Download citation
Download citation
link to html
In the structure of the first bis-adduct of 2,5-bis­[3-(tert-butyl­aminoxyl)­phenyl]-1,1-dimethyl-3,4-diphenyl­silole with bis­(hexa­fluoro­acetyl­acetonato)­manganese(II), [Mn(C5HF6O2)2(C38H42N2O2Si)2], the Mn atom lies on a crystallographic inversion centre and is bound to two chelating hexafluoro­acetylacetonate ligands and two monodentate nitroxide groups in a distorted octa­hedral configuration. The silole ligands present a propeller-like arrangement of the benzene rings around the Si-containing five-membered ring. The dihedral angles between the complexed nitroxides and the benzene rings to which they are bound are smaller than those found in the free ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106020191/fa3007sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106020191/fa3007IIsup2.hkl
Contains datablock II

CCDC reference: 621252

Comment top

The design and construction of molecule-based magnetic materials possessing a well defined structural dimensionality along with interesting magnetic properties has been a challenging proposition over the past 20 years (Miller & Epstein, 2000; Veciana & Iwamura, 2000). In this field of research, one of the most successful approaches towards molecule-based magnetic materials involves the coordination of stable organic radicals to high-spin metal ions, such as manganese in the form Mn(hfac)2 (hfac is hexafluoroacteylacetonate). Following this approach, numerous examples of molecule-based materials possessing a large variety of dimensionalities and architectures (Mathevet & Luneau, 2001) have been reported, on account of the large number of combinations available through variations of the nitroxide radical nature and the organic spacers to which the radical unit(s) is (are) bound.

We have already reported the synthesis, structure and detailed magnetic properties of the first example of silacyclopentadiene (or silole) substituted by two phenyl-tert-butyl nitroxide radicals, (I) (Roques et al., 2003). Our goal was to take advantage of the photo-excited triplet state that was evidenced in the silole spacer to generate a reversible light-induced modification of the magnetic behaviour of this molecule (Roques et al., 2004). With the idea of further pursuing these investigations, we report here the synthesis and structure of the first manganese bis-adduct of (I), the title complex, (II). It is worth noting that (II) is only the second example of a tert-butyl nitroxide-based mononuclear manganese complex (Rajca et al., 2001). This discrete unit is a promising model for the exploration of photo-induced magnetic states in low-dimensional metal–organic magnetic materials.

Complex (II) is obtained as dark-red diamond-like blocks by reacting silole (I) with Mn(hfac)2 (see Experimental). Structure examination reveals a linear bis-adduct structure, (I)–Mn(Hfac)2–(I) (Fig. 1). The Mn2+ ion coincides with an inversion centre and is bound to two chelating hfac ligands and two monodentate nitroxides in a distorted octahedral configuration, as previously reported in the literature (Iwamura et al., 1998; Inoue et al., 2000) for extended one- and two-dimensional structures. The distortions from regular octahedral geometry about Mn are rather small, with no bond angle deviating by more than 6° from its ideal value. The largest distortions involve the pincer angles of ca 84° for the chelating hfac ligands. The Mn—O bond distances lie in the range 2.119 (2)–2.176 (2) Å. These are typical values for Mn2+ complexes of hfac and nitroxide ligands (Shibata et al., 1985; Dickman et al., 1986).

Coordination of the nitroxide ligands to the metal centre affords pronounced changes in its structure. As usually observed in tetraarysiloles, the molecule of (II) displays a propeller-like arrangement of the four benzene rings (Yamagushi et al., 2000). However, the C2 symmetry axis that passes through the central Si atom in the structure of (I) is lost (Roques et al., 2003). The dihedral angles between the five-membered silole ring and the phenyl rings bearing the nitroxide radicals are 45.92 (9) and 35.61 (9)°, the latter being considerably smaller than the value of 49° encountered in the parent molecule. Another difference is observed in the dihedral angles made by the nitroxide groups and the phenyl rings to which they are bonded. While in the parent silole the dihedral angles are similar to that found here for the free nitroxide [16.1 (4)°], the complexed nitroxides in (II) are only twisted by angles of 7.3 (4)°. These structural modifications are ascribed to the presence of the bulky hfac ligands in the coordination sphere of the metal centre.

In conclusion, compound (II) is the first bis-adduct of 1,1-dimethyl-2,5-bis-(3-N-tert-butyl-N-phenylaminoxyl) -3,4-diphenylsilolacyclopentadiene with bis(hexafluoroacetylacetonato)manganese(II) to have been synthesized and structurally characterized. Experiments are currently underway in our laboratory to use this bis-adduct as a building block to construct magnetic chains. Our efforts are also directed at studies of the photo-excited magnetic states of this metal–organic radical species.

Experimental top

A sample of Mn(hfac)2·H2O (12 mmol) was suspended in n-heptane (30 ml) and the mixture was refluxed for 24 h to remove water by azeotropic distillation. To the cooled solution was added bis-nitroxide silole, (I) (12 mmol) in freshly distilled dichloromethane (10 ml). After stirring for 10 min, the resulting deep-brown solution was concentrated to ca 5 ml under reduced pressure. The dark microcrystalline powder formed during the concentration step was removed by filtration, and the resulting filtrate was allowed to evaporate to dryness to yield dark-red diamond-like crystals of (II) after 4 d.

Refinement top

All H atoms were positioned geometrically (C—H = 0.96 Å for the H atoms of methyl groups and C—H = 0.93 Å for the other H atoms) and allowed to ride on their parent atoms [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 ( Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
Fig. 1. The structure of complex (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown a small spheres of arbitrary radi. For clarity, only selected atoms have been numbered; unlabelled atoms are related to labelled atoms by the symmetry operator (?) [Please complete].
{2,5-Bis[3-(tert-butylaminoxyl)phenyl]-1,1-dimethyl-3,4- diphenylsilole-\kO}bis(1,1,1,5,5,5-hexafluoropentane-2,4- dionato)manganese(II) top
Crystal data top
[Mn(C5HF6O2)2(C38H42N2O2Si)2]F(000) = 1710
Mr = 1642.7Dx = 1.351 Mg m3
MonoclinicP21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P2ynCell parameters from 247 reflections
a = 14.784 (2) Åθ = 3.6–19.3°
b = 13.402 (3) ŵ = 0.28 mm1
c = 21.084 (4) ÅT = 293 K
β = 104.88 (1)°Diamond, dark red
V = 4037.4 (13) Å30.30 × 0.10 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
8261 independent reflections
Radiation source: fine-focus sealed tube4786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
φ scans, and ω scans with κ offsetsθmax = 26.4°, θmin = 2.5°
Absorption correction: numerical
(Gaussian; Reference?)
h = 1818
Tmin = 0.921, Tmax = 0.973k = 1616
30037 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.9718P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
8261 reflectionsΔρmax = 0.47 e Å3
512 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00020 (5)
Crystal data top
[Mn(C5HF6O2)2(C38H42N2O2Si)2]V = 4037.4 (13) Å3
Mr = 1642.7Z = 2
MonoclinicP21/nMo Kα radiation
a = 14.784 (2) ŵ = 0.28 mm1
b = 13.402 (3) ÅT = 293 K
c = 21.084 (4) Å0.30 × 0.10 × 0.10 mm
β = 104.88 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
8261 independent reflections
Absorption correction: numerical
(Gaussian; Reference?)
4786 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.973Rint = 0.071
30037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.05Δρmax = 0.47 e Å3
8261 reflectionsΔρmin = 0.36 e Å3
512 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of f2 against all reflections. the weighted r-factor wr and goodness of fit s are based on f2, conventional r-factors r are based on f, with f set to zero for negative f2. the threshold expression of f2 > σ(f2) is used only for calculating r-factors(gt) etc. and is not relevant to the choice of reflections for refinement. r-factors based on f2 are statistically about twice as large as those based on f, and r- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.45510 (6)0.44304 (6)0.18728 (4)0.0426 (3)
Mn10.00000.00000.00000.0455 (2)
C10.4113 (3)0.9156 (3)0.2106 (2)0.0744 (12)
H1A0.40280.84600.20010.112*
H1B0.35220.94940.19680.112*
H1C0.43590.92340.25710.112*
C20.4436 (3)0.9510 (3)0.10043 (17)0.0776 (12)
H2A0.43580.88180.08850.116*
H2B0.48780.98090.07980.116*
H2C0.38450.98460.08610.116*
C30.4797 (3)0.9602 (3)0.17514 (16)0.0536 (9)
C40.4922 (3)1.0704 (3)0.1929 (2)0.0780 (12)
H4A0.51471.07720.23970.117*
H4B0.43321.10410.17830.117*
H4C0.53651.09940.17210.117*
C50.5907 (2)0.8062 (2)0.20013 (14)0.0443 (8)
C60.5260 (2)0.7354 (2)0.16774 (14)0.0434 (8)
H60.46730.75630.14340.052*
C70.5475 (2)0.6335 (2)0.17119 (14)0.0418 (7)
C80.6354 (2)0.6051 (3)0.20778 (16)0.0543 (9)
H80.65130.53790.21120.065*
C90.7002 (2)0.6756 (3)0.23946 (18)0.0625 (10)
H90.75920.65500.26340.075*
C100.6785 (2)0.7744 (3)0.23594 (16)0.0553 (9)
H100.72250.82080.25750.066*
C110.4782 (2)0.5557 (2)0.14138 (14)0.0412 (7)
C120.4116 (2)0.5588 (2)0.08367 (14)0.0391 (7)
C130.4007 (2)0.6425 (2)0.03485 (14)0.0389 (7)
C140.3199 (2)0.6990 (3)0.01920 (17)0.0533 (9)
H140.27270.68600.03980.064*
C150.3083 (3)0.7748 (3)0.02671 (19)0.0644 (10)
H150.25340.81190.03670.077*
C160.3770 (3)0.7954 (3)0.05745 (17)0.0635 (10)
H160.36880.84610.08850.076*
C170.4586 (3)0.7406 (3)0.04212 (16)0.0587 (10)
H170.50590.75450.06260.070*
C180.4700 (2)0.6651 (2)0.00375 (15)0.0476 (8)
H180.52540.62860.01400.057*
C190.3445 (2)0.4719 (2)0.06930 (13)0.0385 (7)
C200.2660 (2)0.4706 (2)0.00819 (14)0.0406 (7)
C210.1747 (2)0.4597 (2)0.01351 (16)0.0499 (8)
H210.16360.45380.05480.060*
C220.1000 (3)0.4576 (3)0.04192 (19)0.0606 (10)
H220.03930.44990.03770.073*
C230.1159 (3)0.4669 (3)0.10251 (19)0.0659 (11)
H230.06580.46500.13970.079*
C240.2053 (3)0.4792 (3)0.10919 (17)0.0601 (10)
H240.21560.48650.15060.072*
C250.2798 (2)0.4806 (2)0.05392 (15)0.0479 (8)
H250.34030.48840.05860.057*
C260.3575 (2)0.4011 (2)0.11663 (13)0.0393 (7)
C270.3066 (2)0.3053 (2)0.11483 (14)0.0404 (7)
C280.2896 (2)0.2684 (3)0.17228 (15)0.0520 (9)
H280.30840.30520.21080.062*
C290.2452 (3)0.1780 (3)0.17317 (16)0.0566 (9)
H290.23460.15510.21230.068*
C300.2163 (2)0.1211 (2)0.11736 (15)0.0495 (8)
H300.18740.05980.11870.059*
C310.2312 (2)0.1569 (2)0.05837 (14)0.0388 (7)
C320.2774 (2)0.2473 (2)0.05815 (14)0.0396 (7)
H320.28910.26970.01930.047*
C330.5502 (3)0.3503 (3)0.21171 (17)0.0618 (10)
H33A0.56980.32940.17370.093*
H33B0.52810.29350.23110.093*
H33C0.60230.37970.24300.093*
C340.4150 (3)0.4860 (3)0.25946 (16)0.0680 (11)
H34A0.36560.53390.24550.102*
H34B0.46630.51630.29090.102*
H34C0.39230.43000.27920.102*
C350.2215 (2)0.1132 (2)0.06378 (14)0.0434 (8)
C360.1800 (3)0.0266 (3)0.10883 (17)0.0653 (11)
H36A0.11310.02690.11640.098*
H36B0.20460.03520.08850.098*
H36C0.19610.03370.14990.098*
C370.1769 (3)0.2097 (3)0.09531 (16)0.0613 (10)
H37A0.20260.26520.06780.092*
H37B0.11050.20700.10050.092*
H37C0.18940.21770.13750.092*
C380.3275 (2)0.1110 (3)0.05266 (18)0.0687 (11)
H38A0.35490.16510.02430.103*
H38B0.34300.11780.09400.103*
H38C0.35150.04880.03270.103*
C390.1164 (3)0.2618 (3)0.12078 (18)0.0583 (9)
C400.0707 (2)0.2033 (3)0.05869 (15)0.0462 (8)
C410.0616 (2)0.2490 (3)0.00143 (15)0.0524 (9)
H410.08030.31520.00210.063*
C420.0259 (2)0.2006 (3)0.06103 (15)0.0472 (8)
C430.0175 (3)0.2624 (3)0.12286 (18)0.0646 (11)
N10.5731 (2)0.9102 (2)0.19744 (13)0.0540 (7)
N20.19844 (18)0.09798 (19)0.00128 (11)0.0419 (6)
O10.00141 (16)0.11300 (16)0.07053 (10)0.0492 (6)
O20.04573 (17)0.11726 (17)0.06983 (10)0.0537 (6)
O30.14813 (16)0.02053 (16)0.00652 (11)0.0515 (6)
O40.6448 (2)0.9671 (2)0.21445 (16)0.0914 (9)
F10.0364 (2)0.3430 (2)0.12307 (13)0.1130 (10)
F20.0198 (3)0.2152 (2)0.17631 (11)0.1265 (13)
F30.0969 (2)0.3003 (2)0.12595 (13)0.1144 (10)
F40.06274 (18)0.2634 (2)0.16243 (11)0.0928 (8)
F50.1355 (2)0.35543 (19)0.11055 (11)0.1016 (9)
F60.19491 (18)0.2201 (2)0.15251 (12)0.1019 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0560 (6)0.0325 (5)0.0339 (5)0.0016 (4)0.0018 (4)0.0006 (3)
Mn10.0542 (5)0.0356 (4)0.0458 (4)0.0058 (3)0.0114 (3)0.0066 (3)
C10.090 (3)0.056 (3)0.083 (3)0.005 (2)0.033 (2)0.006 (2)
C20.089 (3)0.077 (3)0.059 (2)0.013 (2)0.003 (2)0.009 (2)
C30.063 (2)0.044 (2)0.051 (2)0.0019 (17)0.0092 (17)0.0022 (15)
C40.095 (3)0.044 (2)0.094 (3)0.001 (2)0.023 (3)0.000 (2)
C50.053 (2)0.0408 (19)0.0375 (17)0.0071 (16)0.0096 (15)0.0018 (14)
C60.0440 (19)0.0399 (19)0.0422 (17)0.0000 (15)0.0035 (14)0.0013 (14)
C70.0463 (19)0.0410 (19)0.0356 (16)0.0020 (15)0.0063 (14)0.0020 (13)
C80.048 (2)0.043 (2)0.065 (2)0.0004 (17)0.0024 (17)0.0037 (17)
C90.039 (2)0.061 (3)0.077 (3)0.0009 (18)0.0049 (18)0.0070 (19)
C100.048 (2)0.057 (2)0.056 (2)0.0136 (18)0.0035 (17)0.0005 (17)
C110.0444 (18)0.0327 (17)0.0441 (18)0.0028 (14)0.0069 (15)0.0003 (13)
C120.0441 (18)0.0317 (17)0.0398 (17)0.0043 (14)0.0078 (14)0.0003 (13)
C130.0392 (18)0.0380 (18)0.0360 (16)0.0020 (14)0.0035 (13)0.0015 (13)
C140.050 (2)0.046 (2)0.066 (2)0.0026 (17)0.0169 (17)0.0139 (17)
C150.055 (2)0.055 (2)0.077 (3)0.0081 (19)0.0043 (19)0.0225 (19)
C160.070 (3)0.060 (2)0.054 (2)0.005 (2)0.0042 (19)0.0214 (18)
C170.062 (2)0.068 (3)0.048 (2)0.013 (2)0.0167 (18)0.0040 (18)
C180.0434 (19)0.050 (2)0.0478 (19)0.0015 (16)0.0094 (15)0.0035 (16)
C190.0437 (18)0.0364 (17)0.0340 (16)0.0027 (14)0.0076 (13)0.0026 (13)
C200.047 (2)0.0320 (17)0.0395 (18)0.0021 (14)0.0052 (14)0.0004 (13)
C210.053 (2)0.043 (2)0.050 (2)0.0063 (16)0.0079 (17)0.0010 (15)
C220.049 (2)0.051 (2)0.073 (3)0.0050 (17)0.0011 (19)0.0063 (18)
C230.069 (3)0.056 (2)0.054 (2)0.013 (2)0.0165 (19)0.0040 (17)
C240.077 (3)0.054 (2)0.043 (2)0.011 (2)0.0043 (19)0.0031 (16)
C250.055 (2)0.0426 (19)0.0433 (19)0.0052 (16)0.0072 (16)0.0038 (14)
C260.0468 (19)0.0331 (17)0.0361 (16)0.0008 (14)0.0074 (13)0.0035 (13)
C270.0428 (18)0.0367 (18)0.0380 (17)0.0011 (14)0.0037 (13)0.0011 (13)
C280.065 (2)0.056 (2)0.0309 (17)0.0107 (18)0.0042 (15)0.0034 (15)
C290.072 (2)0.061 (2)0.0349 (18)0.020 (2)0.0102 (16)0.0052 (16)
C300.053 (2)0.046 (2)0.0450 (19)0.0145 (16)0.0058 (15)0.0069 (15)
C310.0386 (17)0.0361 (17)0.0384 (17)0.0044 (14)0.0036 (13)0.0005 (13)
C320.0476 (19)0.0365 (18)0.0340 (16)0.0021 (14)0.0095 (14)0.0014 (13)
C330.070 (3)0.044 (2)0.058 (2)0.0037 (18)0.0071 (18)0.0013 (16)
C340.103 (3)0.055 (2)0.049 (2)0.013 (2)0.024 (2)0.0133 (17)
C350.0495 (19)0.0418 (19)0.0364 (17)0.0034 (15)0.0064 (14)0.0030 (14)
C360.091 (3)0.050 (2)0.051 (2)0.005 (2)0.010 (2)0.0060 (16)
C370.078 (3)0.050 (2)0.052 (2)0.0052 (19)0.0085 (18)0.0100 (17)
C380.055 (2)0.093 (3)0.060 (2)0.001 (2)0.0186 (18)0.008 (2)
C390.064 (3)0.055 (2)0.052 (2)0.006 (2)0.0103 (19)0.0010 (17)
C400.0460 (19)0.045 (2)0.048 (2)0.0004 (16)0.0129 (15)0.0018 (16)
C410.065 (2)0.040 (2)0.050 (2)0.0085 (17)0.0119 (17)0.0022 (15)
C420.048 (2)0.043 (2)0.050 (2)0.0006 (16)0.0121 (15)0.0097 (15)
C430.087 (3)0.052 (2)0.053 (2)0.017 (2)0.016 (2)0.0065 (19)
N10.0626 (19)0.0415 (17)0.0518 (16)0.0108 (15)0.0039 (14)0.0049 (13)
N20.0457 (15)0.0358 (15)0.0416 (15)0.0070 (12)0.0064 (12)0.0004 (11)
O10.0634 (15)0.0375 (13)0.0449 (12)0.0013 (11)0.0108 (10)0.0082 (10)
O20.0725 (16)0.0433 (14)0.0452 (12)0.0012 (12)0.0152 (11)0.0027 (10)
O30.0535 (14)0.0412 (13)0.0601 (14)0.0122 (11)0.0153 (11)0.0043 (10)
O40.078 (2)0.0549 (18)0.125 (2)0.0213 (16)0.0046 (18)0.0105 (17)
F10.157 (3)0.086 (2)0.0884 (18)0.0321 (19)0.0181 (17)0.0383 (15)
F20.240 (4)0.0801 (19)0.0462 (14)0.058 (2)0.0132 (17)0.0083 (12)
F30.133 (2)0.130 (2)0.0874 (18)0.040 (2)0.0406 (17)0.0323 (16)
F40.1058 (19)0.113 (2)0.0668 (15)0.0257 (16)0.0346 (14)0.0327 (13)
F50.160 (3)0.0691 (17)0.0681 (15)0.0434 (17)0.0149 (15)0.0111 (12)
F60.0771 (17)0.125 (2)0.0818 (16)0.0084 (16)0.0184 (13)0.0137 (15)
Geometric parameters (Å, º) top
Si1—C331.849 (4)C22—H220.9300
Si1—C341.861 (3)C23—C241.374 (5)
Si1—C111.872 (3)C23—H230.9300
Si1—C261.874 (3)C24—C251.383 (5)
Mn1—O12.119 (2)C24—H240.9300
Mn1—O22.141 (2)C25—H250.9300
Mn1—O32.176 (2)C26—C271.484 (4)
C1—C31.524 (5)C27—C281.390 (4)
C1—H1A0.9600C27—C321.398 (4)
C1—H1B0.9600C28—C291.380 (5)
C1—H1C0.9600C28—H280.9300
C2—C31.533 (5)C29—C301.375 (5)
C2—H2A0.9600C29—H290.9300
C2—H2B0.9600C30—C311.402 (4)
C2—H2C0.9600C30—H300.9300
C3—N11.499 (4)C31—C321.390 (4)
C3—C41.523 (5)C31—N21.417 (4)
C4—H4A0.9600C32—H320.9300
C4—H4B0.9600C33—H33A0.9600
C4—H4C0.9600C33—H33B0.9600
C5—C101.391 (4)C33—H33C0.9600
C5—C61.395 (4)C34—H34A0.9600
C5—N11.415 (4)C34—H34B0.9600
C6—C71.400 (4)C34—H34C0.9600
C6—H60.9300C35—N21.510 (4)
C7—C81.384 (4)C35—C381.524 (5)
C7—C111.484 (4)C35—C361.525 (4)
C8—C91.389 (5)C35—C371.525 (5)
C8—H80.9300C36—H36A0.9600
C9—C101.360 (5)C36—H36B0.9600
C9—H90.9300C36—H36C0.9600
C10—H100.9300C37—H37A0.9600
C11—C121.355 (4)C37—H37B0.9600
C12—C131.504 (4)C37—H37C0.9600
C12—C191.509 (4)C38—H38A0.9600
C13—C141.380 (4)C38—H38B0.9600
C13—C181.385 (4)C38—H38C0.9600
C14—C151.383 (5)C39—F61.307 (4)
C14—H140.9300C39—F51.316 (4)
C15—C161.366 (5)C39—F41.326 (4)
C15—H150.9300C39—C401.527 (5)
C16—C171.378 (5)C40—O21.251 (4)
C16—H160.9300C40—C411.383 (4)
C17—C181.381 (5)C41—C421.392 (4)
C17—H170.9300C41—H410.9300
C18—H180.9300C42—O11.241 (4)
C19—C261.354 (4)C42—C431.522 (5)
C19—C201.496 (4)C43—F21.287 (4)
C20—C251.383 (4)C43—F31.296 (5)
C20—C211.390 (4)C43—F11.342 (5)
C21—C221.387 (5)N1—O41.281 (4)
C21—H210.9300N2—O31.298 (3)
C22—C231.363 (5)
C33—Si1—C34111.08 (18)C23—C24—C25119.6 (3)
C33—Si1—C11117.41 (16)C23—C24—H24120.2
C34—Si1—C11108.17 (16)C25—C24—H24120.2
C33—Si1—C26113.27 (15)C20—C25—C24121.1 (3)
C34—Si1—C26113.62 (16)C20—C25—H25119.4
C11—Si1—C2692.08 (13)C24—C25—H25119.4
O1—Mn1—O284.40 (8)C19—C26—C27127.7 (3)
O1—Mn1—O2i95.60 (8)C19—C26—Si1108.1 (2)
O1—Mn1—O392.11 (8)C27—C26—Si1124.2 (2)
O2—Mn1—O394.91 (9)C28—C27—C32117.5 (3)
O1—Mn1—O3i87.89 (8)C28—C27—C26119.3 (3)
O2—Mn1—O3i85.09 (9)C32—C27—C26123.1 (3)
C3—C1—H1A109.5C29—C28—C27121.2 (3)
C3—C1—H1B109.5C29—C28—H28119.4
H1A—C1—H1B109.5C27—C28—H28119.4
C3—C1—H1C109.5C30—C29—C28121.3 (3)
H1A—C1—H1C109.5C30—C29—H29119.4
H1B—C1—H1C109.5C28—C29—H29119.4
C3—C2—H2A109.5C29—C30—C31119.0 (3)
C3—C2—H2B109.5C29—C30—H30120.5
H2A—C2—H2B109.5C31—C30—H30120.5
C3—C2—H2C109.5C32—C31—C30119.4 (3)
H2A—C2—H2C109.5C32—C31—N2122.9 (3)
H2B—C2—H2C109.5C30—C31—N2117.7 (3)
N1—C3—C4108.2 (3)C31—C32—C27121.7 (3)
N1—C3—C1110.1 (3)C31—C32—H32119.1
C4—C3—C1108.3 (3)C27—C32—H32119.1
N1—C3—C2109.6 (3)Si1—C33—H33A109.5
C4—C3—C2108.6 (3)Si1—C33—H33B109.5
C1—C3—C2111.9 (3)H33A—C33—H33B109.5
C3—C4—H4A109.5Si1—C33—H33C109.5
C3—C4—H4B109.5H33A—C33—H33C109.5
H4A—C4—H4B109.5H33B—C33—H33C109.5
C3—C4—H4C109.5Si1—C34—H34A109.5
H4A—C4—H4C109.5Si1—C34—H34B109.5
H4B—C4—H4C109.5H34A—C34—H34B109.5
C10—C5—C6119.0 (3)Si1—C34—H34C109.5
C10—C5—N1117.4 (3)H34A—C34—H34C109.5
C6—C5—N1123.6 (3)H34B—C34—H34C109.5
C5—C6—C7121.3 (3)N2—C35—C38108.7 (2)
C5—C6—H6119.3N2—C35—C36108.3 (3)
C7—C6—H6119.3C38—C35—C36108.4 (3)
C8—C7—C6117.8 (3)N2—C35—C37109.7 (3)
C8—C7—C11119.4 (3)C38—C35—C37113.3 (3)
C6—C7—C11122.7 (3)C36—C35—C37108.3 (3)
C7—C8—C9121.0 (3)C35—C36—H36A109.5
C7—C8—H8119.5C35—C36—H36B109.5
C9—C8—H8119.5H36A—C36—H36B109.5
C10—C9—C8120.8 (3)C35—C36—H36C109.5
C10—C9—H9119.6H36A—C36—H36C109.5
C8—C9—H9119.6H36B—C36—H36C109.5
C9—C10—C5120.2 (3)C35—C37—H37A109.5
C9—C10—H10119.9C35—C37—H37B109.5
C5—C10—H10119.9H37A—C37—H37C109.5
C12—C11—C7128.5 (3)C35—C37—H37C109.5
C12—C11—Si1107.6 (2)H37A—C37—H37C109.5
C7—C11—Si1123.1 (2)H37B—C37—H37C109.5
C11—C12—C13124.2 (3)C35—C38—H38A109.5
C11—C12—C19116.5 (3)C35—C38—H38B109.5
C13—C12—C19119.3 (2)H38A—C38—H38B109.5
C14—C13—C18117.8 (3)C35—C38—H38C109.5
C14—C13—C12120.5 (3)H38A—C38—H38C109.5
C18—C13—C12121.6 (3)H38A—C38—H38C109.5
C13—C14—C15121.0 (3)F6—C39—F5107.0 (3)
C13—C14—H14119.5F6—C39—F4105.7 (3)
C15—C14—H14119.5F5—C39—F4106.5 (3)
C16—C15—C14120.5 (4)F6—C39—C40111.0 (3)
C16—C15—H15119.8F5—C39—C40114.6 (3)
C14—C15—H15119.8F4—C39—C40111.5 (3)
C15—C16—C17119.6 (3)O2—C40—C41128.1 (3)
C15—C16—H16120.2O2—C40—C39113.6 (3)
C17—C16—H16120.2C41—C40—C39118.4 (3)
C16—C17—C18119.8 (3)C40—C41—C42123.1 (3)
C16—C17—H17120.1C40—C41—H41118.5
C18—C17—H17120.1C42—C41—H41118.5
C17—C18—C13121.3 (3)O1—C42—C41128.2 (3)
C17—C18—H18119.4O1—C42—C43115.1 (3)
C13—C18—H18119.4C41—C42—C43116.6 (3)
C26—C19—C20124.0 (3)F2—C43—F3109.8 (4)
C26—C19—C12115.5 (3)F2—C43—F1105.8 (4)
C20—C19—C12120.4 (2)F3—C43—F1103.3 (3)
C25—C20—C21118.0 (3)F2—C43—C42113.9 (3)
C25—C20—C19123.0 (3)F3—C43—C42112.4 (3)
C21—C20—C19119.1 (3)F1—C43—C42111.0 (3)
C22—C21—C20120.9 (3)O4—N1—C5116.4 (3)
C22—C21—H21119.5O4—N1—C3116.8 (3)
C20—C21—H21119.5C5—N1—C3126.7 (3)
C23—C22—C21119.7 (4)O3—N2—C31116.9 (2)
C23—C22—H22120.1O3—N2—C35117.0 (2)
C21—C22—H22120.1C31—N2—C35126.0 (2)
C22—C23—C24120.6 (3)C42—O1—Mn1128.2 (2)
C22—C23—H23119.7C40—O2—Mn1127.14 (19)
C24—C23—H23119.7N2—O3—Mn1133.24 (19)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C5HF6O2)2(C38H42N2O2Si)2]
Mr1642.7
Crystal system, space groupMonoclinicP21/n
Temperature (K)293
a, b, c (Å)14.784 (2), 13.402 (3), 21.084 (4)
β (°) 104.88 (1)
V3)4037.4 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionNumerical
(Gaussian; Reference?)
Tmin, Tmax0.921, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
30037, 8261, 4786
Rint0.071
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.153, 1.05
No. of reflections8261
No. of parameters512
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.36

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 ( Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97.

Selected geometric parameters (Å, º) top
Mn1—O12.119 (2)Mn1—O32.176 (2)
Mn1—O22.141 (2)
O1—Mn1—O284.40 (8)O2—Mn1—O394.91 (9)
O1—Mn1—O392.11 (8)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds