Download citation
Download citation
link to html
The asymmetric unit of the α polymorph of (+)-N-tosyl-L-glutamic acid, C12H15NO6S, contains two independent mol­ecules which differ in conformation. The carboxylic acid groups form an infinite zigzag chain with characteristic R_{2}^{2}(8) rings running along the b axis. Intermolecular N—H...O and C—H...O contacts mediate the formation of a three-dimensional supramolecular structure described by R_{4}^{3}(22), R_{6}^{6}(44) and R_{8}^{8}(54) graph-set descriptors. Comparison of the extended structure with that of N-(benzene­sulfonyl)­glutamic acid shows that a subtle difference in the periphery of the mol­ecule, i.e. the replacement of the toluyl group with a phenyl group, can be accompanied by dramatic changes in molecular assembly.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105002088/fa1112sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105002088/fa1112Isup2.hkl
Contains datablock I

CCDC reference: 268123

Comment top

Among naturally occurring amino acids of biological importance, aspartic and glutamic acids and their derivatives are characterized by the presence of two carboxylic acid groups, which make them interesting supramolecular synthons due to their ability to form moderate to strong hydrogen bonds (Jeffrey, 1997). (+)-N-tosyl-L-glutamic acid, (I), is a commonly used reagent for separating racemates into optically active enantiomers. Nevertheless, its crystal structure has not been reported to date. The co-crystal of (I) and 5-bromocytosine has been characterized (Ohki et al., 1976). Our previous studies showed that (I) crystallizes as α and β polymorphs. We present here the structure analysis of the stable α form of (I). The β polymorph crystallizes in the form of very thin needles; attempts to grow a crystal suitable for X-ray studies have not yet been fruitful.

The α form of (I) crystallizes in space group P212121 with two independent molecules (A and B) in the asymmetric unit. The molecules are chiral and both exhibit the S configuration. Perspective views of A and B, with the atom-numbering schemes, are depicted in Fig. 1. The bond lengths in the two molecules are the same to within 3σ, while the bond angles differ by less than 3.5°. However, a substantial discrepancy is observed between corresponding torsion angles (Table 1). This feature is the result of the hydrogen-bond network (see below), which causes a divergence of the molecular environment (Steiner, 2002). The most significant conformational differences are observed for the orientation of the toluyl and one of the carboxyl groups in relation to the sulfonyl group. The different conformations of the two molecules are caused by twisting about the C—S and CCcarboxyl bonds, as seen in a comparision of the C11—C6—S1—N1 and C31—C26—S2—N2 torsion angles, which have values of 50.2 (3) and 93.9 (2)°, respectively, and O1—C1—C2—N1 and O21—C21—C22—N2, with values of 81.5 (3) and 175.4 (2)°, respectively. The torsion angles describing the positioning of the glutamic acid carbon chain with relation to the N-tosyl group are approximately the same for both molecules. Furthermore, the mutual orientation of the carboxyl groups in A is different from that in B. The planes defined by the carboxyl groups form dihedral angles of 25.3 (2)° in A and 39.9 (2)° in B.

Taking into account the differences between the two molecules, the hydrogen-bond network has been carefully analysed (Table 2). The strongest hydrogen bonds are observed between the carboxylic acid groups of A and B (mean H···O and O···O distances of 1.81 Å and 2.67 Å, respectively), generating a one-dimensional zigzag chain with classical double hydrogen bonds. This pattern can be described by four discrete motifs (a, b, c and d; Fig. 2) (Etter, 1990; Bernstein et al., 1995). The second-level graph [N2(ab) and N2(cd)] depicts characteristic R22(8) rings, which combine to form an alternating infinite chain running along the b axis (Fig. 2). A complete set of binary graph-set descriptors is given in Table 3.

A totally different molecular arrangement was identified in the analogous glutamic acid derivative, (-)-(R)-N-benzenesulfonylglutamic acid (Shan & Huang, 1999), where carboxylic groups are connected by single O—H···O bridges to form an open-chain C(8) motif.

The hydrogen-bond network in α-(I) further extends to the second dimension as the N1—H1N group of A forms a hydrogen bond with atom O25iii of the sulfonyl group of B (motif e) [symmetry code: (iii) 1/2 + x, 3/2 − y, 1 − z]. Moreover, motif e, together with the C22—H22···O6v hydrogen bond (motif g) [symmetry code: (v) x − 1/2, 3/2 − y, 1 − z], forms a pattern with an R22(9) second-level graph-set descriptor. The R22(9) rings are almost perpendicular to the doubly hydrogen-bonded rings of the main chains (Fig. 2). The neighbouring atom O26 does not form a hydrogen-bond, but is instead engaged in a weak intramolecular contact with C31—H31 as donor (Fig. 1). Additionally, the orientation of the sulfonyl group in molecule B enables the formation of an intramolecular contact between the second α-C atom (C27) of the toluyl group and O25, while in the case of A only the corresponding C7—H7···O5 grouping occurs. In the two molecules, the matching O5 and O25 atoms are also linked up to C2—H2 and C22—H22 donors, respectively, to form weak intramolecular contacts. In addition, a C4—H4B···N1 contact is present in molecule A (Fig. 1). Furthermore, atom O2 acts as an acceptor in the hydrogen bonds O23—H23···O2ii and N2—H2N···O2iv (motifs d and f in Fig. 2 [symmetry codes: (ii) x, 1 + y, z; (iv) 1 − x, 1/2 + y, 3/2 − z], mediating a well formed three-dimensional supramolecular structure.

Each molecule A is connected via hydrogen bonds to four molecules B and vice versa. The resulting three-dimensional network is shown in Fig. 3 in a simplfied form, in which the molecules are represented by their centres of gravity. The observed zigzag chain (parallel to the [010] direction) with hydrogen-bonded carboxylic acid groups of A and B can be treated as the main building block, with each molecule acting as a pseudotetrahedral centre (contacts are represented by the solid lines linking the open and filled circles in Fig. 3). The chains are connected via e and g motifs (dotted lines in Fig. 3) into ribbons of fused six-membered chair rings. Neighbouring ribbons are connected through four-membered rings involving motif f (denoted by dashed lines in Fig. 3), to give channels with an eight-membered ring window. The four- and six-membered rings appear in the third-level graph as R43(22) and R66(44), respectively. The eight-membered rings contain four motifs (a, c, e and f), so the descriptor is N4 = R88(54).

In conclusion, we have demonstrated that the crystal structure of the glutamic acid derivative, (I), is an interesting example of the ability of dicarboxylic acids to form extended supramolecular structures. Comparison of the structure of (I) with that of N-benzenesulfonylglutamic acid shows that a subtle difference in the periphery of the molecule, i.e. the replacement of the toluyl group with a phenyl group, can be accompanied by dramatic changes in molecular assembly.

Experimental top

The preparation and purification of (I) were reported previously by Hajmowicz et al. (1997). Single crystals of the α form of (I) were obtained by recrystallization from hot water with very slow cooling to 273 K, with occasional stirring.

Refinement top

Since the absorption coefficient was comparatively low, no absorbtion correction was applied. The phase problem was solved by direct methods using SHELXS97 (Sheldrick, 1990). The positions and isotropic displacement parameters of H atoms attached to N and O atoms were refined freely. Methyl groups were modelled as idealized disordered rotating groups with refined occupancy factors [0.65 (5) and 0.64 (4) for the major conformers in A and B, respectively]. The positions of the remaining H atoms were geometrically optimized and they were allowed to ride on their parent atoms with Uiso(H) refined. The absolute structure was determined using the Flack parameter (Flack, 1983; Flack & Bernardinelli, 1999, 2000), the refined value of which, 0.04 (8), confirmed the already known S configuration of both molecules.

Computing details top

Data collection: P3/P4-PC Software (Siemens, 1991); cell refinement: P3/P4-PC Software; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecules A and B of (I), with the atom-numbering scheme, showing the difference in their conformations. The intramolecular hydrogen bonds with assigned graph-set motifs are also included. Displacement ellipsoids are drawn at the 50% probability level
[Figure 2] Fig. 2. A plot showing the intermolecular hydrogen bonds in the structure of (I), with the assigned graph-set motifs. For clarity, the moieties of symmetry-related molecules are depicted in grey.
[Figure 3] Fig. 3. The hydrogen-bonded framework generated by the pseudotetrahedral supramolecular connections in (I). Molecules A and B are shown by open and filled circles, respectively, representing the centres of gravity of the molecules. Double carboxylic acid hydrogen bonds are depicted by solid lines. The connections via motifs e (and g) and f are denoted by dotted and dashed lines, respectively. The selected four-, six- and eight-membered rings are denoted by diamonds, asterisks and triangles, respectively.
(+)-N-[(4-methylphenyl)sulfonyl]-L-glutamic acid top
Crystal data top
C12H15NO6SDx = 1.427 Mg m3
Mr = 301.32Melting point = 418–420 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 30 reflections
a = 9.2411 (9) Åθ = 10–30°
b = 16.934 (2) ŵ = 0.26 mm1
c = 17.9235 (18) ÅT = 293 K
V = 2804.8 (5) Å3Prism, white
Z = 80.4 × 0.3 × 0.2 mm
F(000) = 1264
Data collection top
Siemens P3
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 2.3°
Graphite monochromatorh = 011
profile data from ω/2θ scansk = 020
2810 measured reflectionsl = 021
2810 independent reflections2 standard reflections every 70 reflections
2580 reflections with I > 2σ(I) intensity decay: 1.8%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.3998P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.19 e Å3
2810 reflectionsΔρmin = 0.22 e Å3
416 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0037 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with how many Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (8)
Crystal data top
C12H15NO6SV = 2804.8 (5) Å3
Mr = 301.32Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 9.2411 (9) ŵ = 0.26 mm1
b = 16.934 (2) ÅT = 293 K
c = 17.9235 (18) Å0.4 × 0.3 × 0.2 mm
Data collection top
Siemens P3
diffractometer
Rint = 0.000
2810 measured reflections2 standard reflections every 70 reflections
2810 independent reflections intensity decay: 1.8%
2580 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.19 e Å3
S = 1.05Δρmin = 0.22 e Å3
2810 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs
416 parametersAbsolute structure parameter: 0.04 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.14536 (7)0.44628 (4)0.58959 (3)0.03932 (17)
N10.9926 (3)0.48894 (12)0.60970 (12)0.0376 (5)
H1N0.935 (3)0.4912 (16)0.5723 (15)0.035 (7)*
O10.9146 (2)0.35382 (11)0.71099 (13)0.0457 (5)
H10.866 (4)0.319 (2)0.706 (2)0.071 (13)*
O20.7061 (2)0.41254 (11)0.68292 (13)0.0505 (5)
O30.7292 (2)0.71427 (12)0.70937 (14)0.0555 (6)
H30.692 (4)0.766 (2)0.708 (2)0.069 (11)*
O40.9295 (2)0.77314 (12)0.66913 (13)0.0555 (6)
O51.2401 (2)0.45706 (12)0.65173 (11)0.0524 (5)
O61.1846 (2)0.47679 (13)0.51816 (11)0.0557 (5)
C10.8366 (3)0.41452 (15)0.69353 (14)0.0356 (6)
C20.9277 (3)0.48854 (14)0.68412 (14)0.0354 (6)
H21.011 (3)0.4867 (14)0.7197 (14)0.032 (6)*
C30.8414 (3)0.56436 (14)0.69410 (16)0.0420 (6)
H3A0.76950.56830.65490.056 (9)*
H3B0.79110.56280.74160.066 (10)*
C40.9386 (3)0.63594 (15)0.6916 (2)0.0495 (7)
H4A1.00050.63500.73540.080 (12)*
H4B1.00070.63160.64820.059 (10)*
C50.8643 (3)0.71399 (15)0.68889 (16)0.0394 (6)
C61.1105 (3)0.34451 (15)0.57893 (14)0.0388 (6)
C71.1929 (3)0.28917 (17)0.61631 (16)0.0452 (7)
H71.26690.30500.64810.053 (9)*
C81.1640 (3)0.21019 (17)0.60591 (18)0.0522 (7)
H81.22010.17280.63060.064 (10)*
C91.0531 (4)0.18496 (18)0.55939 (19)0.0583 (8)
C100.9710 (4)0.24153 (19)0.52373 (18)0.0626 (10)
H100.89560.22580.49280.063 (10)*
C110.9987 (4)0.32075 (18)0.53303 (16)0.0538 (8)
H110.94230.35810.50850.056 (9)*
C121.0213 (5)0.0984 (2)0.5483 (3)0.0912 (14)
H12A1.07730.07870.50720.099 (12)*0.65 (5)
H12B0.92020.09150.53800.099 (12)*0.65 (5)
H12C1.04630.06990.59280.099 (12)*0.65 (5)
H12D0.95190.08130.58480.099 (12)*0.35 (5)
H12E1.10900.06860.55400.099 (12)*0.35 (5)
H12F0.98290.09020.49920.099 (12)*0.35 (5)
S20.33268 (7)0.94850 (4)0.60994 (4)0.03716 (17)
N20.4440 (2)0.97947 (12)0.67397 (13)0.0364 (5)
O210.8168 (2)0.91705 (13)0.66136 (14)0.0576 (6)
O220.6215 (2)0.85881 (10)0.71000 (11)0.0443 (5)
O230.5650 (3)1.27186 (13)0.66811 (17)0.0690 (7)
O240.7722 (2)1.21848 (11)0.70525 (12)0.0507 (5)
O250.3592 (2)0.99620 (12)0.54548 (10)0.0497 (5)
O260.1932 (2)0.94902 (12)0.64425 (11)0.0484 (5)
H2N0.422 (3)0.9562 (17)0.7161 (17)0.041 (8)*
H210.842 (6)0.863 (3)0.669 (3)0.14 (2)*
H230.609 (5)1.314 (3)0.671 (3)0.101 (16)*
C210.6818 (3)0.91437 (15)0.67922 (15)0.0376 (6)
C220.5981 (3)0.98840 (15)0.65790 (15)0.0355 (6)
H220.617 (3)0.9944 (15)0.6006 (14)0.038 (7)*
C230.6582 (3)1.06254 (14)0.69485 (16)0.0438 (6)
H23A0.64891.05810.74860.046 (8)*
H23B0.76021.06780.68300.058 (9)*
C240.5775 (4)1.13488 (17)0.6681 (2)0.0639 (10)
H24A0.56241.13000.61470.119 (17)*
H24B0.48291.13540.69160.117 (17)*
C250.6490 (3)1.21228 (15)0.68284 (16)0.0430 (7)
C260.3770 (3)0.85011 (15)0.58677 (14)0.0390 (6)
C270.4851 (4)0.83474 (19)0.53537 (17)0.0549 (8)
H270.53190.87590.51100.059 (10)*
C280.5223 (4)0.7573 (2)0.52091 (19)0.0647 (10)
H280.59570.74680.48680.095 (14)*
C290.4533 (4)0.69483 (18)0.55574 (17)0.0537 (8)
C300.3463 (4)0.71186 (17)0.60664 (18)0.0526 (7)
H300.29960.67060.63100.058 (9)*
C310.3060 (3)0.78919 (16)0.62259 (16)0.0454 (7)
H310.23270.79970.65670.045 (8)*
C320.4947 (5)0.6108 (2)0.5383 (2)0.0800 (12)
H32A0.46940.57750.57960.088 (11)*0.64 (4)
H32B0.59710.60780.52970.088 (11)*0.64 (4)
H32C0.44410.59350.49450.088 (11)*0.64 (4)
H32D0.53770.60840.48960.088 (11)*0.36 (4)
H32E0.40990.57810.53950.088 (11)*0.36 (4)
H32F0.56300.59230.57470.088 (11)*0.36 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0380 (3)0.0427 (4)0.0372 (3)0.0013 (3)0.0011 (3)0.0003 (3)
N10.0437 (12)0.0346 (11)0.0345 (11)0.0037 (10)0.0011 (11)0.0031 (10)
O10.0473 (12)0.0281 (10)0.0617 (13)0.0037 (10)0.0047 (10)0.0074 (9)
O20.0468 (12)0.0302 (9)0.0746 (14)0.0007 (9)0.0062 (11)0.0007 (10)
O30.0489 (12)0.0350 (11)0.0827 (16)0.0073 (10)0.0097 (12)0.0058 (11)
O40.0533 (12)0.0300 (10)0.0831 (15)0.0026 (10)0.0034 (12)0.0023 (10)
O50.0442 (11)0.0603 (13)0.0529 (11)0.0023 (11)0.0083 (9)0.0061 (10)
O60.0541 (12)0.0654 (13)0.0475 (11)0.0023 (11)0.0119 (10)0.0094 (10)
C10.0419 (15)0.0300 (12)0.0350 (12)0.0021 (12)0.0046 (12)0.0019 (10)
C20.0414 (14)0.0285 (12)0.0362 (13)0.0010 (11)0.0003 (12)0.0008 (11)
C30.0453 (15)0.0276 (12)0.0531 (15)0.0032 (13)0.0056 (14)0.0015 (11)
C40.0453 (16)0.0289 (13)0.074 (2)0.0024 (13)0.0010 (16)0.0053 (14)
C50.0422 (15)0.0296 (14)0.0463 (14)0.0010 (13)0.0030 (13)0.0066 (11)
C60.0430 (14)0.0406 (14)0.0327 (12)0.0078 (12)0.0022 (12)0.0030 (11)
C70.0391 (14)0.0527 (17)0.0437 (14)0.0078 (13)0.0058 (13)0.0007 (13)
C80.0469 (16)0.0462 (16)0.0636 (18)0.0128 (14)0.0047 (16)0.0111 (14)
C90.059 (2)0.0454 (17)0.071 (2)0.0113 (15)0.0066 (18)0.0034 (15)
C100.070 (2)0.0530 (18)0.065 (2)0.0085 (17)0.0291 (19)0.0117 (16)
C110.065 (2)0.0467 (17)0.0497 (16)0.0151 (16)0.0222 (16)0.0025 (13)
C120.085 (3)0.048 (2)0.140 (4)0.005 (2)0.031 (3)0.007 (2)
S20.0362 (3)0.0363 (3)0.0389 (3)0.0008 (3)0.0000 (3)0.0044 (3)
N20.0404 (12)0.0304 (11)0.0384 (12)0.0007 (10)0.0032 (10)0.0020 (10)
O210.0450 (12)0.0390 (11)0.0887 (16)0.0047 (10)0.0135 (12)0.0102 (11)
O220.0474 (11)0.0303 (9)0.0552 (11)0.0008 (9)0.0027 (10)0.0077 (9)
O230.0604 (14)0.0288 (10)0.118 (2)0.0044 (11)0.0288 (15)0.0035 (12)
O240.0475 (12)0.0327 (10)0.0720 (14)0.0025 (9)0.0103 (11)0.0038 (10)
O250.0519 (11)0.0512 (11)0.0461 (10)0.0001 (10)0.0009 (10)0.0148 (9)
O260.0355 (10)0.0523 (11)0.0573 (12)0.0025 (9)0.0028 (9)0.0050 (10)
C210.0418 (15)0.0286 (12)0.0425 (14)0.0012 (12)0.0013 (13)0.0023 (11)
C220.0391 (14)0.0290 (12)0.0385 (14)0.0002 (11)0.0012 (12)0.0013 (11)
C230.0476 (16)0.0270 (12)0.0568 (16)0.0002 (13)0.0092 (14)0.0006 (12)
C240.063 (2)0.0303 (15)0.098 (3)0.0011 (15)0.030 (2)0.0029 (16)
C250.0519 (18)0.0281 (13)0.0491 (15)0.0031 (13)0.0041 (14)0.0006 (11)
C260.0392 (14)0.0425 (14)0.0352 (12)0.0051 (12)0.0015 (12)0.0004 (11)
C270.067 (2)0.0469 (16)0.0508 (16)0.0064 (17)0.0166 (17)0.0029 (14)
C280.072 (2)0.061 (2)0.061 (2)0.0022 (18)0.0257 (19)0.0154 (17)
C290.0596 (19)0.0443 (16)0.0572 (17)0.0027 (15)0.0036 (17)0.0104 (14)
C300.0555 (18)0.0416 (16)0.0608 (17)0.0095 (15)0.0047 (17)0.0015 (14)
C310.0460 (16)0.0462 (16)0.0441 (15)0.0070 (13)0.0048 (13)0.0022 (13)
C320.087 (3)0.0531 (19)0.100 (3)0.002 (2)0.006 (3)0.021 (2)
Geometric parameters (Å, º) top
S1—O61.428 (2)S2—O261.428 (2)
S1—O51.428 (2)S2—O251.4309 (19)
S1—N11.626 (2)S2—N21.628 (2)
S1—C61.764 (3)S2—C261.765 (3)
N1—C21.463 (3)N2—C221.460 (4)
N1—H1N0.86 (3)N2—H2N0.88 (3)
O1—C11.294 (3)O21—C211.289 (4)
O1—H10.75 (4)O21—H210.96 (5)
O2—C11.222 (3)O22—C211.224 (3)
O3—C51.302 (4)O23—C251.300 (4)
O3—H30.94 (4)O23—H230.83 (5)
O4—C51.221 (3)O24—C251.212 (4)
C1—C21.519 (4)C21—C221.522 (4)
C2—C31.522 (3)C22—C231.524 (3)
C2—H21.00 (3)C22—H221.05 (3)
C3—C41.509 (4)C23—C241.512 (4)
C3—H3A0.9700C23—H23A0.9700
C3—H3B0.9700C23—H23B0.9700
C4—C51.490 (4)C24—C251.492 (4)
C4—H4A0.9700C24—H24A0.9700
C4—H4B0.9700C24—H24B0.9700
C6—C71.381 (4)C26—C311.380 (4)
C6—C111.381 (4)C26—C271.384 (4)
C7—C81.376 (4)C27—C281.380 (5)
C7—H70.9300C27—H270.9300
C8—C91.389 (5)C28—C291.384 (5)
C8—H80.9300C28—H280.9300
C9—C101.379 (4)C29—C301.376 (4)
C9—C121.508 (5)C29—C321.507 (4)
C10—C111.376 (5)C30—C311.391 (4)
C10—H100.9300C30—H300.9300
C11—H110.9300C31—H310.9300
C12—H12A0.9600C32—H32A0.9600
C12—H12B0.9600C32—H32B0.9600
C12—H12C0.9600C32—H32C0.9600
C12—H12D0.9600C32—H32D0.9600
C12—H12E0.9600C32—H32E0.9600
C12—H12F0.9600C32—H32F0.9600
O6—S1—O5119.83 (13)O26—S2—O25119.94 (12)
O6—S1—N1104.98 (13)O26—S2—N2105.36 (12)
O5—S1—N1107.59 (12)O25—S2—N2106.19 (12)
O6—S1—C6107.63 (13)O26—S2—C26108.44 (13)
O5—S1—C6108.74 (13)O25—S2—C26107.65 (12)
N1—S1—C6107.45 (12)N2—S2—C26108.86 (12)
C2—N1—S1123.79 (19)C22—N2—S2120.70 (18)
C2—N1—H1N117.1 (18)C22—N2—H2N116.5 (19)
S1—N1—H1N112.8 (18)S2—N2—H2N108.3 (19)
C1—O1—H1105 (3)C21—O21—H2199 (3)
C5—O3—H3110 (2)C25—O23—H23111 (3)
O2—C1—O1124.5 (3)O22—C21—O21125.4 (3)
O2—C1—C2123.5 (2)O22—C21—C22121.0 (2)
O1—C1—C2111.9 (2)O21—C21—C22113.6 (2)
N1—C2—C1109.4 (2)N2—C22—C21111.1 (2)
N1—C2—C3108.6 (2)N2—C22—C23110.8 (2)
C1—C2—C3113.1 (2)C21—C22—C23112.6 (2)
N1—C2—H2105.5 (14)N2—C22—H22111.6 (15)
C1—C2—H2109.2 (14)C21—C22—H22104.0 (14)
C3—C2—H2110.8 (14)C23—C22—H22106.5 (14)
C4—C3—C2111.3 (2)C24—C23—C22110.5 (2)
C4—C3—H3A109.4C24—C23—H23A109.6
C2—C3—H3A109.4C22—C23—H23A109.6
C4—C3—H3B109.4C24—C23—H23B109.6
C2—C3—H3B109.4C22—C23—H23B109.6
H3A—C3—H3B108.0H23A—C23—H23B108.1
C5—C4—C3116.0 (2)C25—C24—C23115.9 (3)
C5—C4—H4A108.3C25—C24—H24A108.3
C3—C4—H4A108.3C23—C24—H24A108.3
C5—C4—H4B108.3C25—C24—H24B108.3
C3—C4—H4B108.3C23—C24—H24B108.3
H4A—C4—H4B107.4H24A—C24—H24B107.4
O4—C5—O3123.5 (3)O24—C25—O23124.1 (3)
O4—C5—C4120.6 (3)O24—C25—C24123.5 (3)
O3—C5—C4115.8 (3)O23—C25—C24112.4 (3)
C7—C6—C11120.3 (3)C31—C26—C27120.8 (3)
C7—C6—S1120.7 (2)C31—C26—S2119.1 (2)
C11—C6—S1119.1 (2)C27—C26—S2120.1 (2)
C8—C7—C6119.1 (3)C28—C27—C26118.9 (3)
C8—C7—H7120.4C28—C27—H27120.5
C6—C7—H7120.4C26—C27—H27120.5
C7—C8—C9121.6 (3)C27—C28—C29121.8 (3)
C7—C8—H8119.2C27—C28—H28119.1
C9—C8—H8119.2C29—C28—H28119.1
C10—C9—C8118.1 (3)C30—C29—C28118.0 (3)
C10—C9—C12120.5 (3)C30—C29—C32121.2 (3)
C8—C9—C12121.4 (3)C28—C29—C32120.7 (3)
C11—C10—C9121.3 (3)C29—C30—C31121.7 (3)
C11—C10—H10119.4C29—C30—H30119.1
C9—C10—H10119.4C31—C30—H30119.1
C10—C11—C6119.7 (3)C26—C31—C30118.8 (3)
C10—C11—H11120.2C26—C31—H31120.6
C6—C11—H11120.2C30—C31—H31120.6
C9—C12—H12A109.5C29—C32—H32A109.5
C9—C12—H12B109.5C29—C32—H32B109.5
C9—C12—H12C109.5C29—C32—H32C109.5
H12A—C12—H12B109.5H32A—C32—H32B109.5
H12A—C12—H12C109.5H32A—C32—H32C109.5
H12B—C12—H12C109.5H32B—C32—H32C109.5
C9—C12—H12D109.5C29—C32—H32D109.5
C9—C12—H12E109.5C29—C32—H32E109.5
C9—C12—H12F109.5C29—C32—H32F109.5
H12D—C12—H12E109.5H32D—C32—H32E109.5
H12D—C12—H12F109.5H32D—C32—H32F109.5
H12E—C12—H12F109.5H32E—C32—H32F109.5
O6—S1—N1—C2166.3 (2)C26—S2—N2—C2265.3 (2)
O5—S1—N1—C237.6 (2)S2—N2—C22—C2193.5 (2)
C6—S1—N1—C279.3 (2)S2—N2—C22—C23140.54 (19)
S1—N1—C2—C186.6 (3)O22—C21—C22—N24.2 (4)
S1—N1—C2—C3149.5 (2)O21—C21—C22—N2175.4 (2)
O2—C1—C2—N195.8 (3)O22—C21—C22—C23120.8 (3)
O1—C1—C2—N181.5 (3)O21—C21—C22—C2359.6 (3)
O2—C1—C2—C325.3 (4)N2—C22—C23—C2458.4 (3)
O1—C1—C2—C3157.3 (2)C21—C22—C23—C24176.4 (3)
N1—C2—C3—C463.8 (3)C22—C23—C24—C25163.9 (3)
C1—C2—C3—C4174.5 (3)C23—C24—C25—O2410.0 (5)
C2—C3—C4—C5170.8 (3)C23—C24—C25—O23170.8 (3)
C3—C4—C5—O4162.4 (3)O26—S2—C26—C3120.3 (3)
C3—C4—C5—O318.3 (4)O25—S2—C26—C31151.4 (2)
O6—S1—C6—C7118.1 (2)N2—S2—C26—C3193.9 (2)
O5—S1—C6—C713.1 (3)O26—S2—C26—C27162.1 (2)
N1—S1—C6—C7129.3 (2)O25—S2—C26—C2730.9 (3)
O6—S1—C6—C1162.4 (3)N2—S2—C26—C2783.8 (3)
O5—S1—C6—C11166.4 (2)C31—C26—C27—C280.7 (5)
N1—S1—C6—C1150.2 (3)S2—C26—C27—C28176.9 (3)
C11—C6—C7—C81.4 (4)C26—C27—C28—C290.8 (6)
S1—C6—C7—C8179.1 (2)C27—C28—C29—C300.8 (6)
C6—C7—C8—C90.7 (5)C27—C28—C29—C32179.3 (4)
C7—C8—C9—C100.3 (5)C28—C29—C30—C310.8 (5)
C7—C8—C9—C12179.8 (4)C32—C29—C30—C31179.3 (3)
C8—C9—C10—C110.7 (6)C27—C26—C31—C300.7 (4)
C12—C9—C10—C11179.9 (4)S2—C26—C31—C30177.0 (2)
C9—C10—C11—C60.0 (6)C29—C30—C31—C260.7 (5)
C7—C6—C11—C101.1 (5)O2—C1—N1—S1139.8 (2)
S1—C6—C11—C10179.5 (3)O22—C21—N2—S277.2 (2)
O26—S2—N2—C22178.5 (2)O1—C3—C4—O3167.40 (19)
O25—S2—N2—C2250.3 (2)O21—C23—C24—O23121.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O220.94 (3)1.70 (3)2.642 (3)177 (5)
O21—H21···O40.95 (5)1.72 (5)2.654 (3)164 (5)
O1—H1···O24i0.75 (3)1.91 (3)2.645 (3)168 (4)
O23—H23···O2ii0.82 (5)1.91 (5)2.729 (3)177 (7)
N1—H1N···O25iii0.86 (3)2.23 (3)3.053 (3)160 (3)
N2—H2N···O2iv0.88 (3)2.29 (3)3.129 (3)162 (2)
C22—H22···O6v1.05 (3)2.27 (3)3.308 (3)171 (2)
C2—H2···O51.00 (3)2.49 (3)2.993 (3)110 (2)
C7—H7···O50.932.592.946 (4)103
C4—H4B···N10.972.512.933 (4)106
C22—H22···O251.05 (3)2.58 (3)2.992 (3)103 (2)
C27—H27···O250.932.662.977 (4)101
C31—H31···O260.932.562.926 (3)104
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1/2, y+3/2, z+1; (iv) x+1, y+1/2, z+3/2; (v) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H15NO6S
Mr301.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.2411 (9), 16.934 (2), 17.9235 (18)
V3)2804.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerSiemens P3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2810, 2810, 2580
Rint0.000
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.05
No. of reflections2810
No. of parameters416
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.22
Absolute structureFlack (1983), with how many Friedel pairs
Absolute structure parameter0.04 (8)

Computer programs: P3/P4-PC Software (Siemens, 1991), P3/P4-PC Software, XDISK (Siemens, 1991), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
S1—N11.626 (2)S2—N21.628 (2)
N1—C21.463 (3)N2—C221.460 (4)
O1—C11.294 (3)O21—C211.289 (4)
O2—C11.222 (3)O22—C211.224 (3)
O3—C51.302 (4)O23—C251.300 (4)
O4—C51.221 (3)O24—C251.212 (4)
C2—N1—S1123.79 (19)C22—N2—S2120.70 (18)
O2—C1—O1124.5 (3)O22—C21—O21125.4 (3)
O4—C5—O3123.5 (3)O24—C25—O23124.1 (3)
C6—S1—N1—C279.3 (2)C26—S2—N2—C2265.3 (2)
S1—N1—C2—C186.6 (3)S2—N2—C22—C2193.5 (2)
O1—C1—C2—N181.5 (3)O21—C21—C22—N2175.4 (2)
N1—S1—C6—C1150.2 (3)N2—S2—C26—C3193.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O220.94 (3)1.70 (3)2.642 (3)177 (5)
O21—H21···O40.95 (5)1.72 (5)2.654 (3)164 (5)
O1—H1···O24i0.75 (3)1.91 (3)2.645 (3)168 (4)
O23—H23···O2ii0.82 (5)1.91 (5)2.729 (3)177 (7)
N1—H1N···O25iii0.86 (3)2.23 (3)3.053 (3)160 (3)
N2—H2N···O2iv0.88 (3)2.29 (3)3.129 (3)162 (2)
C22—H22···O6v1.05 (3)2.27 (3)3.308 (3)171 (2)
C2—H2···O51.00 (3)2.49 (3)2.993 (3)110 (2)
C7—H7···O50.932.592.946 (4)103
C4—H4B···N10.972.512.933 (4)106
C22—H22···O251.05 (3)2.58 (3)2.992 (3)103 (2)
C27—H27···O250.932.662.977 (4)101
C31—H31···O260.932.562.926 (3)104
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1/2, y+3/2, z+1; (iv) x+1, y+1/2, z+3/2; (v) x1/2, y+3/2, z+1.
Graph-set matrix of unitary motifs (on-diagonal) and second-level patterns (off-diagonal) for (+)-N-tosyl-L-glutamic acid (1). top
Motifabcdefghijklm
aD(2)
bR22(8)D(2)
cC22(16)C22(16)D(2)
dC22(16)C22(16)R22(8)D(2)
eC22(14)C22(14)C22(14)C22(14)D(2)
fC22(13)C22(13)C12(9)C22(11)C22(9)D(2)
gC22(13)C22(13)C22(13)C22(13)R22(9)C22(10)D(2)
hD22(9)D22(9)D22(7)D22(7)D22(6)D22(7)D22(7)S(5)
iD22(12)D22(12)D22(10)D22(10)D22(7)D22(10)D22(7)R12(8)S(5)
jD22(7)D22(7)D22(8)D22(8)D22(5)D22(8)D22(7)R22(8)D22(7)S(5)
kD22(7)D22(7)D22(9)D22(9)R12(5)D22(6)D21(4)[a][a][a]S(5)
lD22(10)D22(10)D22(12)D22(12)D12(5)D22(7)D22(8)[a][a][a]R12(8)S(5)
mD22(10)D22(10)D22(12)D22(12)D22(7)D22(7)D22(8)[a][a][a]R22(8)D22(7)S(5)
[a] No link at binary level.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds