metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Hydrogen-bonded sheets in racemic cis-(2,2′-bi­pyridyl-κ2N,N′)oxo(pentane-2,4-dionato-κ2O,O′)(thio­cyanato-κN)vanadium(IV)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 17 February 2006; accepted 6 March 2006; online 13 April 2006)

The title compound, [V(C5H7O2)(NCS)O(C10H8N2)], crystallizes with Z′ = 2 in the space group Pbca. The mol­ecules are linked into sheets by a combination of four C—H⋯O hydrogen bonds and one C—H⋯N hydrogen bond. The four C—H⋯O hydrogen bonds generate chains of rings, where each chain contains just a single enanti­omer of each of the two independent mol­ecules, while the C—H⋯N hydrogen bond generates a chain containing both enanti­omers of just one of the independent mol­ecules.

Comment

The reactions of tris­(pentane-2,4-dionato)vanadium(III) with salts of 2,2′-bipyridine and 1,10-phenanthroline containing non-coordinating anions have been used to prepare six-coordinate mixed-ligand complexes of vanadium (Kavitha et al., 2006[Kavitha, S. J., Panchanatheswaran, K., Dale, S. H. & Elsegood, M. R. J. (2006). Inorg. Chim. Acta, 359, 1314-1320.], 2006a[Kavitha, S. J., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2006a). Acta Cryst. E62, m529-m531.]). In an attempt to prepare seven-coordinate VIII complexes using salts containing coordinating anions, the reaction of tris­(pentane-2,4-dionato)vanadium(III) with 2,2′-bipyridinium thio­cyanate was carried out. This resulted in the formation of the title compound, (I)[link], an oxidized six-coor­dinate mixed-ligand complex of vanadium(IV).

[Scheme 1]

Compound (I)[link] (Fig. 1[link]) crystallizes with Z′ = 2 in the space group Pbca. The oxo and thio­cyanate ligands occupy mutually cis sites in both of the independent mol­ecules, so that these mol­ecules are chiral although the compound is racemic. The centrosymmetric space group accommodates equal numbers of Λ and Δ enanti­omers, and in the selected asymmetric unit both mol­ecules have the Λ configuration.

Because of the chemical hardness of the vanadium(IV) centre, the thio­cyanate ligand coordinates via the N atom rather than via the S atom. The inter­bond angles at vanadium indicate some distortion from the ideal octa­hedral geometry and this may be dominated by the rather small bite angles (Table 1[link]) characteristic of the bipyridyl ligands. The key bond distances and angles within the two independent mol­ecules are very similar; in particular, both mol­ecules contain VNCS fragments which are nearly linear.

Mol­ecules of (I)[link] are linked into complex sheets by a combination of four C—H⋯O hydrogen bonds and one C—H⋯N hydrogen bond (Table 2[link]). The sheet formation is readily analysed in terms of two one-dimensional substructures, one involving all of the C—H⋯O hydrogen bonds and the other depending on just the single C—H⋯N hydrogen bond. Within the selected asymmetric unit, atoms C53 and C63 flanking the bay region of the bipyridyl ligand in the type 2 mol­ecule (containing atom V2) both act as hydrogen-bond donors to atom O1 in the type 1 mol­ecule (containing atom V1). In addition, atoms C13 and C23 flanking the bay region of the bipyridyl ligand in the type 1 mol­ecule at (x, y, z) both act as hydrogen-bond donors to atom O2 in the type 2 mol­ecule at (1 − x, [{1\over 2}] + y, [{1\over 2}] − z), so forming a complex chain of alternating chelate and hydrogen-bonded rings running parallel to the [010] direction and generated by the 21 screw axis along ([{1\over 2}], y, [{1\over 4}]) (Fig. 2[link]). Four chains of this type, each of which includes both type 1 and type 2 mol­ecules, run through each unit cell. The chains generated by the screw axes along (0, y, [{1\over 4}]) and ([{1\over 2}], y, [{1\over 4}]) include only the Λ enanti­omers, while those along (0, y, [{3\over 4}]) and ([{1\over 2}], y, [{3\over 4}]) include only the Δ enanti­omers. We may note here the contrast between the hydrogen-bonding behaviour of compound (I)[link], where each of the independent oxo ligands acts as a double acceptor of C—H⋯O hydrogen bonds, and that of the analogous compound (II) (see scheme[link]), where the oxo ligand plays no part in the hydrogen bonding (Kavitha et al., 2006b[Kavitha, S. J., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2006b). Acta Cryst. C62, m116-m118.]).

The second substructure includes only the type 2 mol­ecules, but both enanti­omers of this mol­ecule are present in each chain. Atom C72 of the pentane­dionate ligand in the type 2 mol­ecule at (x, y, z) acts as hydrogen-bond donor to thio­cyanate atom N81 in the type 2 mol­ecule at (−[{1\over 2}] + x, y, [{1\over 2}] − z), so forming a simple C(6) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain of alternating Λ and Δ enanti­omers running parallel to the [100] direction and generated by the a-glide plane at z = [{1\over 4}] (Fig. 3[link]).

The combination of these [100] and [010] chains generates a complex (001) sheet. Two such sheets, related to one another by inversion and lying in the domains 0 < z < [{1\over 2}] and [{1\over 2}] < z < 1 pass through each unit cell, but there are no direction-specific inter­actions between adjacent sheets. In particular, C—H⋯π­(arene) hydrogen bonds and ππ stacking inter­actions are both absent from the structure of (I)[link].

[Figure 1]
Figure 1
The two independent Λ enanti­omers of (a) the type 1 mol­ecule and (b) the type 2 mol­ecule in the selected asymmetric unit of compound (I)[link], showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded chain of rings along ([{1\over 2}], y, [{1 \over 4}]) containing Λ enanti­omers only. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 3]
Figure 3
Part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded C(6) chain along [100]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−[{1\over 2}] + x, y, [{1\over 2}] − z) and ([{1\over 2}] + x, y, [{1\over 2}] − z), respectively.

Experimental

A mixture containing equimolar quanti­ties of 2,2′-bipyridinium thio­cyanate and tris­(pentane-2,4-dionato)vanadium(III) in methanol was heated under reflux for 3 h in a dinitro­gen atmosphere. The mixture was cooled to ambient temperature and the solvent was removed under reduced pressure to yield crystals of (I)[link] (m.p. 401 K) suitable for single-crystal X-ray diffraction analysis.

Crystal data
  • [V(C5H7O2)(NCS)O(C10H8N2)]

  • Mr = 380.32

  • Orthorhombic, P b c a

  • a = 15.0522 (10) Å

  • b = 29.721 (2) Å

  • c = 15.3753 (10) Å

  • V = 6878.4 (8) Å3

  • Z = 16

  • Dx = 1.469 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7898 reflections

  • θ = 3.0–27.6°

  • μ = 0.72 mm−1

  • T = 120 (2) K

  • Plate, brown

  • 0.18 × 0.10 × 0.04 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.882, Tmax = 0.972

  • 40301 measured reflections

  • 7898 independent reflections

  • 5904 reflections with I > 2σ(I)

  • Rint = 0.064

  • θmax = 27.6°

  • h = −19 → 19

  • k = −32 → 38

  • l = −19 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.135

  • S = 1.13

  • 7898 reflections

  • 437 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0615P)2 + 3.5919P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected geometric parameters (Å, °)

V1—O1 1.603 (2)
V1—O31 2.000 (2)
V1—O33 1.967 (2)
V1—N11 2.133 (2)
V1—N21 2.270 (2)
V1—N41 2.044 (3)
N41—C42 1.164 (4)
C42—S1 1.633 (3)
V2—O2 1.608 (2)
V2—O71 1.998 (2)
V2—O73 1.963 (2)
V2—N51 2.142 (2)
V2—N61 2.261 (2)
V2—N81 2.032 (3)
N81—C82 1.161 (4)
C82—S2 1.626 (3)
N11—V1—N21 72.92 (8)
V1—N41—C42 175.5 (2)
N41—C42—S1 179.4 (3)
N51—V2—N61 73.02 (9)
V2—N81—C82 168.1 (2)
N81—C82—S2 177.1 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.95 2.55 3.500 (4) 179
C23—H23⋯O2i 0.95 2.52 3.468 (4) 177
C53—H53⋯O1 0.95 2.40 3.323 (4) 163
C63—H63⋯O1 0.95 2.52 3.441 (4) 165
C72—H72⋯N81ii 0.95 2.53 3.457 (4) 166
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

The space group Pbca was uniquely assigned from the systematic absences. All H atoms were located in difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (ring H) or 0.98 Å (methyl H), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The reactions of tris(pentane-2,4-dionato)vanadium(III) with salts of 2,2'-bipyridine and 1,10-phenanthroline containing non-coordinating anions have been used to prepare six-coordinate mixed-ligand complexes of vanadium (Kavitha et al., 2006; Kavitha et al., 2006a). In an attempt to prepare seven-coordinate VIII complexes using salts containing coordinating anions, the reaction of tris(pentane-2,4-dionato)vanadium(III) with 2,2'-bipyridinium thiocyanate was carried out. This resulted in the formation of the title compound, (I), an oxidized six-coordinate mixed-ligand complex of vanadium(IV).

Compound (I) (Fig. 1) crystallizes with Z' = 2 in space group Pbca. The oxo and thiocyanate ligands adopt mutually cis sites in both of the independent molecules, so that these molecules are chiral although the compound is racemic. The centrosymmetric space group accommodates equal numbers of Λ and Δ enantiomers, and in the selected asymmetric unit both molecules have the Λ configuration.

Because of the chemical hardness of the vanadium(IV) centre, the thiocyanate ligand coordinates via the N atom rather than via the S atom. The interbond angles at V indicate some distortion from the ideal octahedral geometry and this may be dominated by the rather small bite angles (Table 1) characteristic of the bipyridyl ligands. The key bond distances and angles within the two independent molecules are very similar; in particular, both molecules contain VNCS fragments which are nearly linear.

The molecules of compound (I) are linked into complex sheets by a combination of four C—H···O hydrogen bonds and one C—H···N hydrogen bond (Table 2). The sheet formation is readily analysed in terms of two one-dimensional sub-structures, one involving all of the C—H···O hydrogen bonds and the other depending on just the single C—H···N hydrogen bond. Within the selected asymmetric unit, atoms C53 and C63 flanking the bay region of the bipyridyl ligand in the type 2 molecule (containing atom V2) both act as hydrogen-bond donors to atom O1 in the type 1 molecule (containing atom V1). In addition, atoms C13 and C23 flanking the bay region of the bipyridyl ligand in the type 1 molecule at (x, y, z) both act as hydrogen-bond donors to atom O2 in the type 2 molecule at (1 − x, 1/2 + y, 1/2 − z), so forming a complex chain of alternating chelate and hydrogen-bonded rings running parallel to the [010] direction and generated by the 21 screw axis along (1/2, y, 1/4) (Fig. 2). Four chains of this type, each of which includes both type 1 and type 2 molecules, run through each unit cell. The chains generated by the screw axes along (0, y, 1/4) and (1/2, y, 1/4) include only the Λ enantiomers, while those along (0, y, 3/4) and (1/2, y, 3/4) include only the Δ enantiomers. We may note here the contrast between the hydrogen-bonding behaviour of compound (I), where each of the independent oxo ligands acts as a double acceptor of C—H···O hydrogen bonds, and that of the analogous compound (II) (see scheme), where the oxo ligand plays no part in the hydrogen bonding (Kavitha et al., 2006b).

The second sub-structure includes only the type 2 molecules, but both enantiomers of this molecule are present in each chain. Atom C72 of the pentanedionate ligand in the type 2 molecule at (x, y, z) acts as hydrogen-bond donor to thiocyanate atom N81 in the type 2 molecule at (−1/2 + x, y, 1/2 − z), so forming a simple C(6) (Bernstein et al., 1995) chain of alternating Λ and Δ enantiomers running parallel to the [100] direction and generated by the a-glide plane at z = 1/4 (Fig. 3).

The combination of these [100] and [010] chains generates a complex (001) sheet. Two such sheets, related to one another by inversion and lying in the domains 0 < z < 1/2 and 1/2 < z < 1, respectively, pass through each unit cell, but there are no direction-specific interactions between adjacent sheets. In particular, C—H···π(arene) hydrogen bonds and ππ stacking interactions are both absent from the structure of (I).

Experimental top

A mixture containing equimolar quantities of 2,2'-bipyridinium thiocyanate and tris(pentane-2,4-dionato)vanadium(III) in methanol (Volume?) was heated under reflux for 3 h in a dinitrogen atmosphere. The mixture was cooled to ambient temperature and the solvent was removed under reduced pressure to yield crystals of (I) (m.p. 401 K) suitable for single-crystal X-ray diffraction.

Refinement top

The space group Pbca was uniquely assigned from the systematic absences. All H atoms were located in difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 (ring H) or 0.98 Å (methyl H), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl groups.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent Λ enantiomers of (a) the type 1 molecule and (b) the type 2 molecule in the selected asymmetric unit of compound (I), showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain of rings along (1/2, y, 1/4) containing Λ enantiomers only. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded C(6) chain along [100]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−1/2 + x, y, 1/2 − z) and (1/2 + x, y, 1/2 − z), respectively.
racemic cis-(2,2'-bipyridyl-κ2N,N')oxo(pentane-2,4-dionato- κ2O,O')(thiocyanato-κN)vanadium(IV) top
Crystal data top
[V(C5H7O2)(NCS)O(C10H8N2)]F(000) = 3120
Mr = 380.32Dx = 1.469 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7898 reflections
a = 15.0522 (10) Åθ = 3.0–27.6°
b = 29.721 (2) ŵ = 0.72 mm1
c = 15.3753 (10) ÅT = 120 K
V = 6878.4 (8) Å3Plate, brown
Z = 160.18 × 0.10 × 0.04 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
7898 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode5904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.0°
ϕ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 3238
Tmin = 0.882, Tmax = 0.972l = 1914
40301 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0615P)2 + 3.5919P]
where P = (Fo2 + 2Fc2)/3
7898 reflections(Δ/σ)max = 0.002
437 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[V(C5H7O2)(NCS)O(C10H8N2)]V = 6878.4 (8) Å3
Mr = 380.32Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 15.0522 (10) ŵ = 0.72 mm1
b = 29.721 (2) ÅT = 120 K
c = 15.3753 (10) Å0.18 × 0.10 × 0.04 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
7898 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5904 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.972Rint = 0.064
40301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.13Δρmax = 0.77 e Å3
7898 reflectionsΔρmin = 0.69 e Å3
437 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.52076 (3)0.798315 (16)0.16865 (3)0.02076 (13)
N110.52526 (15)0.86252 (8)0.10674 (14)0.0197 (5)
C120.47449 (19)0.89680 (9)0.13600 (18)0.0204 (6)
C130.4843 (2)0.94011 (10)0.10331 (19)0.0256 (6)
C140.5487 (2)0.94829 (11)0.0408 (2)0.0307 (7)
C150.5991 (2)0.91312 (10)0.01032 (19)0.0268 (7)
C160.58562 (19)0.87054 (10)0.04437 (17)0.0230 (6)
N210.41335 (15)0.84132 (8)0.23061 (14)0.0192 (5)
C220.41112 (18)0.88490 (9)0.20652 (17)0.0195 (6)
C230.3556 (2)0.91580 (10)0.24666 (19)0.0253 (6)
C240.2994 (2)0.90111 (10)0.3126 (2)0.0277 (7)
C250.2994 (2)0.85623 (10)0.33566 (19)0.0268 (7)
C260.35835 (19)0.82752 (10)0.29325 (18)0.0238 (6)
O310.59368 (13)0.82799 (7)0.26101 (13)0.0259 (5)
C310.6188 (2)0.81164 (10)0.33379 (19)0.0251 (6)
C340.6823 (2)0.84006 (11)0.3850 (2)0.0303 (7)
C320.5909 (2)0.76998 (10)0.36604 (19)0.0278 (7)
C330.5297 (2)0.74235 (10)0.32647 (19)0.0259 (7)
C350.4993 (2)0.69980 (10)0.3694 (2)0.0348 (8)
O330.49292 (14)0.75009 (7)0.25190 (13)0.0257 (5)
N410.41804 (17)0.77590 (8)0.09326 (16)0.0252 (5)
C420.3637 (2)0.76178 (10)0.04682 (19)0.0241 (6)
S10.28690 (5)0.74249 (3)0.01827 (5)0.03099 (19)
O10.60029 (14)0.77894 (7)0.11034 (14)0.0303 (5)
V20.59410 (3)0.549682 (16)0.24244 (3)0.01996 (13)
N510.66776 (15)0.61127 (8)0.24765 (15)0.0200 (5)
C520.64396 (19)0.64672 (9)0.19636 (18)0.0210 (6)
C530.6871 (2)0.68780 (10)0.2023 (2)0.0278 (7)
C540.7551 (2)0.69311 (11)0.2620 (2)0.0335 (8)
C550.7791 (2)0.65739 (10)0.3136 (2)0.0293 (7)
C560.73473 (19)0.61711 (10)0.30447 (19)0.0241 (6)
N610.53822 (15)0.59517 (8)0.13808 (15)0.0218 (5)
C620.57117 (18)0.63750 (9)0.13419 (18)0.0208 (6)
C630.5395 (2)0.66882 (10)0.07525 (19)0.0275 (7)
C640.4733 (2)0.65594 (12)0.0170 (2)0.0326 (7)
C650.4417 (2)0.61260 (11)0.0190 (2)0.0319 (7)
C660.4755 (2)0.58330 (11)0.0809 (2)0.0295 (7)
C710.4218 (2)0.56737 (11)0.3294 (2)0.0277 (7)
O710.50142 (13)0.58021 (7)0.31432 (13)0.0264 (5)
C720.3823 (2)0.52927 (11)0.2919 (2)0.0315 (7)
C740.3692 (2)0.59632 (12)0.3911 (2)0.0350 (8)
C730.4250 (2)0.49928 (10)0.2374 (2)0.0274 (7)
C750.3782 (2)0.45833 (11)0.2036 (2)0.0377 (8)
O730.50604 (13)0.50349 (7)0.21239 (13)0.0267 (5)
N810.66381 (16)0.52564 (8)0.13924 (16)0.0248 (5)
C820.6893 (2)0.51166 (10)0.0733 (2)0.0258 (6)
S20.72969 (6)0.49344 (3)0.01820 (5)0.0394 (2)
O20.65087 (14)0.52728 (6)0.31975 (13)0.0271 (5)
H130.44730.96380.12350.031*
H140.55790.97790.01930.037*
H150.64260.91800.03350.032*
H160.62020.84620.02290.028*
H230.35590.94650.22940.030*
H240.26140.92180.34150.033*
H250.26020.84520.37920.032*
H260.35950.79670.30970.029*
H34A0.65240.86770.40370.045*
H34B0.73360.84770.34860.045*
H34C0.70250.82330.43620.045*
H320.61620.76000.41930.033*
H35A0.52080.67390.33620.052*
H35B0.43420.69920.37140.052*
H35C0.52300.69850.42880.052*
H530.67000.71210.16580.033*
H540.78490.72120.26710.040*
H550.82560.66040.35500.035*
H560.75220.59240.33980.029*
H630.56240.69860.07450.033*
H640.45030.67690.02370.039*
H650.39770.60290.02110.038*
H660.45310.55340.08270.035*
H720.32160.52370.30490.038*
H74A0.40820.60720.43760.052*
H74B0.32080.57860.41640.052*
H74C0.34440.62200.35940.052*
H75A0.39620.45280.14330.057*
H75B0.31380.46320.20600.057*
H75C0.39390.43220.23950.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0224 (3)0.0199 (3)0.0200 (3)0.0014 (2)0.0002 (2)0.00172 (19)
N110.0211 (12)0.0218 (12)0.0161 (11)0.0008 (10)0.0016 (10)0.0020 (9)
C120.0235 (15)0.0193 (14)0.0184 (13)0.0024 (11)0.0050 (12)0.0006 (11)
C130.0322 (16)0.0208 (15)0.0237 (15)0.0011 (12)0.0021 (13)0.0012 (12)
C140.0382 (18)0.0259 (16)0.0279 (16)0.0067 (14)0.0001 (14)0.0073 (13)
C150.0294 (16)0.0313 (17)0.0198 (15)0.0046 (13)0.0016 (13)0.0037 (13)
C160.0226 (15)0.0302 (16)0.0162 (13)0.0009 (12)0.0014 (12)0.0006 (12)
N210.0210 (12)0.0197 (12)0.0169 (11)0.0011 (10)0.0034 (10)0.0021 (9)
C220.0204 (14)0.0234 (14)0.0147 (13)0.0021 (11)0.0029 (11)0.0011 (11)
C230.0266 (16)0.0216 (14)0.0277 (16)0.0000 (12)0.0006 (13)0.0024 (13)
C240.0276 (16)0.0306 (16)0.0249 (16)0.0045 (13)0.0001 (13)0.0042 (13)
C250.0235 (15)0.0351 (17)0.0217 (15)0.0001 (13)0.0005 (13)0.0013 (13)
C260.0261 (16)0.0231 (15)0.0223 (15)0.0009 (12)0.0012 (13)0.0031 (12)
O310.0266 (11)0.0271 (11)0.0239 (11)0.0023 (9)0.0072 (9)0.0054 (9)
C310.0231 (15)0.0312 (16)0.0210 (15)0.0070 (13)0.0018 (12)0.0009 (13)
C340.0297 (17)0.0344 (18)0.0268 (16)0.0023 (14)0.0041 (14)0.0001 (14)
C320.0353 (18)0.0280 (16)0.0202 (15)0.0056 (13)0.0032 (14)0.0018 (13)
C330.0320 (17)0.0226 (15)0.0232 (15)0.0108 (13)0.0048 (13)0.0011 (12)
C350.051 (2)0.0262 (17)0.0278 (17)0.0015 (15)0.0032 (15)0.0049 (13)
O330.0296 (11)0.0241 (11)0.0233 (11)0.0014 (9)0.0017 (9)0.0038 (9)
N410.0304 (14)0.0234 (13)0.0219 (13)0.0001 (11)0.0024 (11)0.0016 (10)
C420.0274 (16)0.0221 (15)0.0227 (15)0.0055 (12)0.0010 (13)0.0003 (12)
S10.0279 (4)0.0372 (5)0.0279 (4)0.0009 (3)0.0042 (3)0.0093 (3)
O10.0318 (12)0.0265 (11)0.0327 (12)0.0053 (9)0.0067 (10)0.0032 (9)
V20.0191 (2)0.0204 (2)0.0204 (3)0.00065 (19)0.0007 (2)0.0013 (2)
N510.0195 (12)0.0221 (12)0.0184 (11)0.0003 (9)0.0014 (10)0.0003 (10)
C520.0220 (15)0.0205 (14)0.0203 (14)0.0023 (11)0.0047 (12)0.0013 (12)
C530.0316 (17)0.0210 (15)0.0308 (17)0.0004 (13)0.0052 (14)0.0026 (13)
C540.0341 (18)0.0247 (16)0.042 (2)0.0063 (14)0.0007 (15)0.0046 (14)
C550.0287 (17)0.0313 (17)0.0279 (16)0.0043 (13)0.0048 (13)0.0017 (14)
C560.0233 (15)0.0271 (16)0.0219 (15)0.0007 (12)0.0013 (12)0.0013 (13)
N610.0207 (12)0.0239 (12)0.0209 (12)0.0001 (10)0.0037 (10)0.0004 (10)
C620.0202 (14)0.0239 (15)0.0182 (14)0.0039 (11)0.0044 (11)0.0007 (11)
C630.0315 (17)0.0272 (16)0.0240 (15)0.0058 (13)0.0041 (13)0.0034 (13)
C640.0333 (18)0.0396 (19)0.0250 (16)0.0107 (15)0.0018 (14)0.0073 (14)
C650.0310 (17)0.0380 (19)0.0268 (16)0.0039 (14)0.0087 (14)0.0012 (14)
C660.0292 (16)0.0320 (17)0.0273 (16)0.0001 (14)0.0052 (14)0.0019 (14)
C710.0238 (15)0.0329 (17)0.0265 (16)0.0034 (13)0.0029 (13)0.0098 (13)
O710.0233 (11)0.0290 (11)0.0270 (11)0.0006 (9)0.0036 (9)0.0004 (9)
C720.0193 (15)0.0358 (18)0.0393 (19)0.0048 (13)0.0001 (14)0.0084 (15)
C740.0269 (17)0.0416 (19)0.0364 (19)0.0035 (14)0.0090 (15)0.0035 (15)
C730.0244 (16)0.0293 (16)0.0285 (16)0.0030 (13)0.0057 (13)0.0094 (13)
C750.0338 (19)0.0375 (19)0.042 (2)0.0121 (15)0.0069 (16)0.0055 (16)
O730.0239 (11)0.0277 (11)0.0286 (11)0.0060 (9)0.0000 (9)0.0002 (9)
N810.0208 (13)0.0278 (13)0.0259 (13)0.0012 (10)0.0017 (11)0.0023 (11)
C820.0221 (15)0.0259 (15)0.0294 (17)0.0037 (12)0.0049 (13)0.0013 (13)
S20.0400 (5)0.0519 (6)0.0262 (4)0.0123 (4)0.0004 (4)0.0095 (4)
O20.0320 (12)0.0227 (11)0.0265 (11)0.0026 (9)0.0047 (9)0.0033 (9)
Geometric parameters (Å, º) top
V1—O11.603 (2)V2—O21.608 (2)
V1—O312.000 (2)V2—O711.998 (2)
V1—O331.967 (2)V2—O731.963 (2)
V1—N112.133 (2)V2—N512.142 (2)
V1—N212.270 (2)V2—N612.261 (2)
V1—N412.044 (3)V2—N812.032 (3)
N11—C161.342 (4)N51—C561.345 (4)
N11—C121.351 (4)N51—C521.364 (4)
C12—C131.390 (4)C52—C531.386 (4)
C12—C221.487 (4)C52—C621.479 (4)
C13—C141.387 (4)C53—C541.383 (5)
C13—H130.95C53—H530.95
C14—C151.374 (4)C54—C551.374 (4)
C14—H140.95C54—H540.95
C15—C161.385 (4)C55—C561.378 (4)
C15—H150.95C55—H550.95
C16—H160.95C56—H560.95
N21—C261.334 (4)N61—C661.338 (4)
N21—C221.348 (4)N61—C621.353 (4)
C22—C231.387 (4)C62—C631.384 (4)
C23—C241.390 (4)C63—C641.392 (4)
C23—H230.95C63—H630.95
C24—C251.380 (4)C64—C651.373 (5)
C24—H240.95C64—H640.95
C25—C261.394 (4)C65—C661.386 (4)
C25—H250.95C65—H650.95
C26—H260.95C66—H660.95
O31—C311.277 (3)C71—O711.279 (4)
C31—C321.398 (4)C71—C721.403 (4)
C31—C341.499 (4)C71—C741.506 (4)
C34—H34A0.98C72—C731.382 (5)
C34—H34B0.98C72—H720.95
C34—H34C0.98C74—H74A0.98
C32—C331.376 (4)C74—H74B0.98
C32—H320.95C74—H74C0.98
C33—O331.294 (3)C73—O731.285 (4)
C33—C351.498 (4)C73—C751.500 (4)
C35—H35A0.98C75—H75A0.98
C35—H35B0.98C75—H75B0.98
C35—H35C0.98C75—H75C0.98
N41—C421.164 (4)N81—C821.161 (4)
C42—S11.633 (3)C82—S21.626 (3)
O1—V1—O33105.15 (10)O2—V2—O73104.07 (10)
O1—V1—O3198.38 (10)O2—V2—O7198.64 (10)
O33—V1—O3188.63 (8)O73—V2—O7188.64 (9)
O1—V1—N4197.51 (11)O2—V2—N8199.04 (11)
O33—V1—N4188.30 (9)O73—V2—N8185.35 (9)
O31—V1—N41164.07 (9)O71—V2—N81162.23 (10)
O1—V1—N1192.76 (10)O2—V2—N5192.93 (10)
O33—V1—N11161.60 (9)O73—V2—N51162.92 (9)
O31—V1—N1184.55 (8)O71—V2—N5187.28 (9)
N41—V1—N1193.59 (9)N81—V2—N5193.58 (9)
O1—V1—N21165.68 (10)O2—V2—N61165.92 (10)
O33—V1—N2189.16 (8)O73—V2—N6190.00 (9)
O31—V1—N2181.06 (8)O71—V2—N6182.02 (9)
N41—V1—N2183.27 (9)N81—V2—N6181.27 (9)
N11—V1—N2172.92 (8)N51—V2—N6173.02 (9)
C16—N11—C12119.1 (2)C56—N51—C52118.2 (2)
C16—N11—V1119.94 (19)C56—N51—V2121.49 (19)
C12—N11—V1120.55 (18)C52—N51—V2120.17 (18)
N11—C12—C13121.2 (3)N51—C52—C53121.3 (3)
N11—C12—C22115.2 (2)N51—C52—C62115.2 (2)
C13—C12—C22123.5 (3)C53—C52—C62123.6 (3)
C14—C13—C12119.1 (3)C54—C53—C52119.4 (3)
C14—C13—H13120.4C54—C53—H53120.3
C12—C13—H13120.4C52—C53—H53120.3
C15—C14—C13119.3 (3)C55—C54—C53119.3 (3)
C15—C14—H14120.3C55—C54—H54120.3
C13—C14—H14120.3C53—C54—H54120.3
C14—C15—C16119.0 (3)C54—C55—C56119.0 (3)
C14—C15—H15120.5C54—C55—H55120.5
C16—C15—H15120.5C56—C55—H55120.5
N11—C16—C15122.1 (3)N51—C56—C55122.8 (3)
N11—C16—H16118.9N51—C56—H56118.6
C15—C16—H16118.9C55—C56—H56118.6
C26—N21—C22118.6 (2)C66—N61—C62118.3 (3)
C26—N21—V1124.86 (19)C66—N61—V2124.9 (2)
C22—N21—V1116.32 (18)C62—N61—V2116.80 (18)
N21—C22—C23122.0 (3)N61—C62—C63121.8 (3)
N21—C22—C12114.4 (2)N61—C62—C52114.5 (2)
C23—C22—C12123.6 (3)C63—C62—C52123.6 (3)
C22—C23—C24118.9 (3)C62—C63—C64118.9 (3)
C22—C23—H23120.6C62—C63—H63120.6
C24—C23—H23120.6C64—C63—H63120.6
C25—C24—C23119.4 (3)C65—C64—C63119.4 (3)
C25—C24—H24120.3C65—C64—H64120.3
C23—C24—H24120.3C63—C64—H64120.3
C24—C25—C26118.1 (3)C64—C65—C66118.5 (3)
C24—C25—H25120.9C64—C65—H65120.7
C26—C25—H25120.9C66—C65—H65120.7
N21—C26—C25123.0 (3)N61—C66—C65123.0 (3)
N21—C26—H26118.5N61—C66—H66118.5
C25—C26—H26118.5C65—C66—H66118.5
C31—O31—V1128.1 (2)O71—C71—C72124.3 (3)
O31—C31—C32124.0 (3)O71—C71—C74115.9 (3)
O31—C31—C34115.8 (3)C72—C71—C74119.8 (3)
C32—C31—C34120.3 (3)C71—O71—V2128.2 (2)
C31—C34—H34A109.5C73—C72—C71125.0 (3)
C31—C34—H34B109.5C73—C72—H72117.5
H34A—C34—H34B109.5C71—C72—H72117.5
C31—C34—H34C109.5C71—C74—H74A109.5
H34A—C34—H34C109.5C71—C74—H74B109.5
H34B—C34—H34C109.5H74A—C74—H74B109.5
C33—C32—C31124.9 (3)C71—C74—H74C109.5
C33—C32—H32117.5H74A—C74—H74C109.5
C31—C32—H32117.5H74B—C74—H74C109.5
O33—C33—C32124.9 (3)O73—C73—C72124.1 (3)
O33—C33—C35114.2 (3)O73—C73—C75115.0 (3)
C32—C33—C35120.9 (3)C72—C73—C75121.0 (3)
C33—C35—H35A109.5C73—C75—H75A109.5
C33—C35—H35B109.5C73—C75—H75B109.5
H35A—C35—H35B109.5H75A—C75—H75B109.5
C33—C35—H35C109.5C73—C75—H75C109.5
H35A—C35—H35C109.5H75A—C75—H75C109.5
H35B—C35—H35C109.5H75B—C75—H75C109.5
C33—O33—V1127.98 (19)C73—O73—V2129.7 (2)
V1—N41—C42175.5 (2)V2—N81—C82168.1 (2)
N41—C42—S1179.4 (3)N81—C82—S2177.1 (3)
O1—V1—N11—C161.2 (2)N81—V2—N51—C5699.0 (2)
O33—V1—N11—C16165.7 (3)N61—V2—N51—C56178.7 (2)
O31—V1—N11—C1697.0 (2)O2—V2—N51—C52175.8 (2)
N41—V1—N11—C1698.9 (2)O73—V2—N51—C520.9 (4)
N21—V1—N11—C16179.3 (2)O71—V2—N51—C5277.3 (2)
O1—V1—N11—C12174.0 (2)N81—V2—N51—C5285.0 (2)
O33—V1—N11—C127.1 (4)N61—V2—N51—C525.23 (19)
O31—V1—N11—C1275.8 (2)C56—N51—C52—C530.2 (4)
N41—V1—N11—C1288.3 (2)V2—N51—C52—C53176.0 (2)
N21—V1—N11—C126.51 (19)C56—N51—C52—C62178.7 (2)
C16—N11—C12—C130.6 (4)V2—N51—C52—C625.1 (3)
V1—N11—C12—C13172.2 (2)N51—C52—C53—C540.5 (4)
C16—N11—C12—C22178.6 (2)C62—C52—C53—C54179.3 (3)
V1—N11—C12—C225.8 (3)C52—C53—C54—C550.5 (5)
N11—C12—C13—C141.4 (4)C53—C54—C55—C560.1 (5)
C22—C12—C13—C14176.4 (3)C52—N51—C56—C550.9 (4)
C12—C13—C14—C152.4 (5)V2—N51—C56—C55175.2 (2)
C13—C14—C15—C161.5 (5)C54—C55—C56—N510.9 (5)
C12—N11—C16—C151.6 (4)O2—V2—N61—C66171.3 (4)
V1—N11—C16—C15171.3 (2)O73—V2—N61—C666.3 (2)
C14—C15—C16—N110.5 (4)O71—V2—N61—C6695.0 (2)
O1—V1—N21—C26177.4 (4)N81—V2—N61—C6679.0 (2)
O33—V1—N21—C265.0 (2)N51—V2—N61—C66175.5 (3)
O31—V1—N21—C2693.7 (2)O2—V2—N61—C628.9 (5)
N41—V1—N21—C2683.4 (2)O73—V2—N61—C62173.5 (2)
N11—V1—N21—C26179.3 (2)O71—V2—N61—C6284.9 (2)
O1—V1—N21—C228.4 (5)N81—V2—N61—C62101.2 (2)
O33—V1—N21—C22169.25 (19)N51—V2—N61—C624.72 (19)
O31—V1—N21—C2280.50 (19)C66—N61—C62—C632.4 (4)
N41—V1—N21—C22102.4 (2)V2—N61—C62—C63177.4 (2)
N11—V1—N21—C226.50 (18)C66—N61—C62—C52176.5 (2)
C26—N21—C22—C232.0 (4)V2—N61—C62—C523.7 (3)
V1—N21—C22—C23172.5 (2)N51—C52—C62—N610.6 (3)
C26—N21—C22—C12179.7 (2)C53—C52—C62—N61179.5 (3)
V1—N21—C22—C125.7 (3)N51—C52—C62—C63178.2 (3)
N11—C12—C22—N210.4 (3)C53—C52—C62—C630.7 (4)
C13—C12—C22—N21178.3 (3)N61—C62—C63—C641.6 (4)
N11—C12—C22—C23177.9 (3)C52—C62—C63—C64177.2 (3)
C13—C12—C22—C230.0 (4)C62—C63—C64—C650.4 (4)
N21—C22—C23—C241.2 (4)C63—C64—C65—C661.6 (5)
C12—C22—C23—C24179.4 (3)C62—N61—C66—C651.2 (4)
C22—C23—C24—C250.9 (4)V2—N61—C66—C65178.6 (2)
C23—C24—C25—C262.0 (4)C64—C65—C66—N610.8 (5)
C22—N21—C26—C250.8 (4)C72—C71—O71—V24.3 (4)
V1—N21—C26—C25173.3 (2)C74—C71—O71—V2176.3 (2)
C24—C25—C26—N211.3 (4)O2—V2—O71—C71100.9 (3)
O1—V1—O31—C3193.1 (2)O73—V2—O71—C713.1 (2)
O33—V1—O31—C3112.0 (2)N81—V2—O71—C7173.2 (4)
N41—V1—O31—C3190.9 (4)N51—V2—O71—C71166.5 (2)
N11—V1—O31—C31174.9 (2)N61—V2—O71—C7193.3 (2)
N21—V1—O31—C31101.4 (2)O71—C71—C72—C733.5 (5)
V1—O31—C31—C326.8 (4)C74—C71—C72—C73177.2 (3)
V1—O31—C31—C34172.87 (19)C71—C72—C73—O732.2 (5)
O31—C31—C32—C333.7 (5)C71—C72—C73—C75177.3 (3)
C34—C31—C32—C33176.7 (3)C72—C73—O73—V21.8 (4)
C31—C32—C33—O333.7 (5)C75—C73—O73—V2177.6 (2)
C31—C32—C33—C35175.6 (3)O2—V2—O73—C7396.7 (3)
C32—C33—O33—V17.0 (4)O71—V2—O73—C731.9 (3)
C35—C33—O33—V1173.7 (2)N81—V2—O73—C73165.1 (3)
O1—V1—O33—C3386.3 (2)N51—V2—O73—C7378.1 (4)
O31—V1—O33—C3312.0 (2)N61—V2—O73—C7383.9 (3)
N41—V1—O33—C33176.3 (2)O2—V2—N81—C82145.4 (12)
N11—V1—O33—C3380.1 (4)O73—V2—N81—C8241.9 (12)
N21—V1—O33—C3393.1 (2)O71—V2—N81—C8228.7 (14)
O2—V2—N51—C560.3 (2)N51—V2—N81—C82121.0 (12)
O73—V2—N51—C56175.2 (3)N61—V2—N81—C8248.8 (12)
O71—V2—N51—C5698.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.952.553.500 (4)179
C23—H23···O2i0.952.523.468 (4)177
C53—H53···O10.952.403.323 (4)163
C63—H63···O10.952.523.441 (4)165
C72—H72···N81ii0.952.533.457 (4)166
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[V(C5H7O2)(NCS)O(C10H8N2)]
Mr380.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)15.0522 (10), 29.721 (2), 15.3753 (10)
V3)6878.4 (8)
Z16
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.18 × 0.10 × 0.04
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.882, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
40301, 7898, 5904
Rint0.064
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.135, 1.13
No. of reflections7898
No. of parameters437
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.69

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
V1—O11.603 (2)V2—O21.608 (2)
V1—O312.000 (2)V2—O711.998 (2)
V1—O331.967 (2)V2—O731.963 (2)
V1—N112.133 (2)V2—N512.142 (2)
V1—N212.270 (2)V2—N612.261 (2)
V1—N412.044 (3)V2—N812.032 (3)
N41—C421.164 (4)N81—C821.161 (4)
C42—S11.633 (3)C82—S21.626 (3)
N11—V1—N2172.92 (8)N51—V2—N6173.02 (9)
V1—N41—C42175.5 (2)V2—N81—C82168.1 (2)
N41—C42—S1179.4 (3)N81—C82—S2177.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.952.553.500 (4)179
C23—H23···O2i0.952.523.468 (4)177
C53—H53···O10.952.403.323 (4)163
C63—H63···O10.952.523.441 (4)165
C72—H72···N81ii0.952.533.457 (4)166
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y, z+1/2.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationKavitha, S. J., Panchanatheswaran, K., Dale, S. H. & Elsegood, M. R. J. (2006). Inorg. Chim. Acta, 359, 1314–1320.  Web of Science CSD CrossRef CAS Google Scholar
First citationKavitha, S. J., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2006a). Acta Cryst. E62, m529–m531.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, S. J., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2006b). Acta Cryst. C62, m116–m118.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds