Download citation
Download citation
link to html
The copper(II) centre in the mononuclear title complex, [Cu(C7H3NO4)(C14H12N2)]·3H2O, is surrounded by one bidentate 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand and one tridentate pyridine-2,6-dicarboxylate ligand, and exhibits a distorted square-pyramidal geometry. The crystal packing involves both hydrogen-bonding and π–π inter­actions. The solvent water mol­ecules link monomers to one another through hydrogen-bonding inter­actions, forming ladder-like chains in the bc plane. Face-to-face and slipped π–π inter­actions also occur between dmphen rings of neighboring mol­ecules and are responsible for inter­chain packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010503146X/fa1158sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010503146X/fa1158Isup2.hkl
Contains datablock I

CCDC reference: 290560

Comment top

Pyridine-2,6-dicarboxylic acid (dipicolinic acid) is regarded as the key component for the high heat resistance of bacterial spores, owing to its ability to build stabilizing structures with divalent metals (Chung et al., 1971). Metal complexes of this ligand have been studied extensively because of its ability to form stable chelates (Ducommun et al., 1989) with different coordination modes, such as bidentate (Zhou & Kostic, 1988) or bridging (Sengupta et al., 1983). Since rare-earth metals are known to have antitumor activity (Zhou et al., 2001), a series of isomorphous dipicolinate complexes with these metals were synthesized and the structures were reported (Chen et al., 2002; Okabe et al., 2002). To clarify further the coordination modes of chelates of pyridine-2,6-dicarboxylic acid with biologically important transition metal ions, we report here the synthesis and crystal structure of a mononuclear copper dipicolinate (dpc) compound with 2,9-dimethyl-1,10-phenanthroline (dmphen).

The structure of the title compound, (I) (Fig. 1), consists of a neutral [Cu(dpc)(dmphen)] unit and three solvent water molecules. The dpc anion with its two carboxylate groups in ortho-positions with respect to the pyridine N atom is potentially tridentate. The copper ion is bonded to the pyridine N atom [Cu1—N3 = 1.904 (2) Å] as well as to one O atom of each carboxylate group [Cu1—O1 = 2.0343 (18) Å and Cu1—O2 = 2.019 (2) Å]. The dmphen ligand chelates the copper center [Cu1—N1 = 1.987 (2) and Cu1—N2 = 2.228 (2) Å]. These bond distances are comparable to those found in other copper–dipicolinate complexes (Okabe & Oya, 2000; Altin et al., 2004; Chaigneau et al., 2004). The degree of trigonality τ = 0.1 indicates that the CuII ion lies in a distorted square-pyramidal environment. [As defined by Addison et al. (1984), τ is 0 for the regular square-pyramidal (SQP) structure and increases to 1 for the trigonal-bipyramidal (TBP) structure.] The dmphen atom N2 occupies the axial position, while the base is formed by the two carboxylate O atoms, one pyridine N atom from the dpc anion and one N atom from the dmphen ligand. The Cu atom lies 0.1681 (18) Å out of the basal plane, which is distorted from a square by the double chelate formed by dpc and which, furthermore, is not completly planar [maximum atomic deviation 0.0512 (12) Å].

The fact that the Cu1—N3 distance is significantly shorter than the two Cu—N(dmphen) distances indicates that atom N3 is the strongest donor site, since the two carboxylate groups in ortho positions enhance the basicity of atom N3. The dpc chelate angles are 79.71 (8) and 80.33 (8)°, which are comparable to those found in other Cu–dipicolinate complexes (Okabe & Oya, 2000; Chaigneau et al., 2004). The internal geometry of the dmphen ligand is similar to that established in previous studies (Kon et al., 1987; Kovalevsky et al., 2003). All atoms in the dpc anion are also nearly coplanar, with a maximum deviation of 0.0648 (17) Å for atom O1. The dihedral angle between the dmphen and dpc planes is 80.29 (4)°.

Both intermolecular hydrogen-bonding and ππ interactions combine to stabilize the extended structure (Fig. 2). The uncoordinated water molecules link molecules of the complex, acting as hydrogen-bond donors to the unligated carboxylate O atoms (Table 2). These interactions mediate the formation of ladder-type chains in the bc plane (Fig. 2). Adjacent chains are linked by ππ interactions, which are either face-to-face interactions [CgA···CgAv = 3.6307 (15) Å; CgA is the center of the C4–C7/C11/C12 ring; symmetry code: (v) 1 − x, −y, −z] or slipped interactions [CgB···CgCvi = 3.7184 (15) Å; CgB is the center of the C1–C4/C12/N1 ring and CgC is the center of the C7–C10/N2/C11; symmetry code: (vi) 1 − x, −1/2 + y, 1/2 − z]. Ring A is oriented in such a way that the perpendicular distance from A to Av is 3.428 Å, the closest interatomic distance being C12···C7v [3.451 (4) Å]. The perpendicular distance from ring B to ring Cvi is 3.281 Å, the closest interatomic distance being C12···C9vi [3.392 (4) Å]; the dihedral angle between these rings is 14.99 (6)°.

Experimental top

To an EtOH/H2O solution (30 ml, ca 1:1 v/v) containing CuCl2·4H2O (1 mmol) and disodium dipicolinate (1 mmol), 2,9-dimethyl-1,10-phenanthroline (1 mmol) was added slowly with continuous stirring. The resulting solution was refluxed for 1 h and then filtered. The blue filtrate was allowed to stand for 21 d at room temperature, after which time blue crystals of (I) suitable for X-ray difraction analysis were harvested.

Refinement top

H atoms attached to C atoms were placed at calculated positions (C—H = 0.93 and 0.96 Å) and were allowed to ride on their parent atoms [Uiso(H) = 1.2eq(C) and 1.5eq(Cmethyl)]. The water H atoms were located in a difference map and refined with O—H and Hwater···Hwater distances restrained to 0.85 (3) and 1.35 (3) Å, and with Uiso(H)=1.5Ueq(O).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : A view of the title compound, showing the atom labelling scheme and 40% probability displacement ellipsoids. The water molecules have been omitted for clarity.
[Figure 2] Fig. 2. : A partial view of the packing, showing hydrogen-bond and ππ interactions as dashed lines. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (v) 1 − x, −y, −z; (vi) 1 − x, −1/2 + y, 1/2 − z.]
(2,9-Dimethyl-1,10-phenanthroline-κ2,N·N')(dipicolinato- κ3O2,N,O6)copper(II) trihydrate top
Crystal data top
[Cu(C7H3NO4)(C14H12N2)]·3H2OF(000) = 1012
Mr = 490.96Dx = 1.595 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4580 reflections
a = 14.6634 (12) Åθ = 1.8–24.9°
b = 10.8960 (6) ŵ = 1.12 mm1
c = 13.6985 (11) ÅT = 297 K
β = 110.866 (6)°Prism, blue
V = 2045.1 (3) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
STOE IPDS-II
diffractometer
4848 independent reflections
Radiation source: fine-focus sealed tube3555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
Detector resolution: 6.67 pixels mm-1θmax = 27.9°, θmin = 2.4°
ω scansh = 1919
Absorption correction: integration
(X-RED32, Stoe & Cie, 2002)
k = 1414
Tmin = 0.95, Tmax = 0.98l = 1717
17419 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0533P)2]
where P = (Fo2 + 2Fc2)/3
4848 reflections(Δ/σ)max = 0.041
309 parametersΔρmax = 0.40 e Å3
9 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Cu(C7H3NO4)(C14H12N2)]·3H2OV = 2045.1 (3) Å3
Mr = 490.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6634 (12) ŵ = 1.12 mm1
b = 10.8960 (6) ÅT = 297 K
c = 13.6985 (11) Å0.3 × 0.2 × 0.1 mm
β = 110.866 (6)°
Data collection top
STOE IPDS-II
diffractometer
4848 independent reflections
Absorption correction: integration
(X-RED32, Stoe & Cie, 2002)
3555 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.98Rint = 0.092
17419 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0429 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.40 e Å3
4848 reflectionsΔρmin = 0.74 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.27607 (2)0.01166 (3)0.09910 (2)0.03404 (10)
C10.3511 (2)0.2549 (2)0.0686 (2)0.0392 (6)
C20.4248 (2)0.3380 (2)0.0715 (2)0.0477 (7)
H20.40930.42030.05640.057*
C30.5183 (2)0.3001 (3)0.0961 (2)0.0490 (7)
H30.56700.35660.09960.059*
C40.5416 (2)0.1751 (3)0.1163 (2)0.0414 (6)
C50.6372 (2)0.1258 (3)0.1399 (2)0.0517 (7)
H50.68810.17790.14220.062*
C60.6549 (2)0.0050 (3)0.1590 (2)0.0534 (8)
H60.71820.02460.17630.064*
C70.5780 (2)0.0777 (3)0.1529 (2)0.0450 (6)
C80.5912 (3)0.2058 (3)0.1682 (2)0.0537 (8)
H80.65330.24000.18740.064*
C90.5124 (3)0.2784 (3)0.1546 (2)0.0500 (7)
H90.52060.36280.16360.060*
C100.4189 (2)0.2278 (2)0.1272 (2)0.0416 (6)
C110.48273 (19)0.0337 (2)0.12848 (18)0.0349 (5)
C120.46411 (19)0.0961 (2)0.11107 (19)0.0341 (5)
C130.2476 (3)0.2945 (3)0.0418 (3)0.0587 (8)
H13A0.22030.25450.08750.088*
H13B0.24520.38180.05000.088*
H13C0.21080.27260.02920.088*
C140.3310 (3)0.3059 (3)0.1060 (2)0.0539 (8)
H14A0.29300.30410.03260.081*
H14B0.35060.38870.12700.081*
H14C0.29250.27530.14450.081*
C150.16382 (19)0.0903 (2)0.20701 (19)0.0337 (5)
C160.0902 (2)0.1587 (2)0.2187 (2)0.0430 (6)
H160.08890.17500.28480.052*
C170.0177 (2)0.2031 (3)0.1305 (2)0.0463 (7)
H170.03290.24950.13730.056*
C180.0198 (2)0.1790 (2)0.0321 (2)0.0425 (6)
H180.02890.20840.02760.051*
C190.09610 (19)0.1102 (2)0.02527 (19)0.0333 (5)
C200.2518 (2)0.0333 (2)0.2907 (2)0.0363 (5)
C210.1148 (2)0.0702 (2)0.0717 (2)0.0365 (5)
N10.37136 (16)0.13601 (17)0.08878 (16)0.0327 (4)
N20.40487 (16)0.10646 (18)0.11619 (16)0.0346 (4)
N30.16602 (15)0.07023 (17)0.11152 (16)0.0320 (4)
O10.31235 (14)0.01866 (16)0.25682 (14)0.0403 (4)
O20.19180 (15)0.00595 (18)0.05317 (15)0.0453 (4)
O30.26026 (16)0.04276 (19)0.38309 (15)0.0492 (5)
O40.05724 (16)0.09917 (18)0.15889 (15)0.0480 (5)
O50.1347 (2)0.7793 (3)0.2328 (3)0.0855 (8)
H5A0.117 (4)0.700 (2)0.217 (4)0.128*
H5B0.079 (3)0.817 (4)0.203 (4)0.128*
O60.1103 (2)0.0615 (3)0.4778 (2)0.0787 (8)
H6A0.058 (2)0.041 (5)0.440 (4)0.118*
H6B0.154 (3)0.049 (5)0.454 (4)0.118*
O70.0826 (2)0.5276 (2)0.1669 (2)0.0702 (7)
H7A0.098 (4)0.489 (4)0.127 (3)0.105*
H7B0.072 (4)0.487 (4)0.212 (3)0.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02848 (16)0.04103 (17)0.03474 (16)0.00414 (13)0.01386 (12)0.00220 (12)
C10.0437 (15)0.0369 (12)0.0413 (14)0.0019 (11)0.0204 (12)0.0042 (10)
C20.0586 (19)0.0404 (13)0.0484 (16)0.0108 (13)0.0243 (14)0.0009 (11)
C30.0513 (18)0.0555 (16)0.0439 (16)0.0242 (14)0.0213 (14)0.0066 (12)
C40.0332 (14)0.0629 (16)0.0299 (12)0.0133 (12)0.0134 (11)0.0025 (11)
C50.0313 (14)0.087 (2)0.0393 (14)0.0143 (14)0.0151 (12)0.0027 (14)
C60.0290 (13)0.094 (2)0.0380 (14)0.0046 (15)0.0127 (11)0.0020 (15)
C70.0371 (14)0.0693 (17)0.0294 (13)0.0122 (13)0.0129 (11)0.0007 (11)
C80.0554 (19)0.0713 (19)0.0367 (15)0.0310 (16)0.0193 (14)0.0045 (13)
C90.066 (2)0.0495 (14)0.0355 (14)0.0205 (15)0.0201 (14)0.0037 (11)
C100.0552 (18)0.0403 (12)0.0308 (12)0.0092 (12)0.0172 (12)0.0005 (10)
C110.0321 (12)0.0471 (13)0.0266 (11)0.0046 (10)0.0118 (10)0.0014 (9)
C120.0302 (12)0.0452 (12)0.0294 (11)0.0031 (10)0.0137 (10)0.0003 (9)
C130.0504 (19)0.0460 (15)0.085 (2)0.0077 (13)0.0298 (18)0.0155 (15)
C140.071 (2)0.0399 (14)0.0494 (17)0.0040 (14)0.0190 (16)0.0012 (12)
C150.0358 (13)0.0324 (11)0.0353 (12)0.0036 (10)0.0159 (11)0.0035 (9)
C160.0444 (16)0.0461 (13)0.0436 (14)0.0055 (12)0.0221 (13)0.0032 (11)
C170.0408 (15)0.0496 (14)0.0524 (17)0.0146 (12)0.0215 (14)0.0010 (12)
C180.0370 (15)0.0465 (13)0.0431 (14)0.0080 (12)0.0133 (12)0.0051 (11)
C190.0312 (12)0.0345 (11)0.0360 (12)0.0023 (9)0.0140 (10)0.0005 (9)
C200.0363 (13)0.0384 (12)0.0350 (12)0.0003 (10)0.0136 (11)0.0002 (9)
C210.0357 (13)0.0412 (12)0.0344 (12)0.0027 (11)0.0147 (11)0.0004 (10)
N10.0315 (11)0.0362 (9)0.0327 (10)0.0016 (8)0.0143 (9)0.0017 (8)
N20.0368 (12)0.0379 (10)0.0301 (10)0.0023 (8)0.0133 (9)0.0012 (8)
N30.0307 (10)0.0335 (9)0.0337 (10)0.0001 (8)0.0137 (8)0.0010 (8)
O10.0367 (10)0.0494 (9)0.0358 (9)0.0091 (8)0.0141 (8)0.0026 (7)
O20.0383 (10)0.0643 (11)0.0369 (9)0.0104 (9)0.0178 (8)0.0021 (8)
O30.0496 (12)0.0664 (12)0.0334 (10)0.0041 (10)0.0169 (9)0.0005 (8)
O40.0501 (12)0.0562 (11)0.0352 (10)0.0059 (9)0.0123 (9)0.0043 (8)
O50.0615 (18)0.0929 (19)0.098 (2)0.0085 (16)0.0237 (17)0.0039 (18)
O60.0603 (17)0.107 (2)0.0774 (19)0.0086 (17)0.0352 (15)0.0035 (16)
O70.0786 (19)0.0784 (16)0.0571 (15)0.0038 (14)0.0286 (14)0.0036 (12)
Geometric parameters (Å, º) top
Cu1—N22.228 (2)C12—N11.355 (3)
Cu1—N31.904 (2)C13—H13A0.9600
Cu1—N11.987 (2)C13—H13B0.9600
Cu1—O12.0343 (18)C13—H13C0.9600
Cu1—O22.019 (2)C14—H14A0.9600
C1—N11.336 (3)C14—H14B0.9600
C1—C21.398 (4)C14—H14C0.9600
C1—C131.493 (4)C15—N31.338 (3)
C2—C31.355 (5)C15—C161.368 (4)
C2—H20.9300C15—C201.520 (4)
C3—C41.407 (4)C16—C171.381 (4)
C3—H30.9300C16—H160.9300
C4—C121.407 (4)C17—C181.384 (4)
C4—C51.426 (4)C17—H170.9300
C5—C61.350 (5)C18—C191.378 (4)
C5—H50.9300C18—H180.9300
C6—C71.423 (4)C19—N31.332 (3)
C6—H60.9300C19—C211.513 (3)
C7—C111.400 (4)C20—O31.231 (3)
C7—C81.415 (4)C20—O11.272 (3)
C8—C91.357 (5)C21—O41.233 (3)
C8—H80.9300C21—O21.275 (3)
C9—C101.399 (4)O5—H5A0.91 (3)
C9—H90.9300O5—H5B0.88 (3)
C10—N21.338 (3)O6—H6A0.79 (3)
C10—C141.485 (4)O6—H6B0.82 (3)
C11—N21.350 (3)O7—H7A0.78 (2)
C11—C121.444 (3)O7—H7B0.83 (2)
N3—Cu1—N1164.96 (8)C1—C13—H13B109.5
N3—Cu1—O279.71 (8)H13A—C13—H13B109.5
N1—Cu1—O2100.28 (8)C1—C13—H13C109.5
N3—Cu1—O180.33 (8)H13A—C13—H13C109.5
N1—Cu1—O197.21 (8)H13B—C13—H13C109.5
O2—Cu1—O1158.89 (8)C10—C14—H14A109.5
N3—Cu1—N2115.70 (8)C10—C14—H14B109.5
N1—Cu1—N279.06 (8)H14A—C14—H14B109.5
O2—Cu1—N2103.75 (8)C10—C14—H14C109.5
O1—Cu1—N291.08 (8)H14A—C14—H14C109.5
N1—C1—C2120.6 (3)H14B—C14—H14C109.5
N1—C1—C13117.5 (2)N3—C15—C16119.9 (2)
C2—C1—C13121.8 (2)N3—C15—C20111.2 (2)
C3—C2—C1120.9 (3)C16—C15—C20128.9 (2)
C3—C2—H2119.6C15—C16—C17118.8 (3)
C1—C2—H2119.6C15—C16—H16120.6
C2—C3—C4119.7 (3)C17—C16—H16120.6
C2—C3—H3120.1C16—C17—C18120.6 (3)
C4—C3—H3120.1C16—C17—H17119.7
C12—C4—C3116.6 (3)C18—C17—H17119.7
C12—C4—C5119.4 (3)C19—C18—C17118.0 (3)
C3—C4—C5124.0 (3)C19—C18—H18121.0
C6—C5—C4121.2 (3)C17—C18—H18121.0
C6—C5—H5119.4N3—C19—C18120.3 (2)
C4—C5—H5119.4N3—C19—C21111.2 (2)
C5—C6—C7120.8 (3)C18—C19—C21128.4 (2)
C5—C6—H6119.6O3—C20—O1125.8 (2)
C7—C6—H6119.6O3—C20—C15119.3 (2)
C11—C7—C8116.4 (3)O1—C20—C15115.0 (2)
C11—C7—C6120.0 (3)O4—C21—O2125.8 (2)
C8—C7—C6123.5 (3)O4—C21—C19120.1 (2)
C9—C8—C7119.3 (3)O2—C21—C19114.1 (2)
C9—C8—H8120.3C1—N1—C12119.3 (2)
C7—C8—H8120.3C1—N1—Cu1124.49 (19)
C8—C9—C10120.8 (3)C12—N1—Cu1116.08 (15)
C8—C9—H9119.6C10—N2—C11118.4 (2)
C10—C9—H9119.6C10—N2—Cu1132.33 (19)
N2—C10—C9121.1 (3)C11—N2—Cu1108.77 (15)
N2—C10—C14117.1 (3)C19—N3—C15122.3 (2)
C9—C10—C14121.7 (3)C19—N3—Cu1118.89 (16)
N2—C11—C7123.8 (2)C15—N3—Cu1118.70 (18)
N2—C11—C12116.9 (2)C20—O1—Cu1114.73 (16)
C7—C11—C12119.2 (2)C21—O2—Cu1115.49 (16)
N1—C12—C4122.8 (2)H5A—O5—H5B102 (3)
N1—C12—C11117.9 (2)H6A—O6—H6B114 (4)
C4—C12—C11119.3 (2)H7A—O7—H7B114 (4)
C1—C13—H13A109.5
N1—C1—C2—C30.8 (4)O1—Cu1—N1—C194.7 (2)
C13—C1—C2—C3179.9 (3)N2—Cu1—N1—C1175.6 (2)
C1—C2—C3—C41.7 (4)N3—Cu1—N1—C12160.2 (3)
C2—C3—C4—C121.0 (4)O2—Cu1—N1—C12111.20 (18)
C2—C3—C4—C5178.2 (3)O1—Cu1—N1—C1280.69 (18)
C12—C4—C5—C61.1 (4)N2—Cu1—N1—C129.02 (17)
C3—C4—C5—C6179.8 (3)C9—C10—N2—C112.3 (4)
C4—C5—C6—C72.0 (4)C14—C10—N2—C11175.8 (2)
C5—C6—C7—C111.0 (4)C9—C10—N2—Cu1168.81 (19)
C5—C6—C7—C8177.6 (3)C14—C10—N2—Cu113.1 (4)
C11—C7—C8—C92.7 (4)C7—C11—N2—C100.4 (4)
C6—C7—C8—C9176.0 (3)C12—C11—N2—C10177.1 (2)
C7—C8—C9—C101.0 (4)C7—C11—N2—Cu1172.6 (2)
C8—C9—C10—N21.6 (4)C12—C11—N2—Cu19.8 (3)
C8—C9—C10—C14176.4 (3)N3—Cu1—N2—C105.0 (3)
C8—C7—C11—N22.0 (4)N1—Cu1—N2—C10178.1 (2)
C6—C7—C11—N2176.7 (2)O2—Cu1—N2—C1080.0 (2)
C8—C7—C11—C12179.5 (2)O1—Cu1—N2—C1084.8 (2)
C6—C7—C11—C120.8 (4)N3—Cu1—N2—C11166.74 (15)
C3—C4—C12—N10.6 (4)N1—Cu1—N2—C1110.17 (15)
C5—C4—C12—N1179.8 (2)O2—Cu1—N2—C11108.20 (16)
C3—C4—C12—C11178.5 (2)O1—Cu1—N2—C1186.96 (16)
C5—C4—C12—C110.7 (4)C18—C19—N3—C152.7 (4)
N2—C11—C12—N13.1 (3)C21—C19—N3—C15177.6 (2)
C7—C11—C12—N1179.2 (2)C18—C19—N3—Cu1174.35 (19)
N2—C11—C12—C4176.0 (2)C21—C19—N3—Cu15.4 (3)
C7—C11—C12—C41.6 (3)C16—C15—N3—C193.0 (4)
N3—C15—C16—C171.7 (4)C20—C15—N3—C19179.2 (2)
C20—C15—C16—C17179.0 (3)C16—C15—N3—Cu1173.99 (19)
C15—C16—C17—C180.2 (4)C20—C15—N3—Cu13.8 (3)
C16—C17—C18—C190.2 (4)N1—Cu1—N3—C1998.1 (4)
C17—C18—C19—N31.0 (4)O2—Cu1—N3—C196.71 (18)
C17—C18—C19—C21179.3 (3)O1—Cu1—N3—C19179.78 (19)
N3—C15—C20—O3179.5 (2)N2—Cu1—N3—C1993.70 (18)
C16—C15—C20—O33.0 (4)N1—Cu1—N3—C1584.8 (4)
N3—C15—C20—O12.2 (3)O2—Cu1—N3—C15176.17 (19)
C16—C15—C20—O1175.3 (3)O1—Cu1—N3—C153.09 (17)
N3—C19—C21—O4180.0 (2)N2—Cu1—N3—C1583.42 (18)
C18—C19—C21—O40.3 (4)O3—C20—O1—Cu1178.0 (2)
N3—C19—C21—O20.7 (3)C15—C20—O1—Cu10.1 (3)
C18—C19—C21—O2179.5 (3)N3—Cu1—O1—C201.66 (17)
C2—C1—N1—C120.8 (4)N1—Cu1—O1—C20166.65 (18)
C13—C1—N1—C12178.5 (3)O2—Cu1—O1—C2020.9 (3)
C2—C1—N1—Cu1174.50 (19)N2—Cu1—O1—C20114.24 (18)
C13—C1—N1—Cu16.2 (4)O4—C21—O2—Cu1174.8 (2)
C4—C12—N1—C11.5 (4)C19—C21—O2—Cu16.0 (3)
C11—C12—N1—C1177.6 (2)N3—Cu1—O2—C217.00 (18)
C4—C12—N1—Cu1174.20 (18)N1—Cu1—O2—C21171.71 (19)
C11—C12—N1—Cu16.7 (3)O1—Cu1—O2—C2126.3 (3)
N3—Cu1—N1—C115.2 (5)N2—Cu1—O2—C21107.16 (19)
O2—Cu1—N1—C173.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O70.91 (3)2.00 (3)2.902 (4)173 (5)
O5—H5B···O4i0.88 (3)2.08 (3)2.945 (4)169 (6)
O6—H6A···O7ii0.79 (3)2.06 (3)2.841 (5)168 (6)
O6—H6B···O30.82 (3)2.12 (3)2.932 (4)172 (6)
O7—H7A···O6iii0.78 (2)2.19 (3)2.927 (4)158 (5)
O7—H7B···O4iv0.83 (2)2.07 (3)2.894 (3)172 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C7H3NO4)(C14H12N2)]·3H2O
Mr490.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)14.6634 (12), 10.8960 (6), 13.6985 (11)
β (°) 110.866 (6)
V3)2045.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerSTOE IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32, Stoe & Cie, 2002)
Tmin, Tmax0.95, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
17419, 4848, 3555
Rint0.092
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 0.99
No. of reflections4848
No. of parameters309
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.74

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—N22.228 (2)Cu1—O12.0343 (18)
Cu1—N31.904 (2)Cu1—O22.019 (2)
Cu1—N11.987 (2)
N3—Cu1—N1164.96 (8)O2—Cu1—O1158.89 (8)
N3—Cu1—O279.71 (8)N3—Cu1—N2115.70 (8)
N1—Cu1—O2100.28 (8)N1—Cu1—N279.06 (8)
N3—Cu1—O180.33 (8)O2—Cu1—N2103.75 (8)
N1—Cu1—O197.21 (8)O1—Cu1—N291.08 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O70.91 (3)2.00 (3)2.902 (4)173 (5)
O5—H5B···O4i0.88 (3)2.08 (3)2.945 (4)169 (6)
O6—H6A···O7ii0.79 (3)2.06 (3)2.841 (5)168 (6)
O6—H6B···O30.82 (3)2.12 (3)2.932 (4)172 (6)
O7—H7A···O6iii0.78 (2)2.19 (3)2.927 (4)158 (5)
O7—H7B···O4iv0.83 (2)2.07 (3)2.894 (3)172 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds