Download citation
Download citation
link to html
In the title compound, [Co(N3)2(C2H8N2)2](C6H2N3O7), the cations share NH2...NH2 edges with picrate anions via second-sphere N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105011960/fa1132sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105011960/fa1132Isup2.hkl
Contains datablock I

CCDC reference: 245528

Comment top

We are currently engaged in studies to explore cobalt(III) complexes as potential anion receptors and have previously reported the crystal structures of some cis-diazidobis(ethylenediamine)cobalt(III) salts (Sharma et al., 2003). The [cis-Co(en)2(N3)2]+ cation (en is ethylenediamine) has also been characterized as a nitrate salt (Padmanabhan et al., 1968; Kastner et al., 1989). In continuation of our interest in this class of compounds, we describe here the synthesis and crystal structure of the title complex salt, [cis-Co(en)2(N3)2]+(C6H2N3O7), (I) (Fig. 1).

The cation and anion moieties in (I) are segregated into layers lying approximately in the (004) plane. The [cis-Co(en)2(N3)2]+ cations form bilayers, into which the azido ligands interdigitate (Fig. 2). Within these bilayers, several N—H···N hydrogen bonds are formed with acceptor N atoms in the azide moieties (Table 1). The interactions N8—H8B···N3 and N7—H7A···N6 are formed to the terminal (non-coordinated) N atom of each azide moiety, with the N—H vector in each case being close to collinear with the N3 axis. Interactions N10—H10A···N1 and N10—H10B···N4 are formed with acceptor N atoms bound directly to atom Co1. In these cases, the geometry at the N acceptor is such that the interaction can be envisaged as involving a lone pair of electrons on an sp2-hybridized N atom.

In the layers of picrate anions, the phenyl rings lie approximately perpendicular to the layer planes, forming a herring-bone-type arrangement (Fig. 3). One NO2 group of each anion lies approximately in the plane, and the C—O bonds in adjacent molecules project alternately above and below the plane.

Of most interest from the perspective of anion–cation recognition is the arrangement of the second-sphere hydrogen-bond interactions at the interface between the picrate layers and the [cis-Co(en)2(N3)2]+ bilayers. The edge of each picrate anion that contains the phenoxo O atom interacts with an NH2···NH2 edge of an adjacent [cis-Co(en)2(N3)2]+ cation, forming complementary sets of N—H···O hydrogen bonds that are bifurcated at the N—H donor (Table 1 and Fig. 4). The remaining NO2 group also interacts essentially with a single NH2···NH2 edge, accepting N—H···O hydrogen bonds from N7—H7 that are bifurcated at the donor (Table 1 and Fig. 4). Atom O4 of this nitrate group lies approximately along the bisector of the H9A—N9—H9B angle, slightly displaced towards H9B, so that it accepts N—H···O hydrogen bonds that are bifurcated at the acceptor.

Experimental top

The complex salt [cis-Co(en)2(N3)2]NO3 was prepared according to the literature method of Staples & Tobe (1960). [cis-Co(en)2(N3)2]NO3 (1 g, 0.003 mol) was dissolved in water (100 ml) in a beaker. In a second beaker, NaOH (0.1362 g, 0.003 mol) was dissolved in a minimum amount of water, and picric acid, C6H3N3O7 (0.7116 g, 0.003 mol), was added to it. The two clear solutions were mixed and the resulting brown precipitate was filtered and dried in air. This solid was dissolved in 3:1 acetone–water mixture and slow evaporation at room temperature afforded reddish–black single crystals of (I) suitable for X-ray structure determination within one week. The complex salt (m.p. 453 K) is soluble in water and dimethylsulfoxide and fairly soluble in acetone. Elemental analysis, found: Co 12.04, C 24.80, H 3.82, N 37.25%; calculated for C10H18CoN13O7: Co 12.00, C 24.42, H 3.66, N 37.04%.

Refinement top

The largest peak in the difference density map lies in the vicinity of atom Co1. All H atoms were placed in calculated positions and allowed to ride during subsequent refinement, with C—H = 0.95 Å and N—H = 0.92 Å, and with Uiso(H) = 1.2 Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker Nonius, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular units in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A projection along [100], showing bilayers of [trans-Co(en)2(N3)2]+ cations and layers of picrate anions lying approximately in (004). N—H···N hydrogen bonds are depicted as dashed lines in the central [trans-Co(en)2(N3)2]+ bilayer and the acceptor atoms are labelled. Atoms N1, N3 and N4 are at the symmetry positions (1/2 − x, 1 − y, 1/2 + z), (1 − x, 1/2 + y, 1/2 − z) and (x, 1/2 − y, 1/2 + z), respectively. H atoms bound to C atoms have been omitted for clarity.
[Figure 3] Fig. 3. A projection along [001] onto the plane of a single layer of picrate anions, showing the herring-bone-type arrangement.
[Figure 4] Fig. 4. Second-sphere hydrogen-bond interactions between the cationic and anionic moieties. [Symmetry code: (i) −x, 1/2 + y, 1/2 − z.]
cis-diazidobis(ethylenediamine-κ2N,N')cobalt(III) picrate top
Crystal data top
[Co(C2H8N2)2(N3)2](C6H2N3O7)F(000) = 2016
Mr = 491.30Dx = 1.799 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6972 reflections
a = 9.1229 (3) Åθ = 2.7–31.3°
b = 12.0980 (5) ŵ = 1.02 mm1
c = 32.8793 (12) ÅT = 180 K
V = 3628.9 (2) Å3Block, red-black
Z = 80.25 × 0.25 × 0.20 mm
Data collection top
Bruker Nonius X8 APEX-II CCD area-detector
diffractometer
4649 independent reflections
Radiation source: fine-focus sealed tube3930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
thin–slice ω and ϕ scansθmax = 29.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS version 2.10; Sheldrick, 2003) Ratio of minimum to maximum apparent transmission = 0.855478
h = 1212
Tmin = 0.703, Tmax = 0.822k = 1513
20066 measured reflectionsl = 4344
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0559P)2 + 4.5267P]
where P = (Fo2 + 2Fc2)/3
4649 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Co(C2H8N2)2(N3)2](C6H2N3O7)V = 3628.9 (2) Å3
Mr = 491.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.1229 (3) ŵ = 1.02 mm1
b = 12.0980 (5) ÅT = 180 K
c = 32.8793 (12) Å0.25 × 0.25 × 0.20 mm
Data collection top
Bruker Nonius X8 APEX-II CCD area-detector
diffractometer
4649 independent reflections
Absorption correction: multi-scan
(SADABS version 2.10; Sheldrick, 2003) Ratio of minimum to maximum apparent transmission = 0.855478
3930 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.822Rint = 0.020
20066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 1.39 e Å3
4649 reflectionsΔρmin = 0.43 e Å3
280 parameters
Special details top

Experimental. All H atoms placed geometrically and refined using a riding model.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.09138 (3)0.25250 (2)0.061765 (8)0.02026 (10)
N10.0235 (2)0.27566 (16)0.01206 (5)0.0272 (4)
N20.0140 (2)0.34764 (18)0.01103 (5)0.0315 (4)
N30.0433 (3)0.4157 (2)0.03437 (7)0.0515 (7)
N40.1962 (2)0.12737 (16)0.03752 (5)0.0276 (4)
N50.1718 (2)0.09472 (17)0.00394 (6)0.0283 (4)
N60.1588 (3)0.0594 (2)0.02838 (7)0.0493 (6)
N70.0647 (2)0.15235 (17)0.07961 (6)0.0280 (4)
H7A0.08910.10480.05890.034*
H7B0.03310.11110.10140.034*
N80.0199 (2)0.36823 (17)0.08980 (6)0.0290 (4)
H8A0.04140.40790.10660.035*
H8B0.05990.41600.07110.035*
N90.2157 (2)0.22658 (15)0.11012 (5)0.0232 (4)
H9A0.17620.26170.13240.028*
H9B0.22070.15210.11560.028*
N100.2450 (2)0.35599 (16)0.04524 (5)0.0268 (4)
H10A0.29770.32640.02400.032*
H10B0.20300.42090.03640.032*
C10.1944 (3)0.2189 (3)0.09141 (8)0.0416 (6)
H1A0.24840.24360.06690.050*
H1B0.26150.17450.10850.050*
C20.1394 (3)0.3153 (3)0.11441 (8)0.0429 (6)
H2A0.10070.29130.14110.051*
H2B0.21980.36870.11910.051*
C30.3646 (2)0.2706 (2)0.10168 (7)0.0271 (4)
H3A0.42030.21830.08440.033*
H3B0.41910.28150.12740.033*
C40.3448 (2)0.3791 (2)0.08002 (7)0.0298 (5)
H4A0.30100.43470.09850.036*
H4B0.44020.40740.07020.036*
O10.1538 (2)0.40324 (16)0.16432 (5)0.0394 (4)
O20.0152 (3)0.57057 (17)0.14385 (5)0.0506 (6)
O30.1548 (2)0.6410 (2)0.18950 (6)0.0528 (6)
O40.0664 (3)0.5959 (2)0.32876 (6)0.0584 (6)
O50.0804 (2)0.47089 (19)0.35122 (5)0.0459 (5)
O60.3140 (3)0.24616 (19)0.19832 (6)0.0608 (7)
O70.3777 (2)0.27011 (15)0.26040 (5)0.0360 (4)
N110.0554 (2)0.57939 (16)0.17922 (6)0.0294 (4)
N120.0209 (2)0.51990 (19)0.32298 (6)0.0351 (5)
N130.3002 (2)0.29272 (16)0.23090 (5)0.0257 (4)
C50.1236 (2)0.42980 (18)0.19980 (6)0.0235 (4)
C60.0195 (2)0.51616 (17)0.21078 (6)0.0229 (4)
C70.0144 (2)0.54450 (18)0.25007 (7)0.0245 (4)
H70.08330.60150.25550.029*
C80.0533 (2)0.48890 (19)0.28174 (6)0.0257 (4)
C90.1561 (2)0.40692 (18)0.27486 (6)0.0237 (4)
H90.20260.37070.29700.028*
C100.1896 (2)0.37874 (17)0.23555 (6)0.0223 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02115 (15)0.02316 (17)0.01646 (15)0.00189 (10)0.00146 (9)0.00117 (10)
N10.0293 (9)0.0302 (10)0.0222 (8)0.0003 (8)0.0037 (7)0.0032 (7)
N20.0320 (9)0.0400 (12)0.0226 (9)0.0046 (9)0.0044 (7)0.0001 (8)
N30.0617 (15)0.0595 (16)0.0332 (11)0.0290 (13)0.0074 (11)0.0142 (11)
N40.0302 (9)0.0281 (10)0.0246 (8)0.0024 (8)0.0004 (7)0.0026 (7)
N50.0298 (9)0.0272 (10)0.0279 (9)0.0050 (8)0.0028 (7)0.0028 (7)
N60.0536 (14)0.0535 (15)0.0409 (12)0.0195 (12)0.0149 (10)0.0215 (11)
N70.0293 (9)0.0313 (10)0.0235 (8)0.0056 (8)0.0012 (7)0.0030 (7)
N80.0329 (9)0.0298 (10)0.0241 (8)0.0062 (8)0.0001 (7)0.0023 (7)
N90.0271 (9)0.0227 (9)0.0199 (8)0.0005 (7)0.0001 (6)0.0000 (7)
N100.0298 (9)0.0284 (10)0.0222 (8)0.0058 (8)0.0006 (7)0.0023 (7)
C10.0301 (12)0.0544 (17)0.0402 (13)0.0022 (12)0.0090 (10)0.0040 (12)
C20.0330 (12)0.0558 (18)0.0398 (14)0.0054 (12)0.0121 (10)0.0071 (12)
C30.0234 (10)0.0350 (12)0.0230 (10)0.0018 (9)0.0005 (8)0.0028 (8)
C40.0295 (10)0.0353 (13)0.0247 (10)0.0104 (9)0.0005 (8)0.0005 (9)
O10.0514 (11)0.0466 (11)0.0202 (7)0.0175 (9)0.0005 (7)0.0059 (7)
O20.0873 (16)0.0390 (11)0.0254 (9)0.0220 (11)0.0040 (9)0.0032 (8)
O30.0474 (12)0.0616 (14)0.0494 (12)0.0283 (11)0.0001 (9)0.0083 (10)
O40.0758 (15)0.0641 (15)0.0355 (10)0.0290 (12)0.0110 (10)0.0164 (10)
O50.0572 (12)0.0603 (13)0.0201 (8)0.0061 (10)0.0001 (7)0.0043 (8)
O60.0820 (17)0.0650 (15)0.0353 (10)0.0461 (13)0.0121 (11)0.0203 (9)
O70.0349 (8)0.0369 (10)0.0363 (9)0.0089 (8)0.0066 (7)0.0003 (7)
N110.0351 (10)0.0234 (10)0.0296 (9)0.0006 (8)0.0055 (8)0.0001 (8)
N120.0388 (11)0.0407 (12)0.0259 (9)0.0002 (9)0.0058 (8)0.0106 (9)
N130.0256 (8)0.0242 (9)0.0274 (9)0.0014 (7)0.0008 (7)0.0021 (7)
C50.0255 (9)0.0248 (11)0.0203 (9)0.0009 (8)0.0010 (8)0.0030 (8)
C60.0249 (9)0.0202 (10)0.0237 (9)0.0008 (8)0.0008 (7)0.0001 (8)
C70.0244 (9)0.0214 (10)0.0277 (10)0.0007 (8)0.0023 (8)0.0044 (8)
C80.0293 (10)0.0266 (11)0.0211 (9)0.0027 (9)0.0037 (8)0.0049 (8)
C90.0252 (9)0.0255 (11)0.0205 (9)0.0024 (8)0.0004 (7)0.0013 (8)
C100.0214 (9)0.0218 (10)0.0238 (9)0.0005 (8)0.0011 (7)0.0045 (8)
Geometric parameters (Å, º) top
Co1—N101.9560 (18)C2—H2A0.990
Co1—N71.9594 (19)C2—H2B0.990
Co1—N81.9595 (19)C3—C41.505 (3)
Co1—N41.9602 (19)C3—H3A0.990
Co1—N11.9613 (18)C3—H3B0.990
Co1—N91.9779 (17)C4—H4A0.990
N1—N21.205 (3)C4—H4B0.990
N2—N31.157 (3)O1—C51.241 (3)
N4—N51.194 (3)O2—N111.224 (3)
N5—N61.151 (3)O3—N111.221 (3)
N7—C11.483 (3)O4—N121.231 (3)
N7—H7A0.920O5—N121.228 (3)
N7—H7B0.920O6—N131.217 (3)
N8—C21.501 (3)O7—N131.231 (2)
N8—H8A0.920N11—C61.459 (3)
N8—H8B0.920N12—C81.438 (3)
N9—C31.485 (3)N13—C101.457 (3)
N9—H9A0.920C5—C61.457 (3)
N9—H9B0.920C5—C101.458 (3)
N10—C41.489 (3)C6—C71.372 (3)
N10—H10A0.920C7—C81.385 (3)
N10—H10B0.920C7—H70.950
C1—C21.477 (4)C8—C91.384 (3)
C1—H1A0.990C9—C101.371 (3)
C1—H1B0.990C9—H90.950
N10—Co1—N7178.14 (8)N7—C1—H1B110.3
N10—Co1—N892.53 (8)H1A—C1—H1B108.6
N7—Co1—N885.68 (9)C1—C2—N8107.9 (2)
N10—Co1—N491.83 (8)C1—C2—H2A110.1
N7—Co1—N489.93 (8)N8—C2—H2A110.1
N8—Co1—N4174.78 (8)C1—C2—H2B110.1
N10—Co1—N193.43 (8)N8—C2—H2B110.1
N7—Co1—N187.11 (8)H2A—C2—H2B108.4
N8—Co1—N190.76 (8)N9—C3—C4106.94 (18)
N4—Co1—N191.84 (8)N9—C3—H3A110.3
N10—Co1—N985.07 (7)C4—C3—H3A110.3
N7—Co1—N994.47 (8)N9—C3—H3B110.3
N8—Co1—N991.84 (8)C4—C3—H3B110.3
N4—Co1—N985.68 (8)H3A—C3—H3B108.6
N1—Co1—N9177.05 (8)N10—C4—C3105.85 (18)
N2—N1—Co1118.49 (15)N10—C4—H4A110.6
N3—N2—N1176.4 (2)C3—C4—H4A110.6
N5—N4—Co1122.72 (16)N10—C4—H4B110.6
N6—N5—N4174.7 (2)C3—C4—H4B110.6
C1—N7—Co1108.81 (16)H4A—C4—H4B108.7
C1—N7—H7A109.9O3—N11—O2122.6 (2)
Co1—N7—H7A109.9O3—N11—C6118.09 (19)
C1—N7—H7B109.9O2—N11—C6119.3 (2)
Co1—N7—H7B109.9O5—N12—O4122.0 (2)
H7A—N7—H7B108.3O5—N12—C8119.8 (2)
C2—N8—Co1108.96 (16)O4—N12—C8118.3 (2)
C2—N8—H8A109.9O6—N13—O7122.1 (2)
Co1—N8—H8A109.9O6—N13—C10119.64 (19)
C2—N8—H8B109.9O7—N13—C10118.25 (18)
Co1—N8—H8B109.9O1—C5—C6124.3 (2)
H8A—N8—H8B108.3O1—C5—C10123.8 (2)
C3—N9—Co1108.51 (13)C6—C5—C10111.92 (17)
C3—N9—H9A110.0C7—C6—C5124.01 (19)
Co1—N9—H9A110.0C7—C6—N11115.66 (19)
C3—N9—H9B110.0C5—C6—N11120.33 (18)
Co1—N9—H9B110.0C6—C7—C8119.1 (2)
H9A—N9—H9B108.4C6—C7—H7120.5
C4—N10—Co1110.20 (13)C8—C7—H7120.5
C4—N10—H10A109.6C9—C8—C7121.83 (19)
Co1—N10—H10A109.6C9—C8—N12118.7 (2)
C4—N10—H10B109.6C7—C8—N12119.4 (2)
Co1—N10—H10B109.6C10—C9—C8118.9 (2)
H10A—N10—H10B108.1C10—C9—H9120.5
C2—C1—N7106.9 (2)C8—C9—H9120.5
C2—C1—H1A110.3C9—C10—N13115.54 (19)
N7—C1—H1A110.3C9—C10—C5124.21 (19)
C2—C1—H1B110.3N13—C10—C5120.25 (17)
N10—Co1—N1—N27.77 (19)N9—C3—C4—N1052.3 (2)
N7—Co1—N1—N2170.45 (19)O1—C5—C6—C7179.4 (2)
N8—Co1—N1—N284.81 (19)C10—C5—C6—C71.2 (3)
N4—Co1—N1—N299.71 (19)O1—C5—C6—N111.0 (3)
N10—Co1—N4—N594.89 (19)C10—C5—C6—N11178.33 (18)
N7—Co1—N4—N585.71 (19)O3—N11—C6—C79.5 (3)
N1—Co1—N4—N51.4 (2)O2—N11—C6—C7169.2 (2)
N9—Co1—N4—N5179.8 (2)O3—N11—C6—C5170.9 (2)
N8—Co1—N7—C117.55 (16)O2—N11—C6—C510.4 (3)
N4—Co1—N7—C1165.29 (16)C5—C6—C7—C80.1 (3)
N1—Co1—N7—C173.44 (16)N11—C6—C7—C8179.43 (19)
N9—Co1—N7—C1109.06 (16)C6—C7—C8—C91.2 (3)
N10—Co1—N8—C2169.39 (16)C6—C7—C8—N12178.5 (2)
N7—Co1—N8—C210.09 (16)O5—N12—C8—C92.6 (3)
N1—Co1—N8—C297.14 (16)O4—N12—C8—C9177.2 (2)
N9—Co1—N8—C284.25 (16)O5—N12—C8—C7179.9 (2)
N10—Co1—N9—C315.77 (14)O4—N12—C8—C70.3 (3)
N7—Co1—N9—C3166.03 (14)C7—C8—C9—C101.2 (3)
N8—Co1—N9—C3108.16 (15)N12—C8—C9—C10178.6 (2)
N4—Co1—N9—C376.44 (14)C8—C9—C10—N13179.25 (19)
N8—Co1—N10—C478.06 (16)C8—C9—C10—C50.0 (3)
N4—Co1—N10—C499.07 (16)O6—N13—C10—C9164.2 (2)
N1—Co1—N10—C4168.98 (15)O7—N13—C10—C916.2 (3)
N9—Co1—N10—C413.57 (15)O6—N13—C10—C516.5 (3)
Co1—N7—C1—C241.8 (2)O7—N13—C10—C5163.1 (2)
N7—C1—C2—N850.5 (3)O1—C5—C10—C9179.5 (2)
Co1—N8—C2—C135.9 (3)C6—C5—C10—C91.2 (3)
Co1—N9—C3—C441.44 (19)O1—C5—C10—N131.3 (3)
Co1—N10—C4—C339.3 (2)C6—C5—C10—N13178.07 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···N6i0.922.313.184 (3)158
N8—H8B···N3ii0.922.373.194 (3)149
N10—H10A···N1iii0.922.373.248 (3)161
N10—H10B···N4iv0.922.663.336 (3)131
N8—H8A···O10.922.162.948 (3)143
N8—H8A···O20.922.383.025 (3)128
N9—H9A···O10.922.022.839 (2)148
N9—H9A···O60.922.513.045 (3)117
N9—H9A···O4v0.922.582.897 (3)101
N9—H9B···O4v0.922.412.897 (3)113
N7—H7B···O4v0.922.483.312 (3)151
N7—H7B···O5v0.922.343.164 (3)149
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C2H8N2)2(N3)2](C6H2N3O7)
Mr491.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)180
a, b, c (Å)9.1229 (3), 12.0980 (5), 32.8793 (12)
V3)3628.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerBruker Nonius X8 APEX-II CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS version 2.10; Sheldrick, 2003) Ratio of minimum to maximum apparent transmission = 0.855478
Tmin, Tmax0.703, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
20066, 4649, 3930
Rint0.020
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.04
No. of reflections4649
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.39, 0.43

Computer programs: APEX2 (Bruker Nonius, 2003), SAINT (Bruker, 2003), SAINT, SHELXTL (Sheldrick, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Co1—N101.9560 (18)Co1—N41.9602 (19)
Co1—N71.9594 (19)Co1—N11.9613 (18)
Co1—N81.9595 (19)Co1—N91.9779 (17)
N10—Co1—N7178.14 (8)N8—Co1—N190.76 (8)
N10—Co1—N892.53 (8)N4—Co1—N191.84 (8)
N7—Co1—N885.68 (9)N10—Co1—N985.07 (7)
N10—Co1—N491.83 (8)N7—Co1—N994.47 (8)
N7—Co1—N489.93 (8)N8—Co1—N991.84 (8)
N8—Co1—N4174.78 (8)N4—Co1—N985.68 (8)
N10—Co1—N193.43 (8)N1—Co1—N9177.05 (8)
N7—Co1—N187.11 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···N6i0.922.313.184 (3)158
N8—H8B···N3ii0.922.373.194 (3)149
N10—H10A···N1iii0.922.373.248 (3)161
N10—H10B···N4iv0.922.663.336 (3)131
N8—H8A···O10.922.162.948 (3)143
N8—H8A···O20.922.383.025 (3)128
N9—H9A···O10.922.022.839 (2)148
N9—H9A···O60.922.513.045 (3)117
N9—H9A···O4v0.922.582.897 (3)101
N9—H9B···O4v0.922.412.897 (3)113
N7—H7B···O4v0.922.483.312 (3)151
N7—H7B···O5v0.922.343.164 (3)149
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds