Download citation
Download citation
link to html
In diaqua­tetra-μ-acetamidato-κ4N:O4O:N-di­rhodium(II,III) hexa­fluoro­phosphate, [Rh2(C2H4NO)4(H2O)2]PF6, and diaqua­tetra-μ-acetamidato-κ4N:O4O:N-di­rho­dium(II,III)hexa­fluoro­phosphate dihydrate, [Rh2(C2H4NO)4(H2O)2]PF6·2H2O, the cations and anions lie on inversion centers. Diaqua­tetra-μ-propionamidato-κ4N:O4O:N-dirhodium(II,III) hexa­fluoro­phosphate dihydrate, [Rh2(C3H6NO)4(H2O)2]PF6·2H2O, and diaqua­tetra-μ-butyramidato-κ4N:O4O:N-dirhodium(II,III) hexa­fluoro­phosphate, [Rh2(C4H8NO)4(H2O)2]PF6, crystallize with two crystallographically independent complexes that lie on inversion centers. In all of the structures, the dirhodium units are hydrogen bonded to one another. The hydrogen-bonded networks vary with the alkyl substituents.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106018531/fa3015sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106018531/fa3015Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106018531/fa3015IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106018531/fa3015IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106018531/fa3015IVsup5.hkl
Contains datablock IV

CCDC references: 616107; 616108; 616109; 616110

Comment top

Amidate-bridged paddlewheel complexes are useful modules in making assembled structures, because they have hydrogen-donating NH and hydrogen-accepting O sites in addition to the axial coordination sites. We have studied assembled complexes of acetamidate-bridged paddlewheel dirhodium complexes with halide linkers, namely one-dimensional chain structures of [Rh2(acam)4(µ-X)].nH2O (Hacam is acetamide; X = Cl, Br and I; n = 0, 2, 3 and 7; Yang et al., 2000, 2001), a two-dimensional honeycomb structure of [{Rh2(acam)4}33-Cl)2]·4H2O (Takazaki et al., 2003) and a three-dimensional diamondoid structure of [{Rh2(acam)4}24-I)]·6H2O (Fuma et al., 2004). In all these structures, direct hydrogen bonds between the NH groups and O atoms of the amidate ligands play an important role in constructing the structures. In the crystals with water of crystallization, hydrogen bonds between the amidate ligands and water molecules affect the physical properties (Fuma et al., 2004). We have also reported anionic chain structures of the dirhodium complexes with tetrachloroplatinate and tetrachloropalladate linkers, [Rh2(acam)4(H2O)2][Rh2(acam)4(µ-MCl4)]·2H2O (M = Pd and Pt; Yang et al., 2006). In these structures, the cationic complex [Rh2(acam)4(H2O)2]+ participates in hydrogen-bonding networks using the bridging amidate and axial aqua ligands. In this paper, we report a variation of hydrogen-bonding networks in the hexafluorophosphate salts of amidate-bridged dirhodium complexes, [Rh2(acam)4(H2O)2]PF6, (I), [Rh2(acam)4(H2O)2]PF6·2H2O, (II), [Rh2(pram)4(H2O)2]PF6·2H2O (Hpram is propionamide), (III), and [Rh2(buam)4(H2O)2]PF6 (Hbuam is butyramide), (IV).

The structure of (I) is shown in Fig. 1. Compound (I) is isostructural with [Rh2(acam)4(H2O)2]ClO4 (Baranovskii et al., 1986). The dirhodium complex lies around an inversion center, (1/2, 1/2, 1/2). The hexafluorophosphate ion lies on another inversion center, (1/2, 0, 0). The complex is the so-called (2,2)-cis isomer, in which each Rh atom is coordinated by two cis N and two cis O atoms. The complexes form a hydrogen-bonded chain along the b axis, with the axial aqua ligand (O3) donating an H atom to one of the amidate O atoms (O2ii) [symmetry code: (ii) x, y − 1, z] (Table 2 and Fig. 2). The complexes also form hydrogen bonds between amidate atom N2 and amidate atom O1iii [symmetry code: (iii) x + 1, y, z]. These hydrogen bonds connect the complexes two-dimensionally in the ab plane. The hexafluorophosphate ion is also hydrogen bonded from the amidate (N1) and axial aqua ligand, and these connect the hydrogen-bonding sheets three-dimensionally. In this structure, all the N and O atoms are included in the hydrogen-bonding network.

The structure of (II) is shown in Fig. 3. In this structure, there is one independent complex on an inversion center, (1/2, 1/2, 1/2), that has an equivalent site (1/2, 0, 0). The hexafluorophosphate ion lies on another inversion center, (0, 1/2, 0), that has an equivalent site (0, 0, 1/2) and one water molecule at the general position. The crystal structure is shown in Fig. 4. In compound (II), two aqua ligands, two amidate N atoms and four amidate O atoms are used for direct hydrogen bonding between the complexes, the same as in (I), but the network structure is different from that in (I). The complex donates an H atom of the axial aqua ligand (O3) to the amidate atom O2ii [symmetry code: (ii) −x + 1, y + 1/2, −z + 3/2]. The complex also donates the amin H atom of N2 to the amidate oxygen atom (O1ii). The resulting two-dimensional sheet structure is extended in the bc plane. The aqua ligand (O3) and amide atom N1 also hydrogen bond to water molecules (O4 and O4iii) [symmetry code: (iii) x, −y + 3/2, z + 1/2]. The water molecule (O4) donates H atoms to F atoms of the hexafluorophosphate ions F1 and F1iii. The water molecule and the hexafluorophosphate ion then connect the hydrogen-bonding sheets.

The structure of (III) is shown in Fig. 5. In the unit cell there are two independent dirhodium complexes that lie around inversion centers, (1/2, 1/2, 1/2) and (0, 1/2, 0). Two independent water molecules are also included. The hydrogen-bonding network in (III) is shown in Fig. 6. There is only one hydrogen bond that directly connects the complexes in (III); the aqua ligand O6 hydrogen bonds to the amidate atom O2i [symmetry code: (i) −x, 1 − y, −z]. The resulting one-dimensional hydrogen-bonding chain extends in the [111] direction. The water molecules connect the chains two-dimensionally. One water molecule (O7) acts as a hydrogen-bond donor to atom O4ii [symmetry code: (ii) −x + 1, −y + 1, −z + 1] and accepts hydrogen bonds from N2iii and O5iii [symmetry code: (iii) −x + 1, −y + 1, −z]. The other water molecule (O8) acts as a donor to atom O1v [symmetry code: (v) x + 1, y, z] and an acceptor from atoms O5 and O6. Hydrogen bonds to the F atoms of the hexafluorophosphate ion also exist.

The structure of (IV) is shown in Fig. 7. Compound (IV) also has two independent dirhodium complexes in the unit cell. One complex lies on an inversion center at (1/2, 1/2, 1/2) and the other on another inversion center at (1/2, 1/2, 0). The two independent complexes are hydrogen bonded to each other (Table 8 and Fig. 8). Axial aqua ligands of both complexes act as donors to the O atoms of the neighboring complexes [O5 to O4ii and O6 to O2i; symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x + 1, −y + 1, −z + 1]. Amidate atom N3 acts as a donor to amidate atom O1i. These hydrogen bonds connect the complexes into a one-dimensional chain in the c direction. The hexafluorophosphate ion accepts hydrogen bonds from atoms N4 and O6 and from N1iv and O5iv [symmetry code: (iv) x, y + 1, z]. The anion thus connects the chains two-dimensionally.

Experimental top

[Rh2(acam)4(H2O)2]·6H2O was synthesized according to a published method (Doyle et al., 1990). Compounds (I) and (II) were prepared by a modification of the method of Baranovskii et al. (1986) for [Rh2(acam)4(H2O)2]ClO4. To an aqueous solution (50 ml) of [Rh2(acam)4(H2O)2]·6H2O (0.751 g, 1.29 mmol) at 353 K, Ag2SO4 (0.200 g, 0.64 mmol) was added and the mixture was stirred for 10 min. The solution was cooled to 273 K and the precipitate was filtered off. NH4PF6 (10.1 g, 62.1 mmol) was added to the brown filtrate and left for 20 h to give brown crystals of (II) (yield 0.612 g, 72%). The crystals gradually lost their water of crystallization. The crystals of (I) were obtained by slow evaporation of an aqueous solution of (II). Analysis calculated for C8H20F6N4O6PRh2: C 15.52, H 3.26, N 9.05%; found: C 15.42, H 3.12, N 8.74%. Compound (III) was prepared in a similar manner to (II). [Rh2(CH3CO2)4(CH3OH)2] (0.515 g, 1.02 mmol) was heated at 363 K for 1 h under reduced pressure. An excess of propionamide (3.60 g, 49.3 mmol) and toluene (76 ml) were added to it. The suspension of the mixture was refluxed for seven days under an Ar atmosphere equipped with a Soxhlet extractor in which the extraction thimble contained sodium carbonate and molecular sieves (3 Å). The resulting blue–purple solution was distilled to remove the solvent and amide. The residual amide was sublimed from the resulting blue–purple powder. An aqueous solution (60 ml) of Ag2SO4 (0.16 g, 0.51 mmol) was added and stirred for 12 h at 323 K. A gray precipitate was filtered off, and NH4PF6 (10.5 g, 64.5 mmol) was added. After the solution had been left to stand for several days, X-ray quality crystals of (III) were obtained (yield 0.318 g, 44%). Analysis calculated for C12H32F6N4O8PRh2: C 20.27, H 4.54, N 7.88%; found: C 20.05, H 4.25, N 7.77%. Compound (IV) was also prepared in a similar manner to (II). Starting from [Rh2(CH3CO2)4(CH3OH)2] (0.502 g, 0.992 mmol) and butyramide (3.35 g, 35.2 mmol), a brown powder of (IV) was obtained (0.291 g, 40%). X-ray quality crystals were obtained by slow diffusion of n-hexane into a dichloromethane solution. Analysis calculated for C16H36F6N4O6PRh2: C 26.28, H 4.96, N 7.66%; found: C 26.51, H 4.89, N 8.06%.

Refinement top

One ethyl group in (III) is disordered. Atoms C11 and C12 were refined with isotropic displacement parameters by splitting at two sites with the occupancies of the two sets of atoms, A and B, as 0.50. In (IV), one disordered methyl C atom, C16, was refined by splitting at two sites with the occupancies as 0.75 and 1/4, respectively. Four of the six F atoms in (IV) are also disordered. Atoms F3, F4, F5 and F6 were refined by splitting at two sites with the occupancies of the two sets of atoms, A and B, as 0.60 and 0.40, respectively. H atoms on O atoms were refined freely. All other H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.98–0.99 Å and N—H distances of 0.88 Å.

Computing details top

For all compounds, data collection: CrystalClear (Molecular Structure Corporation & Rigaku Corporation, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal structure of (I). For clarity, H atoms of methyl groups have been omitted. Hydrogen bonds between the rhodium complexes are drawn as thin lines and the other hydrogen bonds as dashed lines. [Symmetry codes: (i) x, y − 1, z; (ii) 1 + x, y, z.]
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The crystal structure of (II). For clarity, H atoms of methyl groups have been omitted. Hydrogen bonds between the rhodium complexes are drawn as thin lines and the other hydrogen bonds as dashed lines. [Symmetry codes: (i) 1 − x, 1/2 + y, 3/2 − z; (ii) x, 3/2 − y, 1/2 + z; (iii) 1 − x, −1/2 + y, 3/2 − z.]
[Figure 5] Fig. 5. The molecular structure of (III), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The minor disorder components are shown with dashed lines.
[Figure 6] Fig. 6. The crystal structure of (III). For clarity, the minor components of the disordered atoms and H atoms of ethyl groups have been omitted. Hydrogen bonds between the rhodium complexes are drawn as thin lines and the other hydrogen bonds as dashed lines. [Symmetry codes: (i) 1 − x, 1 − y, −z; (ii) −x, 1 − y, −z; (iii) 1 − x, 1 − y, 1 − z; (iv) x − 1, 1 + y, z; (v) 1 + x, y, z.]
[Figure 7] Fig. 7. The molecular structure of (IV), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The minor disorder components are shown with dashed lines.
[Figure 8] Fig. 8. The crystal structure of (IV). For clarity, the minor components of the disordered atoms and H atoms of propyl groups have been omitted. Hydrogen bonds between the rhodium complexes are drawn as thin lines and the other hydrogen bonds as dashed lines. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, y − 1, z; (iii) 1 − x, 1 − y, −z; (iv) x, 1 + y, z.]
(I) diaquatetra-µ-acetamidato-κ4N:O;κ4O:N-dirhodium(II,III) hexafluorophosphate top
Crystal data top
[Rh2(C2H4NO)4(H2O)2]PF6Z = 1
Mr = 619.07F(000) = 303
Triclinic, P1Dx = 2.226 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 6.631 (3) ÅCell parameters from 1576 reflections
b = 7.719 (4) Åθ = 3.5–27.5°
c = 9.645 (4) ŵ = 1.97 mm1
α = 92.014 (5)°T = 118 K
β = 92.205 (5)°Platelet, brown
γ = 110.471 (7)°0.10 × 0.10 × 0.03 mm
V = 461.6 (4) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2096 independent reflections
Graphite monochromator1903 reflections with I > 2σ(I)
Detector resolution: 14.62 pixels mm-1Rint = 0.026
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: integration
(NUMABS; Higashi, 1999)
h = 88
Tmin = 0.751, Tmax = 0.940k = 107
3818 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0246P)2 + 0.4628P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2096 reflectionsΔρmax = 0.48 e Å3
133 parametersΔρmin = 0.64 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0080 (14)
Crystal data top
[Rh2(C2H4NO)4(H2O)2]PF6γ = 110.471 (7)°
Mr = 619.07V = 461.6 (4) Å3
Triclinic, P1Z = 1
a = 6.631 (3) ÅMo Kα radiation
b = 7.719 (4) ŵ = 1.97 mm1
c = 9.645 (4) ÅT = 118 K
α = 92.014 (5)°0.10 × 0.10 × 0.03 mm
β = 92.205 (5)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2096 independent reflections
Absorption correction: integration
(NUMABS; Higashi, 1999)
1903 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.940Rint = 0.026
3818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.48 e Å3
2096 reflectionsΔρmin = 0.64 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.57195 (4)0.38189 (3)0.46797 (2)0.00767 (10)
N10.3919 (4)0.3470 (3)0.2932 (3)0.0112 (5)
H10.39130.25890.23260.013*
O10.2539 (3)0.5704 (3)0.3481 (2)0.0107 (4)
N20.8082 (4)0.5800 (3)0.3886 (3)0.0102 (5)
H20.91450.55110.35490.012*
O20.6732 (3)0.8068 (3)0.4369 (2)0.0100 (4)
O30.7148 (4)0.1685 (3)0.3915 (3)0.0147 (5)
H30.705 (6)0.154 (5)0.314 (4)0.022*
H40.690 (6)0.064 (6)0.410 (4)0.022*
C10.2743 (5)0.4465 (4)0.2623 (3)0.0114 (6)
C20.1560 (5)0.4228 (5)0.1224 (3)0.0180 (7)
H50.00860.41930.13480.027*
H60.15140.30680.07530.027*
H70.23100.52690.06610.027*
C30.8175 (5)0.7519 (4)0.3825 (3)0.0103 (6)
C40.9905 (5)0.8888 (4)0.3087 (3)0.0147 (6)
H80.93090.91210.21970.022*
H91.10580.83980.29210.022*
H101.04901.00480.36570.022*
P10.50000.00000.00000.0155 (2)
F10.6361 (3)0.1854 (3)0.0930 (2)0.0263 (5)
F20.5098 (4)0.1187 (3)0.1327 (2)0.0334 (5)
F30.2813 (3)0.0270 (3)0.0398 (2)0.0338 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.00802 (13)0.00665 (13)0.00928 (13)0.00371 (9)0.00082 (8)0.00067 (8)
N10.0119 (12)0.0104 (12)0.0108 (12)0.0035 (10)0.0002 (10)0.0018 (10)
O10.0096 (10)0.0110 (10)0.0119 (10)0.0043 (8)0.0001 (8)0.0008 (8)
N20.0082 (11)0.0111 (12)0.0124 (12)0.0046 (10)0.0018 (10)0.0009 (10)
O20.0110 (10)0.0095 (10)0.0110 (10)0.0050 (8)0.0035 (8)0.0023 (8)
O30.0220 (12)0.0105 (11)0.0153 (11)0.0097 (10)0.0056 (10)0.0024 (9)
C10.0090 (14)0.0113 (14)0.0123 (14)0.0014 (12)0.0001 (11)0.0027 (11)
C20.0215 (17)0.0207 (17)0.0133 (15)0.0099 (14)0.0037 (13)0.0004 (13)
C30.0099 (14)0.0106 (14)0.0091 (14)0.0023 (11)0.0011 (11)0.0006 (11)
C40.0146 (15)0.0119 (14)0.0179 (16)0.0045 (12)0.0046 (13)0.0030 (12)
P10.0169 (6)0.0168 (6)0.0119 (5)0.0045 (5)0.0038 (5)0.0014 (4)
F10.0277 (11)0.0227 (11)0.0206 (11)0.0004 (9)0.0024 (9)0.0076 (9)
F20.0461 (14)0.0289 (12)0.0194 (11)0.0056 (11)0.0016 (10)0.0075 (9)
F30.0216 (11)0.0412 (13)0.0399 (13)0.0135 (10)0.0068 (10)0.0114 (11)
Geometric parameters (Å, º) top
Rh1—Rh1i2.4085 (10)O3—H40.80 (4)
Rh1—O1i2.029 (2)C1—C21.507 (4)
Rh1—O2i2.040 (2)C2—H50.9800
Rh1—O32.284 (2)C2—H60.9800
Rh1—N11.983 (3)C2—H70.9800
Rh1—N21.969 (3)C3—C41.486 (4)
N1—C11.305 (4)C4—H80.9800
N1—H10.8800C4—H90.9800
O1—C11.290 (3)C4—H100.9800
N2—C31.311 (4)P1—F21.591 (2)
N2—H20.8800P1—F31.594 (2)
O2—C31.295 (3)P1—F11.616 (2)
O3—H30.75 (4)
N2—Rh1—N190.78 (11)O1—C1—C2116.4 (2)
N2—Rh1—O1i89.50 (10)N1—C1—C2121.2 (3)
N1—Rh1—O1i176.04 (8)C1—C2—H5109.5
N2—Rh1—O2i175.07 (8)C1—C2—H6109.5
N1—Rh1—O2i91.67 (10)H5—C2—H6109.5
O1i—Rh1—O2i87.75 (9)C1—C2—H7109.5
N2—Rh1—O390.09 (10)H5—C2—H7109.5
N1—Rh1—O391.48 (9)H6—C2—H7109.5
O1i—Rh1—O392.47 (8)O2—C3—N2121.3 (3)
O2i—Rh1—O394.13 (9)O2—C3—C4117.8 (2)
N2—Rh1—Rh1i86.58 (7)N2—C3—C4120.9 (2)
N1—Rh1—Rh1i85.73 (7)C3—C4—H8109.5
O1i—Rh1—Rh1i90.35 (6)C3—C4—H9109.5
O2i—Rh1—Rh1i89.33 (6)H8—C4—H9109.5
O3—Rh1—Rh1i175.62 (7)C3—C4—H10109.5
C1—N1—Rh1124.1 (2)H8—C4—H10109.5
C1—N1—H1117.9H9—C4—H10109.5
Rh1—N1—H1117.9F2ii—P1—F2180.00 (16)
C1—O1—Rh1i117.31 (18)F2ii—P1—F389.77 (12)
C3—N2—Rh1124.32 (19)F2—P1—F390.23 (12)
C3—N2—H2117.8F3—P1—F3ii180.0
Rh1—N2—H2117.8F2ii—P1—F189.49 (11)
C3—O2—Rh1i118.31 (18)F2—P1—F190.51 (11)
Rh1—O3—H3112 (3)F3—P1—F189.89 (11)
Rh1—O3—H4131 (3)F3ii—P1—F190.11 (11)
H3—O3—H498 (4)F1—P1—F1ii180.00 (11)
O1—C1—N1122.4 (3)
N2—Rh1—N1—C183.8 (2)Rh1i—O1—C1—N13.7 (4)
O2i—Rh1—N1—C191.9 (2)Rh1i—O1—C1—C2175.8 (2)
O3—Rh1—N1—C1173.9 (2)Rh1—N1—C1—O14.6 (4)
Rh1i—Rh1—N1—C12.7 (2)Rh1—N1—C1—C2174.8 (2)
N1—Rh1—N2—C381.3 (2)Rh1i—O2—C3—N20.3 (4)
O1i—Rh1—N2—C394.8 (2)Rh1i—O2—C3—C4177.7 (2)
O3—Rh1—N2—C3172.7 (2)Rh1—N2—C3—O23.9 (4)
Rh1i—Rh1—N2—C34.4 (2)Rh1—N2—C3—C4174.0 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H4···O2iii0.80 (4)1.97 (4)2.760 (3)170 (4)
O3—H3···F10.75 (4)2.20 (4)2.924 (3)162 (4)
N1—H1···F10.882.353.064 (3)138
N1—H1···F30.882.443.285 (3)162
N2—H2···O1iv0.882.213.022 (3)154
Symmetry codes: (iii) x, y1, z; (iv) x+1, y, z.
(II) diaquatetra-µ-acetamidato-κ4N:O;κ4O:N-dirhodium(II,III) hexafluorophosphate dihydrate top
Crystal data top
[Rh2(C2H4NO)4(H2O)2]PF6·2H2OF(000) = 646
Mr = 655.10Dx = 2.152 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 3400 reflections
a = 11.6900 (17) Åθ = 3.2–27.5°
b = 11.5700 (13) ŵ = 1.81 mm1
c = 7.9800 (13) ÅT = 118 K
β = 110.510 (6)°Block, brown
V = 1010.9 (3) Å30.30 × 0.30 × 0.15 mm
Z = 2
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2308 independent reflections
Graphite monochromator2208 reflections with I > 2σ(I)
Detector resolution: 14.62 pixels mm-1Rint = 0.026
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: integration
(NUMABS; Higashi, 1999)
h = 1512
Tmin = 0.712, Tmax = 0.828k = 1512
7888 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0199P)2 + 1.4706P]
where P = (Fo2 + 2Fc2)/3
2308 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Rh2(C2H4NO)4(H2O)2]PF6·2H2OV = 1010.9 (3) Å3
Mr = 655.10Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.6900 (17) ŵ = 1.81 mm1
b = 11.5700 (13) ÅT = 118 K
c = 7.9800 (13) Å0.30 × 0.30 × 0.15 mm
β = 110.510 (6)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2308 independent reflections
Absorption correction: integration
(NUMABS; Higashi, 1999)
2208 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.828Rint = 0.026
7888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.48 e Å3
2308 reflectionsΔρmin = 0.60 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.455494 (16)0.594804 (16)0.48006 (2)0.00878 (7)
N10.30983 (18)0.51921 (19)0.5034 (3)0.0126 (4)
H10.24700.56290.49760.015*
O10.39136 (15)0.33911 (15)0.5480 (2)0.0125 (4)
N20.53624 (18)0.61223 (19)0.7411 (3)0.0120 (4)
H20.52900.67910.78890.014*
O20.61337 (16)0.43007 (16)0.7904 (2)0.0125 (4)
O30.37215 (18)0.77161 (16)0.4414 (3)0.0158 (4)
H30.370 (3)0.818 (3)0.535 (5)0.032 (10)*
H40.309 (4)0.778 (4)0.364 (6)0.039 (11)*
C10.3017 (2)0.4083 (2)0.5267 (3)0.0126 (5)
C20.1850 (2)0.3545 (3)0.5276 (4)0.0197 (6)
H50.14490.31430.41390.030*
H60.13080.41490.54300.030*
H70.20320.29910.62640.030*
C30.5994 (2)0.5319 (2)0.8476 (3)0.0114 (5)
C40.6575 (2)0.5537 (2)1.0446 (3)0.0144 (5)
H80.62940.49541.11050.022*
H90.63460.63081.07270.022*
H100.74660.54901.07920.022*
O40.1546 (2)0.8112 (2)0.1609 (3)0.0278 (5)
H110.131 (4)0.757 (5)0.115 (7)0.058 (17)*
H120.116 (5)0.840 (5)0.214 (7)0.070 (17)*
P10.00000.50000.00000.0197 (2)
F10.07901 (17)0.59909 (17)0.0516 (3)0.0354 (5)
F20.12194 (17)0.43281 (19)0.1082 (3)0.0377 (5)
F30.0082 (2)0.5694 (2)0.1758 (3)0.0399 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01300 (10)0.00600 (11)0.00798 (11)0.00051 (7)0.00449 (7)0.00004 (7)
N10.0125 (9)0.0136 (11)0.0130 (11)0.0003 (8)0.0058 (8)0.0003 (9)
O10.0160 (8)0.0082 (9)0.0146 (9)0.0010 (7)0.0069 (7)0.0002 (7)
N20.0166 (10)0.0088 (10)0.0109 (10)0.0004 (8)0.0051 (8)0.0012 (8)
O20.0176 (8)0.0102 (9)0.0093 (9)0.0008 (7)0.0042 (7)0.0009 (7)
O30.0208 (9)0.0105 (9)0.0136 (9)0.0046 (7)0.0031 (8)0.0014 (8)
C10.0146 (11)0.0149 (13)0.0085 (12)0.0017 (9)0.0043 (9)0.0005 (10)
C20.0188 (13)0.0206 (15)0.0210 (15)0.0040 (11)0.0084 (11)0.0015 (12)
C30.0135 (11)0.0113 (12)0.0112 (12)0.0019 (9)0.0065 (9)0.0005 (10)
C40.0199 (12)0.0114 (12)0.0114 (12)0.0009 (9)0.0050 (10)0.0008 (10)
O40.0229 (11)0.0304 (14)0.0288 (13)0.0022 (10)0.0075 (10)0.0049 (11)
P10.0199 (5)0.0217 (6)0.0185 (5)0.0020 (4)0.0081 (4)0.0005 (4)
F10.0353 (10)0.0329 (11)0.0428 (12)0.0094 (8)0.0196 (9)0.0041 (9)
F20.0276 (9)0.0475 (13)0.0378 (12)0.0100 (9)0.0112 (8)0.0156 (10)
F30.0527 (12)0.0429 (13)0.0283 (11)0.0055 (10)0.0195 (9)0.0118 (10)
Geometric parameters (Å, º) top
Rh1—Rh1i2.4010 (4)C1—C21.502 (3)
Rh1—O1i2.0299 (17)C2—H50.9800
Rh1—O2i2.0425 (18)C2—H60.9800
Rh1—O32.2402 (19)C2—H70.9800
Rh1—N11.980 (2)C3—C41.499 (3)
Rh1—N21.973 (2)C4—H80.9800
N1—C11.305 (3)C4—H90.9800
N1—H10.8800C4—H100.9800
O1—C11.282 (3)O4—H110.72 (5)
N2—C31.301 (3)O4—H120.80 (6)
N2—H20.8800P1—F21.5873 (18)
O2—C31.294 (3)P1—F31.590 (2)
O3—H30.93 (4)P1—F11.6135 (18)
O3—H40.78 (4)
N2—Rh1—N193.15 (9)O1—C1—C2116.3 (2)
N2—Rh1—O1i87.93 (8)N1—C1—C2121.3 (2)
N1—Rh1—O1i175.85 (8)C1—C2—H5109.5
N2—Rh1—O2i174.67 (8)C1—C2—H6109.5
N1—Rh1—O2i90.20 (8)H5—C2—H6109.5
O1i—Rh1—O2i88.44 (7)C1—C2—H7109.5
N2—Rh1—O394.36 (8)H5—C2—H7109.5
N1—Rh1—O393.98 (8)H6—C2—H7109.5
O1i—Rh1—O389.93 (7)O2—C3—N2122.2 (2)
O2i—Rh1—O389.53 (7)O2—C3—C4117.2 (2)
N2—Rh1—Rh1i85.91 (6)N2—C3—C4120.6 (2)
N1—Rh1—Rh1i86.04 (7)C3—C4—H8109.5
O1i—Rh1—Rh1i90.04 (5)C3—C4—H9109.5
O2i—Rh1—Rh1i90.19 (5)H8—C4—H9109.5
O3—Rh1—Rh1i179.73 (5)C3—C4—H10109.5
C1—N1—Rh1123.76 (17)H8—C4—H10109.5
C1—N1—H1118.1H9—C4—H10109.5
Rh1—N1—H1118.1H11—O4—H12116 (5)
C1—O1—Rh1i117.52 (16)F2ii—P1—F2180.0
C3—N2—Rh1124.66 (18)F2ii—P1—F389.89 (12)
C3—N2—H2117.7F2—P1—F390.11 (12)
Rh1—N2—H2117.7F3—P1—F3ii180.0
C3—O2—Rh1i116.71 (16)F2—P1—F1ii89.91 (10)
Rh1—O3—H3123 (2)F3—P1—F1ii89.81 (11)
Rh1—O3—H4116 (3)F2—P1—F190.09 (10)
H3—O3—H4107 (4)F3—P1—F190.19 (11)
O1—C1—N1122.4 (2)F1ii—P1—F1180.0
N2—Rh1—N1—C186.6 (2)Rh1i—O1—C1—N15.9 (3)
O2i—Rh1—N1—C189.2 (2)Rh1i—O1—C1—C2173.31 (17)
O3—Rh1—N1—C1178.8 (2)Rh1—N1—C1—O14.5 (4)
Rh1i—Rh1—N1—C10.9 (2)Rh1—N1—C1—C2174.64 (19)
N1—Rh1—N2—C383.1 (2)Rh1i—O2—C3—N25.5 (3)
O1i—Rh1—N2—C392.9 (2)Rh1i—O2—C3—C4175.63 (16)
O3—Rh1—N2—C3177.4 (2)Rh1—N2—C3—O21.3 (3)
Rh1i—Rh1—N2—C32.7 (2)Rh1—N2—C3—C4179.89 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2iii0.93 (4)1.86 (4)2.778 (3)168 (3)
O3—H4···O40.78 (4)2.00 (4)2.774 (3)173 (4)
O4—H11···F10.72 (5)2.22 (6)2.937 (4)170 (5)
O4—H12···F1iv0.80 (6)2.18 (6)2.923 (3)156 (5)
N1—H1···O4iv0.882.443.213 (3)146
N2—H2···O1iii0.882.273.073 (3)152
N2—H2···O3iv0.882.593.192 (3)126
Symmetry codes: (iii) x+1, y+1/2, z+3/2; (iv) x, y+3/2, z+1/2.
(III) Diaquatetra-µ-propionamidato-κ4N:O;κ4O:N-dirhodium(II,III) hexafluorophosphate dihydrate top
Crystal data top
[Rh2(C3H6NO)4(H2O)2]PF6·2H2OZ = 2
Mr = 711.21F(000) = 710
Triclinic, P1Dx = 1.879 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.980 (2) ÅCell parameters from 4209 reflections
b = 11.866 (3) Åθ = 3.1–27.5°
c = 12.682 (4) ŵ = 1.46 mm1
α = 87.696 (10)°T = 118 K
β = 85.095 (8)°Prism, brown
γ = 69.032 (6)°0.30 × 0.10 × 0.10 mm
V = 1257.2 (6) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
5685 independent reflections
Graphite monochromator5122 reflections with I > 2σ(I)
Detector resolution: 14.62 pixels mm-1Rint = 0.023
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: integration
(NUMABS; Higashi, 1999)
h = 1111
Tmin = 0.619, Tmax = 0.773k = 1315
10284 measured reflectionsl = 1216
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0334P)2 + 1.006P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5685 reflectionsΔρmax = 0.66 e Å3
327 parametersΔρmin = 0.76 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (5)
Crystal data top
[Rh2(C3H6NO)4(H2O)2]PF6·2H2Oγ = 69.032 (6)°
Mr = 711.21V = 1257.2 (6) Å3
Triclinic, P1Z = 2
a = 8.980 (2) ÅMo Kα radiation
b = 11.866 (3) ŵ = 1.46 mm1
c = 12.682 (4) ÅT = 118 K
α = 87.696 (10)°0.30 × 0.10 × 0.10 mm
β = 85.095 (8)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
5685 independent reflections
Absorption correction: integration
(NUMABS; Higashi, 1999)
5122 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.773Rint = 0.023
10284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.66 e Å3
5685 reflectionsΔρmin = 0.76 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.11442 (2)0.531040 (15)0.010445 (14)0.01051 (7)
N10.0139 (3)0.67297 (17)0.07682 (17)0.0142 (4)
H10.03210.72350.09310.017*
O10.2332 (2)0.61961 (14)0.09746 (14)0.0146 (4)
N20.0206 (3)0.62028 (18)0.13831 (16)0.0140 (4)
H20.07500.65810.17660.017*
O20.1985 (2)0.56676 (15)0.12242 (14)0.0152 (4)
Rh20.46169 (2)0.496401 (15)0.411805 (14)0.01095 (7)
N30.6549 (3)0.53348 (18)0.36174 (17)0.0145 (4)
H30.67760.53690.29310.017*
O30.7278 (2)0.54617 (15)0.52664 (14)0.0153 (4)
N40.3340 (3)0.67008 (18)0.42799 (17)0.0152 (4)
H40.27850.70800.37500.018*
O40.4061 (2)0.68285 (15)0.59292 (14)0.0159 (4)
O50.3312 (2)0.58223 (16)0.04169 (16)0.0164 (4)
H50.370 (4)0.607 (3)0.009 (3)0.025*
H60.323 (4)0.632 (3)0.090 (3)0.025*
O60.4001 (3)0.4963 (2)0.24462 (16)0.0241 (4)
H70.345 (5)0.471 (3)0.218 (3)0.036*
H80.406 (4)0.553 (3)0.209 (3)0.036*
O70.7473 (3)0.26084 (18)0.20635 (16)0.0217 (4)
H90.785 (4)0.186 (3)0.199 (3)0.033*
H100.694 (5)0.272 (3)0.254 (3)0.033*
O80.4439 (2)0.67316 (17)0.11793 (16)0.0190 (4)
H110.533 (4)0.668 (3)0.109 (3)0.028*
H120.399 (4)0.743 (3)0.131 (3)0.028*
C10.1621 (3)0.6954 (2)0.11132 (19)0.0136 (5)
C20.2609 (3)0.8112 (2)0.1657 (2)0.0175 (5)
H130.19130.83960.20570.021*
H140.34220.79690.21680.021*
C30.3440 (4)0.9079 (2)0.0855 (3)0.0305 (7)
H150.26340.92460.03680.046*
H160.41010.98200.12280.046*
H170.41190.87930.04540.046*
C40.1169 (3)0.6265 (2)0.16929 (19)0.0131 (5)
C50.1873 (3)0.7036 (2)0.2625 (2)0.0175 (5)
H180.20180.65210.31730.021*
H190.11230.74230.29360.021*
C60.3488 (4)0.8014 (2)0.2304 (3)0.0279 (6)
H200.42040.76380.19440.042*
H210.39630.84480.29370.042*
H220.33280.85820.18250.042*
C70.7497 (3)0.5530 (2)0.4248 (2)0.0150 (5)
C80.8895 (3)0.5878 (2)0.3832 (2)0.0183 (5)
H230.89280.59280.30500.022*
H240.98990.52440.40310.022*
C90.8795 (4)0.7085 (3)0.4265 (2)0.0321 (7)
H250.77690.77040.41130.048*
H260.96720.73120.39280.048*
H270.88800.70130.50320.048*
C100.3266 (3)0.7322 (2)0.5125 (2)0.0163 (5)
C11A0.2451 (9)0.8690 (6)0.5168 (6)0.0181 (17)*0.50
H28A0.15950.89400.46710.022*0.50
H29A0.19370.89140.58890.022*0.50
C12A0.3529 (9)0.9369 (6)0.4902 (6)0.0332 (15)*0.50
H30A0.40900.91240.42050.050*0.50
H31A0.43110.91980.54360.050*0.50
H32A0.29021.02350.48910.050*0.50
C11B0.2111 (8)0.8600 (5)0.5216 (5)0.0137 (15)*0.50
H28B0.13510.86790.58460.016*0.50
H29B0.14940.88280.45810.016*0.50
C12B0.3078 (10)0.9433 (7)0.5317 (7)0.0393 (17)*0.50
H30B0.38310.93440.46920.059*0.50
H31B0.36700.92090.59540.059*0.50
H32B0.23441.02730.53690.059*0.50
P10.10150 (8)0.96146 (6)0.19677 (6)0.01790 (15)
F10.2926 (2)0.91799 (15)0.18054 (18)0.0403 (5)
F20.0845 (2)1.08120 (14)0.13045 (14)0.0312 (4)
F30.0986 (3)0.89178 (16)0.09252 (15)0.0366 (5)
F40.1173 (2)0.83972 (14)0.26363 (15)0.0316 (4)
F50.1047 (2)1.02849 (15)0.30243 (14)0.0330 (4)
F60.0896 (2)1.00336 (14)0.21468 (17)0.0342 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01059 (10)0.01053 (10)0.01128 (10)0.00457 (7)0.00204 (7)0.00007 (7)
N10.0165 (11)0.0133 (9)0.0150 (10)0.0079 (8)0.0014 (8)0.0014 (8)
O10.0129 (9)0.0131 (8)0.0176 (9)0.0044 (7)0.0006 (7)0.0028 (6)
N20.0147 (10)0.0150 (10)0.0132 (10)0.0066 (8)0.0001 (8)0.0007 (8)
O20.0154 (9)0.0161 (8)0.0163 (9)0.0080 (7)0.0048 (7)0.0039 (7)
Rh20.01211 (11)0.01268 (10)0.00880 (10)0.00511 (7)0.00187 (7)0.00032 (7)
N30.0162 (11)0.0180 (10)0.0096 (10)0.0069 (8)0.0002 (8)0.0017 (8)
O30.0154 (9)0.0186 (8)0.0130 (9)0.0078 (7)0.0000 (7)0.0011 (7)
N40.0169 (11)0.0148 (10)0.0127 (10)0.0040 (8)0.0035 (8)0.0020 (8)
O40.0199 (9)0.0140 (8)0.0125 (9)0.0042 (7)0.0026 (7)0.0003 (6)
O50.0152 (9)0.0191 (9)0.0181 (10)0.0098 (7)0.0032 (8)0.0030 (7)
O60.0350 (12)0.0354 (11)0.0141 (10)0.0261 (10)0.0098 (9)0.0065 (8)
O70.0232 (11)0.0179 (9)0.0200 (10)0.0044 (8)0.0055 (8)0.0015 (8)
O80.0148 (9)0.0176 (9)0.0247 (10)0.0062 (8)0.0012 (8)0.0034 (7)
C10.0180 (12)0.0135 (11)0.0101 (11)0.0062 (9)0.0027 (9)0.0008 (8)
C20.0177 (13)0.0163 (12)0.0187 (13)0.0069 (10)0.0024 (10)0.0034 (9)
C30.0320 (17)0.0172 (13)0.0334 (17)0.0003 (12)0.0044 (14)0.0024 (11)
C40.0171 (12)0.0112 (10)0.0104 (11)0.0041 (9)0.0018 (9)0.0007 (8)
C50.0204 (13)0.0194 (12)0.0146 (12)0.0088 (10)0.0067 (10)0.0046 (9)
C60.0225 (15)0.0210 (13)0.0376 (18)0.0037 (11)0.0097 (13)0.0072 (12)
C70.0153 (12)0.0126 (11)0.0157 (12)0.0034 (9)0.0008 (10)0.0002 (9)
C80.0179 (13)0.0271 (13)0.0132 (12)0.0120 (11)0.0029 (10)0.0038 (10)
C90.046 (2)0.0412 (17)0.0226 (15)0.0328 (16)0.0028 (14)0.0000 (13)
C100.0162 (12)0.0161 (11)0.0162 (12)0.0054 (10)0.0004 (10)0.0007 (9)
P10.0180 (3)0.0134 (3)0.0222 (4)0.0057 (2)0.0003 (3)0.0002 (2)
F10.0177 (9)0.0250 (9)0.0768 (15)0.0066 (7)0.0065 (9)0.0134 (9)
F20.0449 (11)0.0207 (8)0.0301 (10)0.0153 (8)0.0004 (8)0.0056 (7)
F30.0577 (13)0.0308 (9)0.0279 (10)0.0231 (9)0.0026 (9)0.0081 (7)
F40.0378 (11)0.0218 (8)0.0372 (10)0.0127 (7)0.0095 (8)0.0116 (7)
F50.0472 (12)0.0301 (9)0.0250 (9)0.0171 (8)0.0046 (8)0.0039 (7)
F60.0196 (9)0.0201 (8)0.0623 (13)0.0067 (7)0.0014 (9)0.0011 (8)
Geometric parameters (Å, º) top
Rh1—Rh1i2.4105 (6)C3—H160.9800
Rh1—O1i2.0356 (17)C3—H170.9800
Rh1—O2i2.0469 (18)C4—C51.504 (3)
Rh1—O52.2388 (19)C5—C61.532 (4)
Rh1—N11.983 (2)C5—H180.9900
Rh1—N21.979 (2)C5—H190.9900
N1—C11.300 (3)C6—H200.9800
N1—H10.8800C6—H210.9800
O1—C11.300 (3)C6—H220.9800
N2—C41.304 (3)C7—C81.504 (4)
N2—H20.8800C8—C91.524 (4)
O2—C41.287 (3)C8—H230.9900
Rh2—Rh2ii2.4095 (7)C8—H240.9900
Rh2—O3ii2.0289 (18)C9—H250.9800
Rh2—O4ii2.0318 (17)C9—H260.9800
Rh2—O62.237 (2)C9—H270.9800
Rh2—N31.985 (2)C10—C11B1.502 (6)
Rh2—N41.977 (2)C10—C11A1.524 (7)
N3—C71.301 (3)C11A—C12A1.477 (10)
N3—H30.8800C11A—H28A0.9900
O3—C71.294 (3)C11A—H29A0.9900
N4—C101.309 (3)C12A—H30A0.9800
N4—H40.8800C12A—H31A0.9800
O4—C101.292 (3)C12A—H32A0.9800
O5—H50.86 (4)C11B—C12B1.546 (10)
O5—H60.82 (4)C11B—H28B0.9900
O6—H70.76 (4)C11B—H29B0.9900
O6—H80.81 (4)C12B—H30B0.9800
O7—H90.84 (4)C12B—H31B0.9800
O7—H100.72 (4)C12B—H32B0.9800
O8—H110.77 (4)P1—F21.5874 (17)
O8—H120.80 (4)P1—F51.5931 (18)
C1—C21.500 (3)P1—F31.5942 (18)
C2—C31.528 (4)P1—F11.6027 (19)
C2—H130.9900P1—F61.6052 (19)
C2—H140.9900P1—F41.6129 (17)
C3—H150.9800
N2—Rh1—N189.53 (9)O2—C4—N2122.0 (2)
N2—Rh1—O1i90.82 (8)O2—C4—C5116.7 (2)
N1—Rh1—O1i175.82 (8)N2—C4—C5121.3 (2)
N2—Rh1—O2i175.76 (8)C4—C5—C6111.5 (2)
N1—Rh1—O2i90.82 (8)C4—C5—H18109.3
O1i—Rh1—O2i88.53 (7)C6—C5—H18109.3
N2—Rh1—O591.26 (8)C4—C5—H19109.3
N1—Rh1—O596.62 (8)C6—C5—H19109.3
O1i—Rh1—O587.54 (7)H18—C5—H19108.0
O2i—Rh1—O592.90 (7)C5—C6—H20109.5
N2—Rh1—Rh1i86.51 (6)C5—C6—H21109.5
N1—Rh1—Rh1i87.01 (6)H20—C6—H21109.5
O1i—Rh1—Rh1i88.86 (5)C5—C6—H22109.5
O2i—Rh1—Rh1i89.28 (5)H20—C6—H22109.5
O5—Rh1—Rh1i175.73 (5)H21—C6—H22109.5
C1—N1—Rh1123.60 (17)O3—C7—N3122.1 (2)
C1—N1—H1118.2O3—C7—C8116.1 (2)
Rh1—N1—H1118.2N3—C7—C8121.7 (2)
C1—O1—Rh1i119.00 (15)C7—C8—C9112.0 (2)
C4—N2—Rh1124.00 (17)C7—C8—H23109.2
C4—N2—H2118.0C9—C8—H23109.2
Rh1—N2—H2118.0C7—C8—H24109.2
C4—O2—Rh1i118.08 (16)C9—C8—H24109.2
N4—Rh2—N391.03 (9)H23—C8—H24107.9
N4—Rh2—O3ii90.32 (8)C8—C9—H25109.5
N3—Rh2—O3ii175.65 (8)C8—C9—H26109.5
N4—Rh2—O4ii175.72 (8)H25—C9—H26109.5
N3—Rh2—O4ii89.88 (8)C8—C9—H27109.5
O3ii—Rh2—O4ii88.47 (7)H25—C9—H27109.5
N4—Rh2—O692.44 (9)H26—C9—H27109.5
N3—Rh2—O690.30 (8)O4—C10—N4121.4 (2)
O3ii—Rh2—O693.77 (8)O4—C10—C11B118.6 (3)
O4ii—Rh2—O691.74 (8)N4—C10—C11B119.7 (3)
N4—Rh2—Rh2ii86.42 (6)O4—C10—C11A115.4 (3)
N3—Rh2—Rh2ii86.36 (6)N4—C10—C11A122.6 (3)
O3ii—Rh2—Rh2ii89.60 (5)C12A—C11A—C10114.6 (6)
O4ii—Rh2—Rh2ii89.47 (5)C12A—C11A—H28A108.6
O6—Rh2—Rh2ii176.45 (6)C10—C11A—H28A108.6
C7—N3—Rh2123.66 (18)C12A—C11A—H29A108.6
C7—N3—H3118.2C10—C11A—H29A108.6
Rh2—N3—H3118.2H28A—C11A—H29A107.6
C7—O3—Rh2ii118.20 (16)C11A—C12A—H30A109.5
C10—N4—Rh2124.14 (18)C11A—C12A—H31A109.5
C10—N4—H4117.9H30A—C12A—H31A109.5
Rh2—N4—H4117.9C11A—C12A—H32A109.5
C10—O4—Rh2ii118.52 (15)H30A—C12A—H32A109.5
Rh1—O5—H5121 (2)H31A—C12A—H32A109.5
Rh1—O5—H6113 (2)C10—C11B—C12B108.2 (5)
H5—O5—H6106 (3)C10—C11B—H28B110.0
Rh2—O6—H7134 (3)C12B—C11B—H28B110.0
Rh2—O6—H8114 (3)C10—C11B—H29B110.0
H7—O6—H8107 (4)C12B—C11B—H29B110.0
H9—O7—H10106 (4)H28B—C11B—H29B108.4
H11—O8—H12103 (3)F2—P1—F590.00 (10)
N1—C1—O1121.3 (2)F2—P1—F391.25 (10)
N1—C1—C2121.9 (2)F5—P1—F3178.75 (10)
O1—C1—C2116.8 (2)F2—P1—F190.82 (11)
C1—C2—C3110.8 (2)F5—P1—F189.81 (11)
C1—C2—H13109.5F3—P1—F190.17 (11)
C3—C2—H13109.5F2—P1—F690.13 (10)
C1—C2—H14109.5F5—P1—F689.90 (11)
C3—C2—H14109.5F3—P1—F690.10 (11)
H13—C2—H14108.1F1—P1—F6179.01 (12)
C2—C3—H15109.5F2—P1—F4179.45 (11)
C2—C3—H16109.5F5—P1—F490.34 (10)
H15—C3—H16109.5F3—P1—F488.40 (10)
C2—C3—H17109.5F1—P1—F489.62 (10)
H15—C3—H17109.5F6—P1—F489.44 (10)
H16—C3—H17109.5
N2—Rh1—N1—C183.2 (2)Rh1i—O2—C4—N24.2 (3)
O2i—Rh1—N1—C192.5 (2)Rh1i—O2—C4—C5176.20 (15)
O5—Rh1—N1—C1174.5 (2)Rh1—N2—C4—O25.2 (3)
Rh1i—Rh1—N1—C13.3 (2)Rh1—N2—C4—C5175.24 (17)
N1—Rh1—N2—C484.0 (2)O2—C4—C5—C661.3 (3)
O1i—Rh1—N2—C491.82 (19)N2—C4—C5—C6119.1 (3)
O5—Rh1—N2—C4179.38 (19)Rh2ii—O3—C7—N30.1 (3)
Rh1i—Rh1—N2—C43.02 (19)Rh2ii—O3—C7—C8178.57 (16)
N4—Rh2—N3—C783.9 (2)Rh2—N3—C7—O32.1 (3)
O4ii—Rh2—N3—C792.0 (2)Rh2—N3—C7—C8176.44 (17)
O6—Rh2—N3—C7176.3 (2)O3—C7—C8—C957.1 (3)
Rh2ii—Rh2—N3—C72.48 (19)N3—C7—C8—C9121.5 (3)
N3—Rh2—N4—C1085.6 (2)Rh2ii—O4—C10—N42.1 (3)
O3ii—Rh2—N4—C1090.3 (2)Rh2ii—O4—C10—C11B171.5 (3)
O6—Rh2—N4—C10175.9 (2)Rh2ii—O4—C10—C11A173.7 (3)
Rh2ii—Rh2—N4—C100.7 (2)Rh2—N4—C10—O40.7 (4)
Rh1—N1—C1—O15.6 (3)Rh2—N4—C10—C11B172.9 (3)
Rh1—N1—C1—C2172.41 (18)Rh2—N4—C10—C11A171.7 (4)
Rh1i—O1—C1—N14.6 (3)O4—C10—C11A—C12A78.0 (6)
Rh1i—O1—C1—C2173.50 (16)N4—C10—C11A—C12A93.4 (6)
N1—C1—C2—C388.6 (3)O4—C10—C11B—C12B66.6 (6)
O1—C1—C2—C389.5 (3)N4—C10—C11B—C12B119.7 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H6···O7iii0.82 (4)1.91 (4)2.706 (3)164 (3)
O5—H5···O80.86 (4)1.89 (4)2.755 (3)176 (3)
O6—H7···O2i0.76 (4)2.04 (4)2.789 (3)168 (4)
O6—H8···O80.81 (4)1.90 (4)2.711 (3)173 (4)
O7—H10···O4ii0.72 (4)2.07 (4)2.775 (3)163 (4)
O7—H9···F6iv0.84 (4)2.07 (4)2.879 (3)164 (3)
O8—H11···O1v0.77 (4)1.97 (4)2.729 (3)168 (4)
O8—H12···F10.80 (4)2.05 (4)2.845 (3)173 (3)
N1—H1···F30.882.283.123 (3)161
N2—H2···O7iii0.882.142.963 (3)155
N4—H4···F40.882.263.120 (3)168
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y1, z; (v) x+1, y, z.
(IV) Diaquatetra-µ-butyramidato-κ4N:O;κ4O:N-dirhodium(II,III) hexafluorophosphate top
Crystal data top
[Rh2(C4H8NO)4(H2O)2]PF6Z = 2
Mr = 731.28F(000) = 734
Triclinic, P1Dx = 1.831 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 9.1037 (4) ÅCell parameters from 4238 reflections
b = 11.0653 (1) Åθ = 3.0–27.5°
c = 14.0104 (5) ŵ = 1.38 mm1
α = 73.667 (10)°T = 173 K
β = 82.14 (1)°Needle, brown
γ = 79.49 (1)°0.35 × 0.10 × 0.03 mm
V = 1326.18 (11) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
6014 independent reflections
Graphite monochromator5456 reflections with I > 2σ(I)
Detector resolution: 14.62 pixels mm-1Rint = 0.028
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: integration
(NUMABS; Higashi, 1999)
h = 1111
Tmin = 0.643, Tmax = 0.960k = 149
10813 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + 2.8905P]
where P = (Fo2 + 2Fc2)/3
6014 reflections(Δ/σ)max = 0.012
373 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Rh2(C4H8NO)4(H2O)2]PF6γ = 79.49 (1)°
Mr = 731.28V = 1326.18 (11) Å3
Triclinic, P1Z = 2
a = 9.1037 (4) ÅMo Kα radiation
b = 11.0653 (1) ŵ = 1.38 mm1
c = 14.0104 (5) ÅT = 173 K
α = 73.667 (10)°0.35 × 0.10 × 0.03 mm
β = 82.14 (1)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
6014 independent reflections
Absorption correction: integration
(NUMABS; Higashi, 1999)
5456 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.960Rint = 0.028
10813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.75 e Å3
6014 reflectionsΔρmin = 0.71 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.525743 (12)0.440873 (9)0.083607 (7)0.01391 (3)
N10.67886 (13)0.32883 (10)0.02144 (8)0.0189 (3)
H10.73450.26650.06100.023*
O10.63301 (11)0.43408 (8)0.13841 (7)0.0196 (3)
N20.37071 (13)0.34021 (10)0.07784 (8)0.0185 (3)
H20.34920.27990.13150.022*
O20.32283 (11)0.44407 (8)0.08122 (7)0.0191 (3)
Rh20.568158 (12)0.531738 (9)0.419427 (7)0.01345 (3)
N30.38044 (13)0.53100 (10)0.36252 (8)0.0176 (3)
H30.38050.55050.29710.021*
O30.24720 (11)0.47677 (8)0.51333 (7)0.0195 (3)
N40.50328 (13)0.70877 (9)0.43074 (8)0.0182 (3)
H40.53320.77100.38140.022*
O40.37024 (11)0.65349 (8)0.58142 (7)0.0182 (3)
O50.57577 (14)0.31717 (9)0.23751 (7)0.0296 (3)
H50.588 (2)0.3327 (15)0.2841 (13)0.039*
H60.611 (2)0.2485 (15)0.2391 (13)0.039*
O60.71106 (13)0.58714 (9)0.27117 (7)0.0270 (3)
H70.703 (2)0.5731 (15)0.2192 (13)0.035*
H80.725 (2)0.6466 (15)0.2613 (13)0.035*
C10.70341 (16)0.34094 (12)0.07522 (10)0.0181 (3)
C20.81406 (18)0.24454 (13)0.11606 (11)0.0266 (4)
H90.87090.18620.06140.032*
H100.88640.28930.16700.032*
C30.7371 (2)0.16745 (15)0.16256 (13)0.0431 (5)
H110.68210.22610.21810.052*
H120.81450.10880.19110.052*
C40.6293 (2)0.09114 (17)0.09000 (17)0.0608 (7)
H130.58310.04410.12460.079*
H140.55120.14860.06220.079*
H150.68340.03090.03580.079*
C50.29788 (16)0.35696 (11)0.00003 (10)0.0196 (4)
C60.18137 (18)0.27681 (13)0.00091 (11)0.0292 (4)
H160.23100.20380.02710.035*
H170.10750.32840.04780.035*
C70.09713 (18)0.22543 (14)0.10006 (12)0.0322 (4)
H180.03080.16760.09270.039*
H190.17050.17480.14770.039*
C80.0038 (2)0.32857 (18)0.14293 (16)0.0497 (6)
H200.06950.38260.15510.065*
H210.05110.28960.20600.065*
H220.06770.38050.09560.065*
C90.25585 (16)0.50280 (11)0.41758 (10)0.0175 (3)
C100.12011 (17)0.49483 (14)0.37170 (11)0.0263 (4)
H230.13870.52260.29810.032*
H240.03420.55390.39220.032*
C110.07939 (19)0.36063 (15)0.40197 (13)0.0356 (5)
H250.05850.33360.47550.043*
H260.01320.36170.37190.043*
C120.2030 (2)0.26489 (16)0.36932 (16)0.0476 (6)
H270.23670.29850.29880.062*
H280.16490.18480.37810.062*
H290.28750.24940.40990.062*
C130.42016 (16)0.73909 (11)0.50553 (10)0.0178 (3)
C140.36866 (19)0.87469 (12)0.50818 (11)0.0261 (4)
H300.41980.93180.45090.031*
H310.39600.88720.57040.031*
C150.1988 (2)0.90910 (15)0.50356 (13)0.0373 (5)
H32A0.14890.85660.56420.045*0.75
H33A0.16880.99940.50440.045*0.75
H32B0.16120.99140.51980.045*0.25
H33B0.14610.84220.55040.045*0.25
C16A0.1426 (3)0.8900 (2)0.4122 (2)0.0457 (8)0.75
H36A0.03350.91450.41430.059*0.75
H34A0.16850.80010.41180.059*0.75
H35A0.18970.94290.35150.059*0.75
C16B0.1771 (7)0.9183 (6)0.3944 (5)0.0246 (13)*0.25
H36B0.07010.94070.38430.032*0.25
H34B0.21580.83600.38000.032*0.25
H35B0.23170.98400.34950.032*0.25
P10.75849 (5)0.96188 (4)0.23061 (3)0.03291 (12)
F10.67662 (15)0.86228 (9)0.20496 (10)0.0648 (4)
F20.82988 (17)1.06696 (12)0.25652 (11)0.0995 (5)
F3A0.6646 (3)0.94023 (17)0.33111 (15)0.0866 (7)0.60
F4A0.8746 (3)0.8425 (3)0.2770 (2)0.1014 (11)0.60
F5A0.8616 (3)0.9730 (2)0.12567 (15)0.0673 (8)0.60
F6A0.6478 (3)1.07459 (17)0.17736 (19)0.0779 (9)0.60
F3B0.7017 (5)0.9210 (4)0.3457 (3)0.1074 (15)0.40
F4B0.9058 (5)0.8797 (4)0.2479 (4)0.1072 (16)0.40
F5B0.7930 (6)1.0208 (4)0.1204 (3)0.1084 (18)0.40
F6B0.5945 (4)1.0591 (3)0.2210 (4)0.1213 (17)0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01807 (5)0.01412 (4)0.01013 (4)0.00311 (3)0.00105 (4)0.00381 (3)
N10.0206 (6)0.0179 (5)0.0168 (5)0.0003 (4)0.0033 (5)0.0035 (4)
O10.0247 (5)0.0203 (4)0.0128 (4)0.0003 (4)0.0002 (4)0.0057 (3)
N20.0230 (6)0.0181 (5)0.0143 (5)0.0083 (4)0.0009 (5)0.0014 (4)
O20.0242 (5)0.0190 (4)0.0163 (4)0.0087 (3)0.0023 (4)0.0046 (3)
Rh20.01733 (5)0.01336 (4)0.00985 (4)0.00368 (3)0.00065 (4)0.00340 (3)
N30.0230 (6)0.0176 (4)0.0134 (5)0.0033 (4)0.0034 (4)0.0049 (4)
O30.0188 (5)0.0251 (4)0.0144 (4)0.0041 (4)0.0002 (4)0.0049 (3)
N40.0246 (6)0.0126 (4)0.0167 (5)0.0046 (4)0.0016 (5)0.0036 (4)
O40.0239 (5)0.0151 (4)0.0145 (4)0.0028 (4)0.0011 (4)0.0038 (3)
O50.0539 (7)0.0207 (4)0.0136 (4)0.0008 (5)0.0091 (5)0.0047 (3)
O60.0417 (6)0.0264 (4)0.0171 (4)0.0165 (4)0.0044 (4)0.0086 (3)
C10.0186 (6)0.0170 (5)0.0193 (6)0.0038 (5)0.0005 (5)0.0062 (4)
C20.0270 (8)0.0249 (6)0.0244 (7)0.0028 (6)0.0039 (6)0.0083 (5)
C30.0644 (12)0.0328 (7)0.0366 (8)0.0113 (8)0.0208 (8)0.0201 (6)
C40.0573 (12)0.0496 (8)0.0927 (13)0.0113 (8)0.0187 (10)0.0388 (8)
C50.0217 (7)0.0169 (5)0.0231 (6)0.0055 (5)0.0001 (5)0.0093 (4)
C60.0367 (8)0.0320 (6)0.0264 (7)0.0185 (6)0.0043 (6)0.0108 (5)
C70.0318 (7)0.0367 (7)0.0307 (8)0.0209 (6)0.0048 (7)0.0020 (6)
C80.0285 (9)0.0702 (10)0.0578 (11)0.0125 (8)0.0020 (9)0.0284 (8)
C90.0199 (6)0.0157 (5)0.0178 (6)0.0012 (5)0.0004 (5)0.0077 (4)
C100.0225 (7)0.0392 (7)0.0206 (6)0.0045 (6)0.0065 (6)0.0115 (5)
C110.0349 (8)0.0484 (8)0.0313 (8)0.0224 (6)0.0003 (7)0.0145 (6)
C120.0563 (11)0.0349 (8)0.0578 (11)0.0111 (8)0.0119 (9)0.0162 (7)
C130.0204 (6)0.0156 (5)0.0186 (6)0.0025 (5)0.0046 (5)0.0052 (4)
C140.0403 (9)0.0158 (5)0.0221 (7)0.0048 (6)0.0028 (6)0.0070 (5)
C150.0430 (10)0.0296 (7)0.0349 (8)0.0125 (7)0.0008 (8)0.0138 (6)
C16A0.0350 (13)0.0521 (13)0.0471 (14)0.0020 (11)0.0065 (11)0.0125 (11)
P10.0429 (2)0.02863 (17)0.0293 (2)0.01534 (16)0.00271 (18)0.00758 (15)
F10.0912 (8)0.0363 (5)0.0794 (7)0.0233 (5)0.0280 (6)0.0172 (5)
F20.1424 (9)0.1161 (7)0.0728 (8)0.1051 (5)0.0078 (7)0.0318 (6)
F3A0.1373 (15)0.0574 (9)0.0677 (10)0.0576 (9)0.0844 (10)0.0376 (8)
F4A0.0685 (16)0.116 (2)0.0902 (18)0.0127 (15)0.0352 (13)0.0162 (16)
F5A0.0610 (13)0.0873 (13)0.0463 (11)0.0127 (11)0.0302 (10)0.0216 (10)
F6A0.0957 (18)0.0227 (8)0.0916 (17)0.0177 (10)0.0039 (15)0.0045 (10)
F3B0.194 (4)0.120 (2)0.0370 (17)0.104 (2)0.019 (2)0.0317 (15)
F4B0.049 (2)0.136 (2)0.155 (3)0.036 (2)0.015 (2)0.095 (2)
F5B0.212 (5)0.086 (2)0.0282 (17)0.057 (3)0.004 (2)0.0028 (16)
F6B0.051 (2)0.0843 (18)0.262 (4)0.0237 (17)0.048 (2)0.1047 (19)
Geometric parameters (Å, º) top
Rh1—Rh1i2.4026 (3)C7—C81.509 (3)
Rh1—O1i2.0389 (10)C7—H180.9900
Rh1—O2i2.0314 (10)C7—H190.9900
Rh1—O52.2608 (10)C8—H200.9800
Rh1—N11.9706 (12)C8—H210.9800
Rh1—N21.9735 (13)C8—H220.9800
N1—C11.3146 (18)C9—C101.496 (2)
N1—H10.8800C10—C111.525 (2)
O1—C11.2875 (15)C10—H230.9900
N2—C51.3051 (19)C10—H240.9900
N2—H20.8800C11—C121.515 (3)
O2—C51.2912 (15)C11—H250.9900
Rh2—Rh2ii2.4064 (3)C11—H260.9900
Rh2—O3ii2.0118 (11)C12—H270.9800
Rh2—O4ii2.0268 (9)C12—H280.9800
Rh2—O62.2844 (10)C12—H290.9800
Rh2—N31.9843 (13)C13—C141.4974 (18)
Rh2—N41.9845 (11)C14—C151.529 (3)
N3—C91.3165 (18)C14—H300.9900
N3—H30.8800C14—H310.9900
O3—C91.2849 (16)C15—C16A1.522 (4)
N4—C131.2928 (18)C15—C16B1.542 (7)
N4—H40.8800C15—H32A0.9900
O4—C131.3011 (15)C15—H33A0.9900
O5—H50.75 (2)C15—H32B0.9900
O5—H60.766 (16)C15—H33B0.9900
O6—H70.801 (19)C16A—H36A0.9800
O6—H80.664 (17)C16A—H34A0.9800
C1—C21.508 (2)C16A—H35A0.9800
C2—C31.516 (3)C16B—H36B0.9800
C2—H90.9900C16B—H34B0.9800
C2—H100.9900C16B—H35B0.9800
C3—C41.502 (3)P1—F4B1.485 (4)
C3—H110.9900P1—F5B1.512 (3)
C3—H120.9900P1—F3A1.525 (2)
C4—H130.9800P1—F6A1.534 (2)
C4—H140.9800P1—F4A1.575 (3)
C4—H150.9800P1—F21.5760 (16)
C5—C61.505 (2)P1—F11.5797 (14)
C6—C71.524 (2)P1—F3B1.587 (3)
C6—H160.9900P1—F5A1.619 (2)
C6—H170.9900P1—F6B1.671 (4)
N1—Rh1—N290.39 (5)C7—C8—H21109.5
N1—Rh1—O2i91.24 (5)H20—C8—H21109.5
N2—Rh1—O2i175.47 (4)C7—C8—H22109.5
N1—Rh1—O1i175.99 (4)H20—C8—H22109.5
N2—Rh1—O1i90.43 (4)H21—C8—H22109.5
O2i—Rh1—O1i87.66 (4)O3—C9—N3121.41 (14)
N1—Rh1—O590.73 (4)O3—C9—C10117.06 (12)
N2—Rh1—O591.25 (4)N3—C9—C10121.49 (12)
O2i—Rh1—O592.95 (4)C9—C10—C11112.59 (12)
O1i—Rh1—O593.18 (4)C9—C10—H23109.1
N1—Rh1—Rh1i86.25 (3)C11—C10—H23109.1
N2—Rh1—Rh1i86.22 (3)C9—C10—H24109.1
O2i—Rh1—Rh1i89.67 (3)C11—C10—H24109.1
O1i—Rh1—Rh1i89.88 (3)H23—C10—H24107.8
O5—Rh1—Rh1i176.05 (3)C12—C11—C10112.43 (14)
C1—N1—Rh1124.39 (9)C12—C11—H25109.1
C1—N1—H1117.8C10—C11—H25109.1
Rh1—N1—H1117.8C12—C11—H26109.1
C1—O1—Rh1i117.81 (9)C10—C11—H26109.1
C5—N2—Rh1124.52 (9)H25—C11—H26107.8
C5—N2—H2117.7C11—C12—H27109.5
Rh1—N2—H2117.7C11—C12—H28109.5
C5—O2—Rh1i118.25 (10)H27—C12—H28109.5
N3—Rh2—N492.26 (5)C11—C12—H29109.5
N3—Rh2—O3ii175.64 (4)H27—C12—H29109.5
N4—Rh2—O3ii89.16 (5)H28—C12—H29109.5
N3—Rh2—O4ii88.47 (4)N4—C13—O4121.91 (12)
N4—Rh2—O4ii175.84 (4)N4—C13—C14122.35 (11)
O3ii—Rh2—O4ii89.82 (4)O4—C13—C14115.67 (12)
N3—Rh2—O697.03 (4)C13—C14—C15110.74 (14)
N4—Rh2—O695.30 (4)C13—C14—H30109.5
O3ii—Rh2—O686.94 (4)C15—C14—H30109.5
O4ii—Rh2—O688.67 (4)C13—C14—H31109.5
N3—Rh2—Rh2ii86.31 (3)C15—C14—H31109.5
N4—Rh2—Rh2ii85.79 (3)H30—C14—H31108.1
O3ii—Rh2—Rh2ii89.69 (3)C16A—C15—C14114.33 (16)
O4ii—Rh2—Rh2ii90.17 (3)C14—C15—C16B103.7 (3)
O6—Rh2—Rh2ii176.44 (3)C16A—C15—H32A108.7
C9—N3—Rh2123.36 (10)C14—C15—H32A108.7
C9—N3—H3118.3C16A—C15—H33A108.7
Rh2—N3—H3118.3C14—C15—H33A108.7
C9—O3—Rh2ii119.12 (9)H32A—C15—H33A107.6
C13—N4—Rh2124.55 (8)C14—C15—H32B111.0
C13—N4—H4117.7C16B—C15—H32B111.0
Rh2—N4—H4117.7C14—C15—H33B111.0
C13—O4—Rh2ii117.55 (8)C16B—C15—H33B111.0
Rh1—O5—H5132.3 (12)H32B—C15—H33B109.0
Rh1—O5—H6114.5 (14)C15—C16A—H36A109.5
H5—O5—H6109.9 (18)C15—C16A—H34A109.5
Rh2—O6—H7128.3 (12)H36A—C16A—H34A109.5
Rh2—O6—H8111.3 (15)C15—C16A—H35A109.5
H7—O6—H8107.8 (19)H36A—C16A—H35A109.5
O1—C1—N1121.56 (12)H34A—C16A—H35A109.5
O1—C1—C2117.49 (12)C15—C16B—H36B109.5
N1—C1—C2120.94 (11)C15—C16B—H34B109.5
C1—C2—C3111.95 (14)H36B—C16B—H34B109.5
C1—C2—H9109.2C15—C16B—H35B109.5
C3—C2—H9109.2H36B—C16B—H35B109.5
C1—C2—H10109.2H34B—C16B—H35B109.5
C3—C2—H10109.2F4B—P1—F5B97.0 (3)
H9—C2—H10107.9F3A—P1—F6A94.93 (12)
C4—C3—C2113.47 (16)F3A—P1—F4A88.81 (13)
C4—C3—H11108.9F6A—P1—F4A175.25 (16)
C2—C3—H11108.9F4B—P1—F286.2 (2)
C4—C3—H12108.9F5B—P1—F290.3 (2)
C2—C3—H12108.9F3A—P1—F290.33 (11)
H11—C3—H12107.7F6A—P1—F284.65 (11)
C3—C4—H13109.5F4A—P1—F298.28 (14)
C3—C4—H14109.5F4B—P1—F197.5 (2)
H13—C4—H14109.5F5B—P1—F189.9 (2)
C3—C4—H15109.5F3A—P1—F187.96 (11)
H13—C4—H15109.5F6A—P1—F192.16 (11)
H14—C4—H15109.5F4A—P1—F185.03 (13)
O2—C5—N2121.26 (13)F2—P1—F1176.24 (8)
O2—C5—C6116.27 (13)F4B—P1—F3B92.0 (2)
N2—C5—C6122.47 (11)F5B—P1—F3B170.3 (2)
C5—C6—C7115.29 (14)F2—P1—F3B86.38 (17)
C5—C6—H16108.5F1—P1—F3B92.79 (18)
C7—C6—H16108.5F3A—P1—F5A175.56 (11)
C5—C6—H17108.5F6A—P1—F5A88.61 (12)
C7—C6—H17108.5F4A—P1—F5A87.53 (13)
H16—C6—H17107.5F2—P1—F5A92.68 (11)
C8—C7—C6113.35 (13)F1—P1—F5A89.23 (11)
C8—C7—H18108.9F4B—P1—F6B174.3 (3)
C6—C7—H18108.9F5B—P1—F6B86.8 (3)
C8—C7—H19108.9F2—P1—F6B89.52 (17)
C6—C7—H19108.9F1—P1—F6B86.75 (17)
H18—C7—H19107.7F3B—P1—F6B84.0 (2)
C7—C8—H20109.5F5A—P1—F6B113.68 (19)
N2—Rh1—N1—C183.16 (12)Rh1i—O2—C5—N21.96 (17)
O2i—Rh1—N1—C192.61 (12)Rh1i—O2—C5—C6178.18 (9)
O5—Rh1—N1—C1174.42 (12)Rh1—N2—C5—O20.36 (18)
Rh1i—Rh1—N1—C13.02 (12)Rh1—N2—C5—C6179.49 (10)
N1—Rh1—N2—C584.33 (11)O2—C5—C6—C7150.55 (12)
O1i—Rh1—N2—C591.74 (11)N2—C5—C6—C729.60 (19)
O5—Rh1—N2—C5175.07 (11)C5—C6—C7—C864.03 (19)
Rh1i—Rh1—N2—C51.89 (11)Rh2ii—O3—C9—N33.89 (16)
N4—Rh2—N3—C985.00 (10)Rh2ii—O3—C9—C10173.86 (9)
O4ii—Rh2—N3—C990.90 (10)Rh2—N3—C9—O31.86 (17)
O6—Rh2—N3—C9179.37 (10)Rh2—N3—C9—C10175.78 (9)
Rh2ii—Rh2—N3—C90.63 (10)O3—C9—C10—C1162.58 (17)
N3—Rh2—N4—C1385.41 (13)N3—C9—C10—C11115.16 (14)
O3ii—Rh2—N4—C1390.46 (13)C9—C10—C11—C1261.13 (19)
O6—Rh2—N4—C13177.31 (13)Rh2—N4—C13—O40.4 (2)
Rh2ii—Rh2—N4—C130.71 (12)Rh2—N4—C13—C14177.15 (11)
Rh1i—O1—C1—N12.66 (19)Rh2ii—O4—C13—N41.55 (19)
Rh1i—O1—C1—C2176.47 (10)Rh2ii—O4—C13—C14178.53 (10)
Rh1—N1—C1—O14.2 (2)N4—C13—C14—C15112.56 (16)
Rh1—N1—C1—C2174.88 (11)O4—C13—C14—C1564.40 (17)
O1—C1—C2—C367.42 (16)C13—C14—C15—C16A57.52 (18)
N1—C1—C2—C3111.72 (16)C13—C14—C15—C16B72.9 (3)
C1—C2—C3—C461.37 (17)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4ii0.75 (2)2.02 (2)2.7651 (15)171.5 (16)
O5—H6···F6Aiii0.766 (16)2.277 (19)2.970 (2)151.2 (19)
O5—H6···F6Biii0.766 (16)2.215 (19)2.902 (4)149.8 (19)
O5—H6···F2iii0.766 (16)2.540 (16)3.2410 (17)153.1 (19)
O6—H7···O2i0.801 (19)2.044 (19)2.8420 (15)174.5 (15)
O6—H8···F10.664 (17)2.273 (15)2.8931 (13)156 (2)
N1—H1···F6Aiii0.882.473.071 (2)126
N3—H3···O1i0.882.203.0706 (15)170
N4—H4···F3A0.882.303.077 (2)148
N4—H4···F3B0.882.373.095 (4)140
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formula[Rh2(C2H4NO)4(H2O)2]PF6[Rh2(C2H4NO)4(H2O)2]PF6·2H2O[Rh2(C3H6NO)4(H2O)2]PF6·2H2O[Rh2(C4H8NO)4(H2O)2]PF6
Mr619.07655.10711.21731.28
Crystal system, space groupTriclinic, P1Monoclinic, P21/cTriclinic, P1Triclinic, P1
Temperature (K)118118118173
a, b, c (Å)6.631 (3), 7.719 (4), 9.645 (4)11.6900 (17), 11.5700 (13), 7.9800 (13)8.980 (2), 11.866 (3), 12.682 (4)9.1037 (4), 11.0653 (1), 14.0104 (5)
α, β, γ (°)92.014 (5), 92.205 (5), 110.471 (7)90, 110.510 (6), 9087.696 (10), 85.095 (8), 69.032 (6)73.667 (10), 82.14 (1), 79.49 (1)
V3)461.6 (4)1010.9 (3)1257.2 (6)1326.18 (11)
Z1222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.971.811.461.38
Crystal size (mm)0.10 × 0.10 × 0.030.30 × 0.30 × 0.150.30 × 0.10 × 0.100.35 × 0.10 × 0.03
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Rigaku/MSC Mercury CCD
diffractometer
Rigaku/MSC Mercury CCD
diffractometer
Rigaku/MSC Mercury CCD
diffractometer
Absorption correctionIntegration
(NUMABS; Higashi, 1999)
Integration
(NUMABS; Higashi, 1999)
Integration
(NUMABS; Higashi, 1999)
Integration
(NUMABS; Higashi, 1999)
Tmin, Tmax0.751, 0.9400.712, 0.8280.619, 0.7730.643, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
3818, 2096, 1903 7888, 2308, 2208 10284, 5685, 5122 10813, 6014, 5456
Rint0.0260.0260.0230.028
(sin θ/λ)max1)0.6490.6490.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.058, 1.04 0.027, 0.056, 1.17 0.026, 0.065, 1.06 0.041, 0.069, 1.17
No. of reflections2096230856856014
No. of parameters133151327373
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.640.48, 0.600.66, 0.760.75, 0.71

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku Corporation, 2001), CrystalClear, TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and TEXSAN.

Selected bond lengths (Å) for (I) top
Rh1—Rh1i2.4085 (10)Rh1—O32.284 (2)
Rh1—O1i2.029 (2)Rh1—N11.983 (3)
Rh1—O2i2.040 (2)Rh1—N21.969 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3—H4···O2ii0.80 (4)1.97 (4)2.760 (3)170 (4)
O3—H3···F10.75 (4)2.20 (4)2.924 (3)162 (4)
N1—H1···F10.882.353.064 (3)138.3
N1—H1···F30.882.443.285 (3)161.5
N2—H2···O1iii0.882.213.022 (3)153.9
Symmetry codes: (ii) x, y1, z; (iii) x+1, y, z.
Selected bond lengths (Å) for (II) top
Rh1—Rh1i2.4010 (4)Rh1—O32.2402 (19)
Rh1—O1i2.0299 (17)Rh1—N11.980 (2)
Rh1—O2i2.0425 (18)Rh1—N21.973 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2ii0.93 (4)1.86 (4)2.778 (3)168 (3)
O3—H4···O40.78 (4)2.00 (4)2.774 (3)173 (4)
O4—H11···F10.72 (5)2.22 (6)2.937 (4)170 (5)
O4—H12···F1iii0.80 (6)2.18 (6)2.923 (3)156 (5)
N1—H1···O4iii0.882.443.213 (3)146.3
N2—H2···O1ii0.882.273.073 (3)152.2
N2—H2···O3iii0.882.593.192 (3)126.0
Symmetry codes: (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z+1/2.
Selected bond lengths (Å) for (III) top
Rh1—Rh1i2.4105 (6)Rh2—Rh2ii2.4095 (7)
Rh1—O1i2.0356 (17)Rh2—O3ii2.0289 (18)
Rh1—O2i2.0469 (18)Rh2—O4ii2.0318 (17)
Rh1—O52.2388 (19)Rh2—O62.237 (2)
Rh1—N11.983 (2)Rh2—N31.985 (2)
Rh1—N21.979 (2)Rh2—N41.977 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O5—H6···O7iii0.82 (4)1.91 (4)2.706 (3)164 (3)
O5—H5···O80.86 (4)1.89 (4)2.755 (3)176 (3)
O6—H7···O2i0.76 (4)2.04 (4)2.789 (3)168 (4)
O6—H8···O80.81 (4)1.90 (4)2.711 (3)173 (4)
O7—H10···O4ii0.72 (4)2.07 (4)2.775 (3)163 (4)
O7—H9···F6iv0.84 (4)2.07 (4)2.879 (3)164 (3)
O8—H11···O1v0.77 (4)1.97 (4)2.729 (3)168 (4)
O8—H12···F10.80 (4)2.05 (4)2.845 (3)173 (3)
N1—H1···F30.882.283.123 (3)160.7
N2—H2···O7iii0.882.142.963 (3)155.3
N4—H4···F40.882.263.120 (3)167.5
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y1, z; (v) x+1, y, z.
Selected bond lengths (Å) for (IV) top
Rh1—Rh1i2.4026 (3)Rh2—Rh2ii2.4064 (3)
Rh1—O1i2.0389 (10)Rh2—O3ii2.0118 (11)
Rh1—O2i2.0314 (10)Rh2—O4ii2.0268 (9)
Rh1—O52.2608 (10)Rh2—O62.2844 (10)
Rh1—N11.9706 (12)Rh2—N31.9843 (13)
Rh1—N21.9735 (13)Rh2—N41.9845 (11)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4ii0.75 (2)2.02 (2)2.7651 (15)171.5 (16)
O5—H6···F6Aiii0.766 (16)2.277 (19)2.970 (2)151.2 (19)
O5—H6···F6Biii0.766 (16)2.215 (19)2.902 (4)149.8 (19)
O5—H6···F2iii0.766 (16)2.540 (16)3.2410 (17)153.1 (19)
O6—H7···O2i0.801 (19)2.044 (19)2.8420 (15)174.5 (15)
O6—H8···F10.664 (17)2.273 (15)2.8931 (13)156 (2)
N1—H1···F6Aiii0.882.473.071 (2)126.0
N3—H3···O1i0.882.203.0706 (15)169.7
N4—H4···F3A0.882.303.077 (2)147.5
N4—H4···F3B0.882.373.095 (4)140.0
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds