0.9600
O13—C131.258 (6)C4—H4C0.9600
C13—O13i1.258 (6)N1—H1N0.8600
C13—C231.484 (9)N2—H2N0.8600
C23—H23A0.9600Fe1—Fe1i3.298 (2)
C23—H23B0.9600Fe1—Fe23.321 (2)
C23—H23C0.9600
O1—Fe1—O1498.2 (2)H22A—C22—H22C109.5
O1—Fe1—O2198.7 (2)H22B—C22—H22C109.5
O14—Fe1—O21162.9 (2)C13—O13—Fe1134.2 (4)
O1—Fe1—O2296.7 (2)O13i—C13—O13122.4 (7)
O14—Fe1—O2290.0 (2)O13i—C13—C23118.7 (3)
O21—Fe1—O2290.9 (2)O13—C13—C23118.7 (3)
O1—Fe1—O1392.1 (2)C13—C23—H23A109.5
O14—Fe1—O1389.4 (2)C13—C23—H23B109.5
O21—Fe1—O1387.1 (2)H23A—C23—H23B109.5
O22—Fe1—O13171.2 (2)C13—C23—H23C109.5
O1—Fe1—O1W175.0 (2)H23A—C23—H23C109.5
O14—Fe1—O1W81.2 (2)H23B—C23—H23C109.5
O21—Fe1—O1W81.75 (19)C14—O14—Fe1133.5 (5)
O22—Fe1—O1W88.29 (19)O14—C14—O14i123.8 (7)
O13—Fe1—O1W82.94 (19)O14—C14—C24118.1 (4)
O1—Fe2—O15178.9 (3)O14i—C14—C24118.1 (4)
O1—Fe2—O1192.80 (18)C14—C24—H24A109.5
O15—Fe2—O1187.96 (18)C14—C24—H24B109.5
O1—Fe2—O11i92.80 (18)H24A—C24—H24B109.5
O15—Fe2—O11i87.96 (18)C14—C24—H24C109.5
O11—Fe2—O11i92.3 (3)H24A—C24—H24C109.5
O1—Fe2—O12i92.32 (18)H24B—C24—H24C109.5
O15—Fe2—O12i86.89 (18)C15—O15—Fe2137.3 (5)
O11—Fe2—O12i174.24 (19)O25—C15—O15119.1 (7)
O11i—Fe2—O12i90.08 (19)O25—C15—C25120.8 (8)
O1—Fe2—O1292.32 (18)O15—C15—C25120.2 (8)
O15—Fe2—O1286.89 (18)C15—C25—H25A109.5
O11—Fe2—O1290.08 (19)C15—C25—H25B109.5
O11i—Fe2—O12174.24 (19)H25A—C25—H25B109.5
O12i—Fe2—O1287.1 (3)C15—C25—H25C109.5
Fe1—O1—Fe1i121.0 (3)H25A—C25—H25C109.5
Fe1—O1—Fe2119.50 (15)H25B—C25—H25C109.5
Fe1i—O1—Fe2119.50 (15)N2—C1—N1106.4 (8)
C11—O11—Fe2136.3 (4)N2—C1—C4126.2 (8)
C11—O21—Fe1132.2 (4)N1—C1—C4127.4 (9)
O21—C11—O11123.4 (6)C3—C2—N2103.8 (9)
O21—C11—C21118.0 (6)C3—C2—H2128.1
O11—C11—C21118.6 (6)N2—C2—H2128.1
C11—C21—H21A109.5N1—C3—C2107.6 (10)
C11—C21—H21B109.5N1—C3—H3126.2
H21A—C21—H21B109.5C2—C3—H3126.2
C11—C21—H21C109.5C1—C4—H4A109.5
H21A—C21—H21C109.5C1—C4—H4B109.5
H21B—C21—H21C109.5H4A—C4—H4B109.5
C12—O12—Fe2136.3 (4)C1—C4—H4C109.5
C12—O22—Fe1128.9 (4)H4A—C4—H4C109.5
O12—C12—O22125.2 (5)H4B—C4—H4C109.5
O12—C12—C22117.6 (5)C1—N1—C3110.9 (9)
O22—C12—C22117.2 (5)C1—N1—H1N124.6
C12—C22—H22A109.5C3—N1—H1N124.6
C12—C22—H22B109.5C1—N2—C2111.3 (8)
H22A—C22—H22B109.5C1—N2—H2N124.4
C12—C22—H22C109.5C2—N2—H2N124.4
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
REMOVE—*···*The following lines beginning with REMOVE are dummy ???
REMOVE—*···*lines included so as to systematize the symmetry codes???
REMOVE—*···*in Table 4 and Figure 4 ???
REMOVE—*···*They are expected to be removed by the Editor at the ???
REMOVE—*···*final edition stage. Thanks. RB. ???
REMOVE—X···XiDummy line to be removed!!!! ???
REMOVE—X···XiiDummy line to be removed!!!! ???
REMOVE—*···*******************************************************???
N2—H2N···Cl10.862.243.094 (13)174
O2W···Cl1??3.315 (9)?
O1W···Cl1??3.323 (8)?
O1W···O2Wiii??2.651 (11)?
O2W···O13??2.910 (13)?
N1—H1N···O15iv0.862.032.826 (12)154
N1—H1N···O25iv0.862.383.132 (12)146
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+1/2, z; (iii) x+1/2, y+1, z+1/2; (iv) x, y+1, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Fe4(C2H3O2)7O2(C10H9N3)2(H2O)]Cl·1.25C2H6O·H2O(C4H7N2)[Fe3(C2H3O2)7O(H2O)2]Cl·2H2O
Mr1140.18787.49
Crystal system, space groupMonoclinic, P21/nOrthorhombic, Pnma
Temperature (K)295295
a, b, c (Å)16.044 (4), 17.619 (4), 17.942 (5)32.147 (6), 12.048 (2), 8.0652 (16)
α, β, γ (°)90, 91.571 (5), 9090, 90, 90
V3)5070 (2)3123.6 (11)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.251.54
Crystal size (mm)0.23 × 0.15 × 0.080.26 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Multi-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.79, 0.900.68, 0.73
No. of measured, independent and
observed [I > 2σ(I)] reflections
8964, 8964, 4931 5673, 2877, 1584
Rint0.0720.079
(sin θ/λ)max1)0.5980.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.160, 1.01 0.069, 0.223, 1.01
No. of reflections89642877
No. of parameters635225
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0623P)2]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0993P)2 + 17.3868P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.48, 0.500.89, 0.79

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2000), SAINT-NT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL-NT (Bruker, 2000), SHELXL97.

Selected bond lengths (Å) for (I) top
Fe1—O11.933 (4)Fe3—O142.041 (5)
Fe1—O21.956 (5)Fe3—N122.176 (6)
Fe1—O191.971 (5)Fe3—N222.198 (5)
Fe1—O231.996 (5)Fe4—O21.915 (4)
Fe1—O262.044 (5)Fe4—O11.986 (5)
Fe1—O282.082 (4)Fe4—O272.000 (5)
Fe2—O11.820 (4)Fe4—O252.006 (5)
Fe2—O162.024 (5)Fe4—O1W2.054 (5)
Fe2—O172.028 (5)Fe4—O242.055 (5)
Fe2—O182.035 (4)Fe1—Fe23.3335 (16)
Fe2—N212.145 (5)Fe1—Fe33.4134 (16)
Fe2—N112.175 (5)Fe1—Fe42.9243 (16)
Fe3—O21.828 (4)Fe2—Fe43.4199 (17)
Fe3—O132.016 (5)Fe3—Fe43.2990 (16)
Fe3—O152.021 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N31—H31N···Cl1i0.862.483.221 (6)145
N32—H32N···Cl1ii0.862.453.246 (6)154
O1W···O29??2.534 (9)?
O1W···O1B??2.618 (10)?
O2W···O29??2.765 (10)?
O2W···Cl1??3.196 (8)?
O1A···Cl1??3.313 (15)?
O1B···O2W??2.774 (11)?
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2.
Selected bond lengths (Å) for (II) top
Fe1—O11.894 (3)Fe2—O11.950 (6)
Fe1—O141.996 (5)Fe2—O151.988 (6)
Fe1—O212.009 (5)Fe2—O112.029 (5)
Fe1—O222.009 (5)Fe2—O122.042 (5)
Fe1—O132.062 (5)Fe1—Fe1i3.298 (2)
Fe1—O1W2.118 (5)Fe1—Fe23.321 (2)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
REMOVE—*···*The following lines beginning with REMOVE are dummy ???
REMOVE—*···*lines included so as to systematize the symmetry codes???
REMOVE—*···*in Table 4 and Figure 4 ???
REMOVE—*···*They are expected to be removed by the Editor at the ???
REMOVE—*···*final edition stage. Thanks. RB. ???
REMOVE—X···XiDummy line to be removed!!!! ???
REMOVE—X···XiiDummy line to be removed!!!! ???
REMOVE—*···*******************************************************???
N2—H2N···Cl10.862.243.094 (13)174
O2W···Cl1??3.315 (9)?
O1W···Cl1??3.323 (8)?
O1W···O2Wiii??2.651 (11)?
O2W···O13??2.910 (13)?
N1—H1N···O15iv0.862.032.826 (12)154
N1—H1N···O25iv0.862.383.132 (12)146
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+1/2, z; (iii) x+1/2, y+1, z+1/2; (iv) x, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds