Download citation
Download citation
link to html
The title compound [systematic name: 1'-amino­cyclo­hexane­spiro-4'-imidazole-2',5'(3'H,4'H)-dione], C8H13N3O2, has been synthesized and was found to crystallize in two different structures, both monoclinic and both with the same P21/c space group. In the first structure, there are two mol­ecules in the asymmetric unit, one of which uses all of its hydrogen-bond donors and acceptors and forms undulating layers, while the other forms chains propagating perpendicular to the layers. In the second structure, there is only one independent mol­ecule and the packing is based on a chain structure mediated by hydrogen bonding between the hydantoin moieties and further grouped into hydro­philic layers separated by layers of the hydro­phobic cyclo­hex­yl groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105016033/fa1115sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105016033/fa1115Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105016033/fa1115IIsup3.hkl
Contains datablock a017

CCDC references: 282216; 282217

Comment top

Hydantoins and cycloalkanespirohydantoins are the subjects of extensive investigation due to their biological properties. As part of our research on the characterization of the biological activity of aminocycloalkanespiro-5-hydantoins and their metal complexes, the title compound was synthesized and its biological activity was investigated. The study shows very pronounced atropine-sensitive contractile effects on guinea pig ileum longitudinal muscles (Naydenova et al., 2002). These results contrast with the anticonvulsive properties of hydantoins. The contractile effects are explained by the presence of the –NH2 radical in position 3 and are also related to the cycloalkane ring size (Avenado & Gonzalez, 1985).

Both structural modifications of the title compound, (I) and (II), are built up of molecules with almost identical geometry (Fig. 1). The hydantoin moieties are essentially planar, with r.m.s. deviations of 0.014, 0.003 and 0.017 Å for the two molecules in (I) and the one molecule in (II), respectively. The bond distances and angles within the hydantoin units are comparable with those observed in other spiro-5-hydantoins (Gauthier et al., 1997). The cyclohexane rings adopt chair conformations with similar endocyclic torsion angles (Tables 1 and 3). Analogous features are observed in the crystal structures of related heterocyclic molecules (Stasko et al., 2002; Gauthier et al., 1997).

The presence of a hydantoin ring, of which nearly all the atoms can be involved in hydrogen bonds, and a cyclohexane ring, acting as an impediment to hydrogen-bond formation, suggests a variety of possible hydrogen-bonding networks, resulting in different molecular packing in (I) and (II).

The two independent molecules in (I) participate in hydrogen bonding in quite different manners. All possible hydrogen donors and acceptors in the first molecule (A) are involved in a total of six intermolecular hydrogen bonds (two of which are weak), while the second molecule (B) participates in only four hydrogen bonds and atom O12 is not involved in any such interactions (Table 2). Two N—H···O bonds involving the H atoms of the amino group at N24 link neighbouring molecules A to form undulating layers parallel to (100). In contrast, molecules B are linked through N11···N14(x, 1/2 − y, z − 1/2) hydrogen bonds and form infinite chains threaded through the troughs of the undulating layers. The remaining three hydrogen bonds connect molecules A and B and also stabilize the structural motif (Fig 2).

The hydrogen-bonding network for the second polymorph, (II), is presented in Table 4. The molecules in (II) form chains via two hydrogen bonds, N1···O2(x − 1, y, z) and O1···N4(x − 1, y, z), the first being significantly stronger than the second. The additional weak hydrogen bond N4···N4(x, 1/2 − y, 1/2 + z) mediates two-dimensional packing of the chains into infinite layers parallel to (010) (Fig. 3).

We note the similar hydrogen-bonding contributions of the amino groups, which are simultaneously donors of two and acceptors of one hydrogen bond each in both (I) and (II). Another analogy between the polymorphs is that they contain layers based on hydrogen bonding of the hydantoin moieties, with cyclohexyl groups which block the formation of strong non-covalent interactions in the direction perpendicular to the plane of the layers.

Experimental top

The compound 3-amino-1,3-diazaspiro[4.5]decane-2,4-dione was obtained according to the method of Naydenova et al. (2002). The first polymorph, (I), was obtained by re-crystallization of the title compound from methanol. The second, (II), emerged from a methanol solution containing (I):B(OH)3 (Ratio?) in an attempt to obtain a borate compound.

Refinement top

H atoms attached to the N atoms of polymorph (I) were placed in positions found from the electron-density map and refined with Uiso(H) = 1.2Ueq(N). The rest of the H atoms were placed in idealized positions (C—H = 0.97 Å and N—H = 0.86 Å) and were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structures of the two independent molecules, A (top) and B (centre), of (I), and of the molecule of (II) (bottom), showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing in (I). Darker shading denotes molecules A. Hydrogen bonds are indicated by dotted lines. [Symmetry codes: (i) x, y − 1, z; (ii) 1 − x, y − 1/2, 3/2 − z; (iii) x, 1/2 − y, 1/2 + z.]
[Figure 3] Fig. 3. The molecular packing in (II). Hydrogen bonds are indicated by dotted lines. [Symmetry codes: (i) x − 1, y, z; (ii) x, 1/2 − y, z − 1/2.]
(I) 3-amino-1,3-diazaspiro[4.5]decane-2,4-dione or 1'-aminocyclohexanespiro-4'-imidazole-2',5'(3'H,4'H)-dione top
Crystal data top
C8H13N3O2F(000) = 784
Mr = 183.21Dx = 1.364 Mg m3
Monoclinic, P21/cMelting point: 438 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.0813 (13) ÅCell parameters from 22 reflections
b = 10.2094 (19) Åθ = 16.7–17.7°
c = 12.372 (3) ŵ = 0.10 mm1
β = 91.621 (14)°T = 290 K
V = 1777.9 (6) Å3Prism, white
Z = 80.24 × 0.21 × 0.12 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.076
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 1.5°
Graphite monochromatorh = 1717
non–profiled ω/2θ scansk = 1212
7138 measured reflectionsl = 150
3509 independent reflections3 standard reflections every 500 reflections
1946 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0418P)2]
where P = (Fo2 + 2Fc2)/3
3509 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C8H13N3O2V = 1777.9 (6) Å3
Mr = 183.21Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.0813 (13) ŵ = 0.10 mm1
b = 10.2094 (19) ÅT = 290 K
c = 12.372 (3) Å0.24 × 0.21 × 0.12 mm
β = 91.621 (14)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.076
7138 measured reflections3 standard reflections every 500 reflections
3509 independent reflections intensity decay: 3%
1946 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.17 e Å3
3509 reflectionsΔρmin = 0.22 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C120.29709 (18)0.2288 (2)0.51071 (19)0.0308 (6)
C220.47066 (17)0.8373 (2)0.6324 (2)0.0295 (6)
C140.18345 (18)0.3747 (3)0.5643 (2)0.0343 (6)
C240.40278 (17)0.6545 (3)0.5548 (2)0.0321 (6)
C150.16190 (17)0.3399 (2)0.4466 (2)0.0325 (6)
C250.34991 (17)0.7726 (2)0.5102 (2)0.0292 (6)
C160.16869 (19)0.4624 (3)0.3771 (2)0.0419 (7)
H16A0.12780.52970.40590.050*
H16B0.23340.49490.38100.050*
C260.24553 (17)0.7697 (3)0.5402 (2)0.0364 (6)
H26A0.21810.68640.51810.044*
H26B0.24130.77630.61810.044*
C170.1402 (2)0.4373 (3)0.2600 (2)0.0496 (8)
H17A0.14110.51930.22040.060*
H17B0.18600.37880.22830.060*
C270.18856 (18)0.8796 (3)0.4878 (2)0.0442 (7)
H27A0.21000.96290.51730.053*
H27B0.12200.86910.50410.053*
C180.0430 (2)0.3778 (3)0.2494 (2)0.0589 (9)
H18A0.02880.35780.17410.071*
H18B0.00370.44030.27350.071*
C280.19975 (19)0.8794 (3)0.3659 (2)0.0488 (8)
H28A0.17290.79940.33580.059*
H28B0.16500.95270.33440.059*
C190.0366 (2)0.2537 (4)0.3160 (3)0.0611 (9)
H19A0.07860.18800.28700.073*
H19B0.02780.22000.31080.073*
C1100.06373 (19)0.2787 (3)0.4342 (2)0.0487 (8)
H10A0.01730.33660.46530.058*
H10B0.06270.19660.47350.058*
C2100.36108 (19)0.7790 (3)0.3875 (2)0.0388 (7)
H10C0.42750.79210.37180.047*
H10D0.34110.69640.35550.047*
C290.30283 (18)0.8891 (3)0.3372 (2)0.0416 (7)
H29A0.32810.97250.36230.050*
H29B0.30790.88610.25930.050*
N110.23769 (16)0.2457 (2)0.42589 (17)0.0370 (6)
H11A0.2509 (19)0.223 (3)0.363 (2)0.044*
N130.26132 (14)0.30399 (19)0.59455 (16)0.0306 (5)
N210.40031 (15)0.8788 (2)0.56619 (18)0.0343 (6)
H21A0.3904 (18)0.957 (3)0.554 (2)0.041*
N230.47156 (14)0.69975 (19)0.62394 (16)0.0307 (5)
N140.30742 (16)0.3144 (3)0.69722 (18)0.0371 (6)
H14A0.3461 (19)0.246 (3)0.702 (2)0.045*
H14B0.3479 (18)0.382 (3)0.693 (2)0.045*
N240.54226 (17)0.6240 (2)0.6756 (2)0.0402 (6)
H24A0.5131 (18)0.561 (3)0.719 (2)0.048*
H24B0.5705 (19)0.579 (3)0.628 (2)0.048*
O110.36752 (13)0.16118 (18)0.52101 (14)0.0421 (5)
O210.52261 (12)0.90065 (17)0.69158 (14)0.0383 (5)
O120.14119 (14)0.4521 (2)0.61864 (15)0.0553 (6)
O220.38657 (13)0.54017 (17)0.53346 (15)0.0442 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C120.0397 (15)0.0251 (14)0.0276 (14)0.0024 (12)0.0026 (12)0.0009 (11)
C220.0319 (14)0.0277 (14)0.0288 (14)0.0015 (11)0.0000 (11)0.0024 (12)
C140.0343 (14)0.0371 (15)0.0315 (15)0.0002 (12)0.0013 (12)0.0037 (13)
C240.0340 (14)0.0307 (15)0.0316 (15)0.0050 (11)0.0019 (12)0.0009 (12)
C150.0354 (14)0.0317 (14)0.0304 (14)0.0023 (11)0.0008 (11)0.0032 (12)
C250.0307 (13)0.0256 (14)0.0311 (14)0.0035 (11)0.0037 (11)0.0003 (11)
C160.0459 (16)0.0364 (16)0.0431 (17)0.0021 (13)0.0033 (13)0.0024 (14)
C260.0383 (15)0.0365 (16)0.0344 (14)0.0050 (12)0.0001 (12)0.0026 (13)
C170.0582 (19)0.0541 (19)0.0364 (17)0.0146 (16)0.0007 (14)0.0075 (15)
C270.0304 (15)0.0466 (18)0.0554 (19)0.0011 (13)0.0013 (13)0.0075 (15)
C180.059 (2)0.078 (3)0.0392 (18)0.0175 (18)0.0153 (15)0.0098 (17)
C280.0474 (18)0.0470 (19)0.0509 (19)0.0024 (14)0.0179 (14)0.0101 (15)
C190.0473 (18)0.075 (2)0.061 (2)0.0124 (17)0.0132 (16)0.0176 (19)
C1100.0415 (16)0.055 (2)0.0491 (18)0.0118 (14)0.0015 (14)0.0023 (15)
C2100.0415 (16)0.0411 (17)0.0340 (15)0.0057 (12)0.0024 (12)0.0020 (13)
C290.0515 (18)0.0448 (17)0.0281 (15)0.0054 (14)0.0064 (13)0.0044 (13)
N110.0474 (13)0.0390 (13)0.0247 (12)0.0075 (11)0.0004 (11)0.0056 (11)
N130.0351 (12)0.0331 (12)0.0233 (11)0.0019 (10)0.0023 (9)0.0021 (10)
N210.0388 (13)0.0217 (11)0.0416 (14)0.0007 (10)0.0135 (10)0.0013 (10)
N230.0353 (12)0.0237 (11)0.0329 (12)0.0006 (9)0.0049 (10)0.0040 (9)
N140.0378 (14)0.0455 (15)0.0275 (12)0.0027 (11)0.0069 (10)0.0023 (11)
N240.0440 (15)0.0312 (14)0.0449 (16)0.0038 (11)0.0087 (12)0.0061 (11)
O110.0466 (11)0.0369 (11)0.0426 (11)0.0124 (9)0.0015 (9)0.0007 (9)
O210.0393 (11)0.0347 (10)0.0402 (11)0.0015 (8)0.0101 (9)0.0082 (9)
O120.0575 (13)0.0682 (15)0.0402 (12)0.0215 (11)0.0002 (10)0.0170 (11)
O220.0523 (12)0.0271 (10)0.0526 (12)0.0067 (9)0.0069 (9)0.0010 (9)
Geometric parameters (Å, º) top
C12—O111.212 (3)C27—C281.521 (4)
C12—N111.335 (3)C27—H27A0.9700
C12—N131.396 (3)C27—H27B0.9700
C22—O211.208 (3)C18—C191.515 (4)
C22—N211.336 (3)C18—H18A0.9700
C22—N231.408 (3)C18—H18B0.9700
C14—O121.205 (3)C28—C291.507 (4)
C14—N131.356 (3)C28—H28A0.9700
C14—C151.521 (3)C28—H28B0.9700
C24—O221.217 (3)C19—C1101.523 (4)
C24—N231.355 (3)C19—H19A0.9700
C24—C251.513 (3)C19—H19B0.9700
C15—N111.465 (3)C110—H10A0.9700
C15—C1101.521 (3)C110—H10B0.9700
C15—C161.522 (3)C210—C291.515 (4)
C25—N211.460 (3)C210—H10C0.9700
C25—C261.526 (3)C210—H10D0.9700
C25—C2101.532 (3)C29—H29A0.9700
C16—C171.514 (4)C29—H29B0.9700
C16—H16A0.9700N11—H11A0.83 (3)
C16—H16B0.9700N13—N141.414 (3)
C26—C271.514 (3)N21—H21A0.83 (3)
C26—H26A0.9700N23—N241.401 (3)
C26—H26B0.9700N14—H14A0.89 (3)
C17—C181.500 (4)N14—H14B0.90 (3)
C17—H17A0.9700N24—H24A0.94 (3)
C17—H17B0.9700N24—H24B0.86 (3)
O11—C12—N11130.5 (2)C17—C18—H18B109.4
O11—C12—N13123.1 (2)C19—C18—H18B109.4
N11—C12—N13106.4 (2)H18A—C18—H18B108.0
O21—C22—N21128.8 (2)C29—C28—C27111.1 (2)
O21—C22—N23124.9 (2)C29—C28—H28A109.4
N21—C22—N23106.2 (2)C27—C28—H28A109.4
O12—C14—N13127.1 (2)C29—C28—H28B109.4
O12—C14—C15126.8 (2)C27—C28—H28B109.4
N13—C14—C15106.1 (2)H28A—C28—H28B108.0
O22—C24—N23126.2 (2)C18—C19—C110111.4 (3)
O22—C24—C25126.7 (2)C18—C19—H19A109.4
N23—C24—C25107.1 (2)C110—C19—H19A109.4
N11—C15—C110112.1 (2)C18—C19—H19B109.4
N11—C15—C14101.21 (19)C110—C19—H19B109.4
C110—C15—C14110.4 (2)H19A—C19—H19B108.0
N11—C15—C16112.5 (2)C15—C110—C19111.7 (2)
C110—C15—C16110.6 (2)C15—C110—H10A109.3
C14—C15—C16109.6 (2)C19—C110—H10A109.3
N21—C25—C24101.00 (19)C15—C110—H10B109.3
N21—C25—C26110.9 (2)C19—C110—H10B109.3
C24—C25—C26111.3 (2)H10A—C110—H10B107.9
N21—C25—C210112.1 (2)C29—C210—C25111.6 (2)
C24—C25—C210109.4 (2)C29—C210—H10C109.3
C26—C25—C210111.6 (2)C25—C210—H10C109.3
C17—C16—C15112.5 (2)C29—C210—H10D109.3
C17—C16—H16A109.1C25—C210—H10D109.3
C15—C16—H16A109.1H10C—C210—H10D108.0
C17—C16—H16B109.1C28—C29—C210111.6 (2)
C15—C16—H16B109.1C28—C29—H29A109.3
H16A—C16—H16B107.8C210—C29—H29A109.3
C27—C26—C25112.6 (2)C28—C29—H29B109.3
C27—C26—H26A109.1C210—C29—H29B109.3
C25—C26—H26A109.1H29A—C29—H29B108.0
C27—C26—H26B109.1C12—N11—C15113.0 (2)
C25—C26—H26B109.1C12—N11—H11A122.8 (19)
H26A—C26—H26B107.8C15—N11—H11A122.0 (19)
C18—C17—C16111.6 (2)C14—N13—C12113.2 (2)
C18—C17—H17A109.3C14—N13—N14123.7 (2)
C16—C17—H17A109.3C12—N13—N14122.9 (2)
C18—C17—H17B109.3C22—N21—C25113.4 (2)
C16—C17—H17B109.3C22—N21—H21A122.6 (18)
H17A—C17—H17B108.0C25—N21—H21A123.7 (18)
C26—C27—C28110.8 (2)C24—N23—N24125.9 (2)
C26—C27—H27A109.5C24—N23—C22112.3 (2)
C28—C27—H27A109.5N24—N23—C22121.6 (2)
C26—C27—H27B109.5N13—N14—H14A105.4 (18)
C28—C27—H27B109.5N13—N14—H14B106.1 (17)
H27A—C27—H27B108.1H14A—N14—H14B103 (2)
C17—C18—C19111.1 (2)N23—N24—H24A108.8 (17)
C17—C18—H18A109.4N23—N24—H24B108.5 (19)
C19—C18—H18A109.4H24A—N24—H24B104 (3)
C25—C26—C27—C2854.2 (3)C15—C16—C17—C1854.7 (3)
C26—C27—C28—C2956.6 (3)C16—C17—C18—C1955.4 (3)
C27—C28—C29—C21057.3 (3)C17—C18—C19—C11055.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···N14i0.83 (3)2.26 (3)3.083 (3)170 (3)
N21—H21A···O11ii0.83 (3)2.14 (3)2.970 (3)179 (3)
N14—H14A···N24iii0.89 (3)2.49 (3)3.247 (3)144 (2)
N14—H14B···O21iii0.90 (3)2.29 (3)2.865 (3)121 (2)
N24—H24A···O21iii0.94 (3)2.04 (3)2.970 (3)167 (2)
N24—H24B···O22iv0.86 (3)2.43 (3)3.264 (3)166 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1, z+1.
(II) 3-amino-1,3-diazaspiro[4.5]decane-2,4-dione or 1'-aminocyclohexanespiro-4'-imidazole-2',5'(3'H,4'H)-dione top
Crystal data top
C8H13N3O2F(000) = 392
Mr = 183.21Dx = 1.313 Mg m3
Monoclinic, P21/cMelting point: 395 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.1743 (12) ÅCell parameters from 22 reflections
b = 26.765 (3) Åθ = 18.0–19.0°
c = 6.0257 (12) ŵ = 0.10 mm1
β = 111.425 (11)°T = 290 K
V = 927.0 (3) Å3Prismatic, pale yellow
Z = 40.21 × 0.18 × 0.12 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.100
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 1.5°
Graphite monochromatorh = 87
non–profiled ω/2θ scansk = 3535
4768 measured reflectionsl = 07
2218 independent reflections3 standard reflections every 500 reflections
1178 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
2218 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C8H13N3O2V = 927.0 (3) Å3
Mr = 183.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1743 (12) ŵ = 0.10 mm1
b = 26.765 (3) ÅT = 290 K
c = 6.0257 (12) Å0.21 × 0.18 × 0.12 mm
β = 111.425 (11)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.100
4768 measured reflections3 standard reflections every 500 reflections
2218 independent reflections intensity decay: 1%
1178 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
2218 reflectionsΔρmin = 0.20 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3992 (3)0.26965 (6)0.9050 (3)0.0558 (5)
O20.8487 (3)0.35472 (6)0.5762 (3)0.0599 (5)
N10.3256 (3)0.33844 (6)0.6603 (3)0.0423 (5)
H10.18340.34380.64490.051*
N30.6766 (3)0.30605 (6)0.7774 (3)0.0401 (4)
N40.8539 (3)0.27084 (7)0.8850 (4)0.0543 (5)
H4C0.82910.25621.00620.065*0.20 (3)
H4A0.99110.28620.93840.065*
H4B0.85350.24780.77820.065*0.80 (3)
C20.4556 (4)0.30085 (8)0.7921 (4)0.0401 (5)
C40.6838 (3)0.34292 (7)0.6297 (4)0.0393 (5)
C50.4508 (3)0.36897 (7)0.5469 (4)0.0351 (5)
C60.3420 (4)0.36786 (8)0.2758 (4)0.0482 (6)
H6A0.45130.38170.21060.058*
H6B0.31200.33340.22290.058*
C70.1166 (4)0.39713 (10)0.1806 (4)0.0614 (7)
H7A0.00020.38080.22810.074*
H7B0.06040.39760.00780.074*
C80.1502 (5)0.45033 (10)0.2734 (5)0.0716 (8)
H8A0.25330.46790.21110.086*
H8B0.00150.46750.21760.086*
C90.2515 (5)0.45138 (8)0.5418 (5)0.0613 (7)
H9A0.14120.43680.60370.074*
H9B0.27790.48580.59580.074*
C100.4793 (4)0.42277 (8)0.6389 (4)0.0500 (6)
H10A0.53470.42250.81170.060*
H10B0.59500.43960.59200.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0618 (11)0.0550 (9)0.0619 (11)0.0031 (8)0.0358 (9)0.0150 (8)
O20.0344 (9)0.0718 (11)0.0820 (13)0.0001 (8)0.0314 (9)0.0135 (9)
N10.0314 (9)0.0468 (11)0.0553 (12)0.0050 (8)0.0236 (9)0.0094 (9)
N30.0308 (9)0.0438 (10)0.0449 (11)0.0036 (8)0.0128 (8)0.0013 (9)
N40.0403 (11)0.0558 (12)0.0624 (13)0.0111 (9)0.0136 (10)0.0065 (11)
C20.0414 (12)0.0423 (12)0.0414 (12)0.0012 (10)0.0208 (10)0.0027 (10)
C40.0304 (11)0.0433 (12)0.0463 (13)0.0049 (9)0.0164 (10)0.0038 (10)
C50.0283 (10)0.0383 (11)0.0414 (12)0.0036 (8)0.0161 (9)0.0006 (9)
C60.0440 (13)0.0599 (14)0.0430 (13)0.0031 (11)0.0187 (11)0.0008 (11)
C70.0461 (14)0.0843 (19)0.0470 (15)0.0063 (13)0.0091 (12)0.0108 (13)
C80.0652 (18)0.0674 (18)0.080 (2)0.0223 (14)0.0240 (16)0.0239 (16)
C90.0670 (17)0.0418 (13)0.081 (2)0.0064 (12)0.0337 (15)0.0007 (13)
C100.0516 (14)0.0421 (12)0.0555 (14)0.0045 (11)0.0189 (11)0.0042 (11)
Geometric parameters (Å, º) top
O1—C21.206 (2)C6—C71.515 (3)
O2—C41.216 (2)C6—H6A0.9700
N1—C21.350 (3)C6—H6B0.9700
N1—C51.455 (2)C7—C81.516 (3)
N1—H10.8600C7—H7A0.9700
N3—C41.341 (2)C7—H7B0.9700
N3—C21.406 (3)C8—C91.506 (4)
N3—N41.410 (2)C8—H8A0.9700
N4—H4C0.8900C8—H8B0.9700
N4—H4A0.8900C9—C101.519 (3)
N4—H4B0.8900C9—H9A0.9700
C4—C51.510 (3)C9—H9B0.9700
C5—C61.523 (3)C10—H10A0.9700
C5—C101.530 (3)C10—H10B0.9700
C2—N1—C5113.01 (17)C7—C6—H6B109.1
C2—N1—H1123.5C5—C6—H6B109.1
C5—N1—H1123.5H6A—C6—H6B107.9
C4—N3—C2112.52 (17)C6—C7—C8111.3 (2)
C4—N3—N4126.06 (17)C6—C7—H7A109.4
C2—N3—N4120.88 (17)C8—C7—H7A109.4
N3—N4—H4C109.5C6—C7—H7B109.4
N3—N4—H4A109.5C8—C7—H7B109.4
H4C—N4—H4A109.5H7A—C7—H7B108.0
N3—N4—H4B109.5C9—C8—C7111.1 (2)
H4C—N4—H4B109.5C9—C8—H8A109.4
H4A—N4—H4B109.5C7—C8—H8A109.4
O1—C2—N1128.0 (2)C9—C8—H8B109.4
O1—C2—N3126.2 (2)C7—C8—H8B109.4
N1—C2—N3105.74 (17)H8A—C8—H8B108.0
O2—C4—N3126.9 (2)C8—C9—C10111.5 (2)
O2—C4—C5125.55 (19)C8—C9—H9A109.3
N3—C4—C5107.48 (16)C10—C9—H9A109.3
N1—C5—C4101.03 (16)C8—C9—H9B109.3
N1—C5—C6112.99 (17)C10—C9—H9B109.3
C4—C5—C6109.81 (17)H9A—C9—H9B108.0
N1—C5—C10111.65 (17)C9—C10—C5111.54 (19)
C4—C5—C10110.20 (17)C9—C10—H10A109.3
C6—C5—C10110.76 (17)C5—C10—H10A109.3
C7—C6—C5112.35 (19)C9—C10—H10B109.3
C7—C6—H6A109.1C5—C10—H10B109.3
C5—C6—H6A109.1H10A—C10—H10B108.0
C5—C6—C7—C854.6 (3)C7—C8—C9—C1056.3 (3)
C6—C7—C8—C955.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.982.833 (2)174
N4—H4A···O1ii0.892.643.325 (3)135
N4—H4B···N4iii0.892.423.2127 (14)148
N4—H4C···N4iv0.892.353.2127 (14)165
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC8H13N3O2C8H13N3O2
Mr183.21183.21
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)290290
a, b, c (Å)14.0813 (13), 10.2094 (19), 12.372 (3)6.1743 (12), 26.765 (3), 6.0257 (12)
β (°) 91.621 (14) 111.425 (11)
V3)1777.9 (6)927.0 (3)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.24 × 0.21 × 0.120.21 × 0.18 × 0.12
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7138, 3509, 1946 4768, 2218, 1178
Rint0.0760.100
(sin θ/λ)max1)0.6170.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.118, 0.99 0.055, 0.138, 1.04
No. of reflections35092218
No. of parameters253120
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.220.19, 0.20

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected torsion angles (º) for (I) top
C25—C26—C27—C2854.2 (3)C15—C16—C17—C1854.7 (3)
C26—C27—C28—C2956.6 (3)C16—C17—C18—C1955.4 (3)
C27—C28—C29—C21057.3 (3)C17—C18—C19—C11055.9 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···N14i0.83 (3)2.26 (3)3.083 (3)170 (3)
N21—H21A···O11ii0.83 (3)2.14 (3)2.970 (3)179 (3)
N14—H14A···N24iii0.89 (3)2.49 (3)3.247 (3)144 (2)
N14—H14B···O21iii0.90 (3)2.29 (3)2.865 (3)121 (2)
N24—H24A···O21iii0.94 (3)2.04 (3)2.970 (3)167 (2)
N24—H24B···O22iv0.86 (3)2.43 (3)3.264 (3)166 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1, z+1.
Selected torsion angles (º) for (II) top
C5—C6—C7—C854.6 (3)C7—C8—C9—C1056.3 (3)
C6—C7—C8—C955.5 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.982.833 (2)174
N4—H4A···O1ii0.892.643.325 (3)135
N4—H4B···N4iii0.892.423.2127 (14)148
N4—H4C···N4iv0.892.353.2127 (14)165
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds