Download citation
Download citation
link to html
The title compound, C16H19NO5, crystallizes as a centrosymmetric dimer through strong O—H...O hydrogen-bonding interactions between the hydroxy­phenyl and morpholino­carbonyl groups. The morpholino­carbonyl group is almost perpendicular to the propenoate moiety. Electron delocalization in the N—C(=O) fragment leads to the formation of hydrogen-bonded S(5) ring motifs through C—H...O interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104012806/fa1065sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104012806/fa1065Isup2.hkl
Contains datablock I

CCDC reference: 245924

Comment top

Lignin-related phenylpropanoids, such as cinnamic acid, are abundant in plant cells and are precursors not only of lignin, the second most abundant carbon compound on earth after cellulose, but also of anthocyanins, phytoalexins and flavonoids (Peng et al., 2003). Many phenylpropanoids are pharmacologically active and thus of pharmaceutical interest (Dixon et al., 1996). The biodegradation of phenylpropanoids is important for the global carbon cycle from an environmental point of view, since these compounds are released from plant wastes as breakdown products from lignin. In view of their importance, augmented further by the potential use of phenylpropanoids as feedstock for bioconversion into valuable molecules (Rosazza et al., 1995), we analyzed the crystal structure of the title compound, (I), which is reported here.

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. Selected bond lengths and angles are listed in Table 1. The observed bond lengths and angles in the hydroxyphenyl group are in agreement with the average values reported in the literature (Domenicano et al., 1975; Allen et al., 1987). The morpholine ring presents a chair conformation, and its bond lengths and angles are comparable to those reported for a related structure (Decken et al., 2003).

The cinammic derivative (I) has a C8—C9 bond length of 1.339 (3) Å, which confirms its double-bond character. The ester and 2-hydroxyphenyl groups are arranged in opposite positions around the double bond [C16—C8—C9—C10 = 177.9 (2)°], giving it an E configuration. The –OEt group points towards the double bond and is almost coplanar with it [C9—C8—C16—O17 = 14.5 (3)°]. These features support the formation of an S(5) ring motif (Bernstein et al., 1995) through the soft C9(sp2)—H9···O17 intramolecular hydrogen-bonding interaction [C9···O17 = 2.747 (2) Å] (Desiraju, 1995), in spite of the small angle observed for C9—H9···O17 (103°). In the same context, the N-carboxy moiety is almost coplanar with the neighbouring C6 atom of the morpholine ring [C6—N1—C7—O7 = 2.3 (3)°] and the C6—N1—C7 angle [121.59 (18)°] is slightly less open than the C2—N1—C7 angle [124.81 (18)°]. Another plausible soft S(5) hydrogen motif is formed through the C6(sp3)—H6A···O7 interaction [C6···O7 = 2.774 (3) Å and C6—H6A···O7 = 103°; Fig. 2]. The hydrogen-bonding geometry is listed in Table 2. This interaction appears as a consequence of the planarity imposed by electron delocalization in the amide N—C(=O) fragment, as indicated by the short N1—C7 distance of only 1.327 (3) Å; this is even shorter than the value found in N-benzylmorpholine (1.343 Å; Bennet et al., 1991).

The N-carboxymorpholine group is almost perpendicular to the propenoic ester group, with N1—C7—C8—C16 and O7—C7—C8—C16 torsion angles of −81.5 (2) and 97.2 (2)°, respectively. This orthogonal disposition of the two S(5) hydrogen-bonding motifs must be forced by the steric requirements of the morpholine ring, in addition to the restricted rotation of the amide N—C(O) bond (Bennet et al., 1991). The conformation exhibited by (I) in the solid state is similar to that found in solution, as supported by the 13C NMR spectrum, which shows four different signals, at 66.4 and 66.3 p.p.m., and 46.9 and 41.9 p.p.m., for the CH2O and CH2N morpholine ring C atoms, respectively.

Finally, the crystal packing is mediated by a strong (Steiner, 2002) O15—H15···O7i intermolecular interaction [H15···O7i = 1.88 Å, O15···O7i = 2.688 (2) Å and O15—H15···O7i = 168°; symmetry code: (i) 1 − x, 1 − y, 1 − z], leading to dimerization in the ac plane. As a result, a 16-membered ring is formed between molecules whose topological motif corresponds to the first-level graph-set descriptor R22(16) (Fig. 2). No other hydorgen-bonding interactions linking this centrosymmetric dimer are formed.

Experimental top

Compound (I) was synthesized starting from equimolar quantities of ethyl coumarin-3-carboxylate (2.12 mmol) and morpholine, refluxed in dry ethyl alcohol (20 ml) for 24 h. The product crystallized from the reaction mixture as a white solid (56% yield; m.p. 488–493 K). Crystals suitable for X-ray analysis were obtained after slow recrystallization from an ethyl alcohol solution. IR (KBr, cm−1): 1764 (C=O), 1606(C=C); 1H NMR (p.p.m., DMSO-d6): 10.3 (b, 1H, OH), 7.94 (s, 1H, H-vinyl), 7.40 (d, 1H, Ho), 7.31 (dd, 1H, Hp), 6.98 (d, 1H, Hm), 6.80 (dd, 1H, Hm), 4.22 (q, 2H, CH2), 3.57–3.41 (m, 4H, CH2O), 3.22–3.11 (m, 4H, CH2N), 1.24 (t, 3H, CH3); 13C NMR (p.p.m., DMSO-d6): 165.5 (COO), 164.9 (NCO), 157.4 (C—OH), 135.2 (C—Ar), 132.9 (Cp), 128.9 (Co), 126.1 (Ci), 120.3 (CCO), 120.0 and 116.6 (Cm), 66.4 and 66.3 (CH2O), 46.9 and 41.9 (CH2N), 16.6 (CH2), 14.8 (CH3).

Refinement top

All H atoms were postioned geometrically and included in the refinement as riding atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXL97 and WinGX2003 (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the intra- and intermolecular hydrogen-bonding scheme in the crystal structure of (I). Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
Ethyl (E)-3-(2-hydroxyphenyl)-2-(morpholinocarbonyl)propenoate top
Crystal data top
C16H19NO5Z = 2
Mr = 305.32F(000) = 324
Triclinic, P1Dx = 1.332 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.790 (2) ÅCell parameters from 600 reflections
b = 9.971 (2) Åθ = 20–25°
c = 10.832 (2) ŵ = 0.10 mm1
α = 72.59 (3)°T = 293 K
β = 74.79 (3)°Block, colourless
γ = 75.64 (3)°0.40 × 0.30 × 0.30 mm
V = 761.5 (3) Å3
Data collection top
Bruker SMART area-detector
diffractometer
Rint = 0.025
Graphite monochromatorθmax = 26.1°, θmin = 2.0°
ϕ and ω scansh = 99
5151 measured reflectionsk = 1112
3003 independent reflectionsl = 1313
1669 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0361P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3003 reflectionsΔρmax = 0.22 e Å3
200 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (3)
Crystal data top
C16H19NO5γ = 75.64 (3)°
Mr = 305.32V = 761.5 (3) Å3
Triclinic, P1Z = 2
a = 7.790 (2) ÅMo Kα radiation
b = 9.971 (2) ŵ = 0.10 mm1
c = 10.832 (2) ÅT = 293 K
α = 72.59 (3)°0.40 × 0.30 × 0.30 mm
β = 74.79 (3)°
Data collection top
Bruker SMART area-detector
diffractometer
1669 reflections with I > 2σ(I)
5151 measured reflectionsRint = 0.025
3003 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
3003 reflectionsΔρmin = 0.17 e Å3
200 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.1046 (2)0.02996 (18)0.29525 (16)0.0754 (7)
O70.53751 (18)0.22049 (14)0.34063 (13)0.0530 (5)
O150.31995 (18)0.63836 (15)0.54654 (13)0.0566 (6)
O160.2882 (2)0.41502 (16)0.09461 (15)0.0810 (7)
O170.2584 (2)0.62165 (15)0.14519 (13)0.0619 (6)
N10.2753 (2)0.15794 (17)0.34815 (16)0.0503 (6)
C20.0807 (3)0.1906 (2)0.3507 (2)0.0632 (9)
C30.0394 (3)0.1194 (3)0.2627 (2)0.0738 (10)
C50.2951 (3)0.0581 (3)0.2839 (2)0.0731 (10)
C60.3512 (3)0.0049 (2)0.3720 (2)0.0609 (9)
C70.3745 (3)0.2534 (2)0.33642 (17)0.0435 (7)
C80.2880 (3)0.4097 (2)0.31390 (18)0.0444 (7)
C90.2424 (2)0.4822 (2)0.40727 (19)0.0458 (7)
C100.2420 (2)0.4244 (2)0.54811 (18)0.0432 (7)
C110.1995 (3)0.2918 (2)0.6204 (2)0.0561 (8)
C120.2017 (3)0.2416 (3)0.7526 (2)0.0675 (9)
C130.2456 (3)0.3240 (3)0.8171 (2)0.0711 (10)
C140.2848 (3)0.4563 (3)0.7501 (2)0.0596 (9)
C150.2826 (3)0.5076 (2)0.6168 (2)0.0458 (7)
C160.2767 (3)0.4807 (2)0.1744 (2)0.0530 (8)
C180.2461 (3)0.6969 (3)0.0102 (2)0.0730 (10)
C190.2696 (4)0.8439 (3)0.0106 (3)0.1026 (13)
H2A0.015270.158070.440280.0758*
H2B0.041650.293260.321930.0758*
H3A0.094070.160220.171850.0886*
H3B0.090560.137150.269550.0886*
H5A0.337770.160700.305580.0878*
H5B0.351820.019530.193100.0878*
H6A0.482200.009270.355190.0731*
H6B0.308800.042350.463600.0731*
H90.206810.580730.379150.0550*
H110.168840.235440.577800.0673*
H120.173490.152170.798470.0810*
H130.248760.289780.906490.0854*
H140.313040.512140.794420.0715*
H150.362560.670990.590530.0849*
H18A0.339470.650290.050480.0876*
H18B0.129140.696940.005560.0876*
H19A0.260790.896270.099510.1540*
H19B0.177080.888880.050190.1540*
H19C0.386370.842750.004000.1540*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0778 (12)0.0706 (12)0.0942 (13)0.0290 (9)0.0244 (10)0.0260 (9)
O70.0464 (9)0.0500 (9)0.0696 (10)0.0040 (7)0.0224 (7)0.0200 (7)
O150.0642 (10)0.0522 (10)0.0615 (9)0.0131 (7)0.0213 (7)0.0167 (7)
O160.1293 (16)0.0638 (11)0.0574 (10)0.0062 (10)0.0356 (10)0.0213 (9)
O170.0898 (12)0.0476 (10)0.0463 (9)0.0058 (8)0.0254 (8)0.0046 (7)
N10.0461 (10)0.0414 (11)0.0699 (12)0.0054 (8)0.0220 (9)0.0166 (8)
C20.0518 (14)0.0601 (15)0.0805 (17)0.0073 (11)0.0193 (12)0.0193 (12)
C30.0680 (16)0.084 (2)0.0804 (18)0.0191 (14)0.0320 (14)0.0177 (14)
C50.0831 (19)0.0606 (16)0.0849 (18)0.0140 (13)0.0213 (15)0.0275 (13)
C60.0723 (16)0.0417 (13)0.0725 (16)0.0046 (11)0.0281 (12)0.0132 (11)
C70.0487 (13)0.0453 (13)0.0399 (12)0.0055 (10)0.0133 (10)0.0143 (9)
C80.0470 (12)0.0411 (12)0.0469 (12)0.0056 (9)0.0151 (10)0.0107 (10)
C90.0440 (12)0.0397 (12)0.0542 (13)0.0024 (9)0.0152 (10)0.0124 (10)
C100.0413 (12)0.0423 (12)0.0437 (12)0.0011 (9)0.0086 (9)0.0130 (10)
C110.0648 (15)0.0492 (14)0.0545 (15)0.0088 (11)0.0116 (12)0.0151 (11)
C120.0837 (18)0.0550 (15)0.0522 (15)0.0138 (13)0.0068 (13)0.0017 (12)
C130.0839 (18)0.0798 (19)0.0444 (14)0.0116 (15)0.0144 (13)0.0094 (13)
C140.0640 (15)0.0700 (17)0.0508 (14)0.0116 (12)0.0144 (11)0.0223 (12)
C150.0400 (12)0.0457 (13)0.0493 (13)0.0013 (9)0.0089 (10)0.0141 (10)
C160.0597 (14)0.0486 (15)0.0519 (14)0.0026 (11)0.0183 (11)0.0144 (11)
C180.0948 (19)0.0692 (18)0.0495 (15)0.0083 (14)0.0256 (13)0.0028 (12)
C190.180 (3)0.0603 (19)0.0676 (17)0.0293 (19)0.0411 (18)0.0035 (13)
Geometric parameters (Å, º) top
O4—C31.416 (3)C13—C141.368 (4)
O4—C51.419 (3)C14—C151.383 (3)
O7—C71.240 (3)C18—C191.465 (4)
O15—C151.357 (3)C2—H2A0.9699
O16—C161.205 (3)C2—H2B0.9705
O17—C161.324 (3)C3—H3A0.9705
O17—C181.446 (3)C3—H3B0.9702
O15—H150.8200C5—H5A0.9699
N1—C21.464 (3)C5—H5B0.9697
N1—C71.327 (3)C6—H6A0.9700
N1—C61.463 (3)C6—H6B0.9701
C2—C31.482 (3)C9—H90.9300
C5—C61.487 (3)C11—H110.9302
C7—C81.510 (3)C12—H120.9301
C8—C161.480 (3)C13—H130.9302
C8—C91.339 (3)C14—H140.9301
C9—C101.460 (3)C18—H18A0.9702
C10—C151.402 (3)C18—H18B0.9699
C10—C111.390 (3)C19—H19A0.9596
C11—C121.372 (3)C19—H19B0.9600
C12—C131.374 (4)C19—H19C0.9601
O4···N12.808 (3)C8···H112.9133
O7···O15i2.688 (2)C8···H15i3.0038
O15···C2ii3.250 (3)C9···H15i3.0804
O15···O7i2.688 (2)C15···H2Bii2.8609
O15···C15i3.356 (3)C16···H2B2.7882
O15···C10i3.252 (2)C16···H18Aix3.0747
O16···N13.145 (2)H2A···H112.5151
O16···C23.323 (3)H2A···O4iii2.7764
O4···H2Aiii2.7764H2A···O15ii2.8824
O4···H19Biv2.8797H2B···O162.8482
O7···H6A2.3868H2B···C82.4486
O7···H15i1.8810H2B···C162.7882
O7···H3Bv2.7742H2B···O15ii2.8200
O7···H6Bvi2.6662H2B···C15ii2.8609
O15···H5Avii2.7685H3A···H5B2.3468
O15···H2Bii2.8200H3B···O7x2.7742
O15···H92.4714H5A···O15iv2.7685
O15···H2Aii2.8824H5B···H3A2.3468
O16···H2B2.8482H6A···O72.3868
O16···H13viii2.8014H6B···O7vi2.6662
O16···H18A2.4621H9···O152.4714
O16···H18B2.7869H9···O172.3830
O16···H18Aix2.7545H11···N12.6875
O17···H92.3830H11···C22.9016
N1···O42.808 (3)H11···C72.6644
N1···O163.145 (2)H11···C82.9133
N1···C113.446 (3)H11···H2A2.5151
N1···H112.6875H12···H19Axi2.4577
C2···O163.323 (3)H13···O16xii2.8014
C2···C163.421 (3)H14···H152.3017
C2···O15ii3.250 (3)H14···H18Axii2.5435
C7···C113.117 (3)H15···H142.3017
C9···C10ii3.593 (3)H15···O7i1.8810
C10···O15i3.252 (2)H15···C7i2.7136
C10···C9ii3.593 (3)H15···C8i3.0038
C11···C73.117 (3)H15···C9i3.0804
C11···N13.446 (3)H18A···O162.4621
C15···O15i3.356 (3)H18A···H14viii2.5435
C16···C23.421 (3)H18A···O16ix2.7545
C2···H112.9016H18A···C16ix3.0747
C7···H112.6644H18B···O162.7869
C7···H15i2.7136H19A···H12xiii2.4577
C8···H2B2.4486H19B···O4vii2.8797
C3—O4—C5110.11 (19)O4—C3—H3A109.25
C16—O17—C18116.27 (18)O4—C3—H3B109.28
C15—O15—H15109.46C2—C3—H3A109.25
C2—N1—C7124.81 (18)C2—C3—H3B109.26
C6—N1—C7121.59 (18)H3A—C3—H3B107.88
C2—N1—C6113.39 (17)O4—C5—H5A109.10
N1—C2—C3110.20 (18)O4—C5—H5B109.12
O4—C3—C2111.84 (19)C6—C5—H5A109.03
O4—C5—C6112.6 (2)C6—C5—H5B109.05
N1—C6—C5109.79 (19)H5A—C5—H5B107.86
O7—C7—C8117.9 (2)N1—C6—H6A109.68
N1—C7—C8119.2 (2)N1—C6—H6B109.68
O7—C7—N1122.86 (19)C5—C6—H6A109.75
C7—C8—C16113.61 (16)C5—C6—H6B109.74
C9—C8—C16122.28 (18)H6A—C6—H6B108.19
C7—C8—C9123.77 (18)C8—C9—H9116.24
C8—C9—C10127.50 (19)C10—C9—H9116.26
C9—C10—C15118.82 (18)C10—C11—H11119.01
C11—C10—C15117.19 (18)C12—C11—H11119.06
C9—C10—C11123.98 (18)C11—C12—H12120.15
C10—C11—C12121.9 (2)C13—C12—H12120.10
C11—C12—C13119.7 (2)C12—C13—H13119.98
C12—C13—C14120.1 (2)C14—C13—H13119.89
C13—C14—C15120.4 (2)C13—C14—H14119.82
O15—C15—C14122.4 (2)C15—C14—H14119.79
C10—C15—C14120.6 (2)O17—C18—H18A110.11
O15—C15—C10117.03 (18)O17—C18—H18B110.14
O16—C16—O17123.54 (19)C19—C18—H18A110.08
O17—C16—C8113.81 (17)C19—C18—H18B110.09
O16—C16—C8122.63 (19)H18A—C18—H18B108.42
O17—C18—C19108.0 (2)C18—C19—H19A109.48
N1—C2—H2A109.62C18—C19—H19B109.45
N1—C2—H2B109.59C18—C19—H19C109.44
C3—C2—H2A109.64H19A—C19—H19B109.51
C3—C2—H2B109.64H19A—C19—H19C109.49
H2A—C2—H2B108.11H19B—C19—H19C109.47
C5—O4—C3—C259.8 (2)C7—C8—C16—O1619.1 (3)
C3—O4—C5—C659.4 (2)C7—C8—C16—O17159.0 (2)
C18—O17—C16—C8179.82 (19)C9—C8—C16—O16167.4 (2)
C16—O17—C18—C19166.9 (2)C16—C8—C9—C10177.9 (2)
C18—O17—C16—O162.1 (3)C9—C8—C16—O1714.5 (3)
C2—N1—C7—C84.7 (3)C7—C8—C9—C109.3 (3)
C6—N1—C7—C8179.09 (16)C8—C9—C10—C15147.4 (2)
C6—N1—C7—O72.3 (3)C8—C9—C10—C1134.1 (3)
C7—N1—C6—C5134.9 (2)C11—C10—C15—O15178.52 (19)
C2—N1—C7—O7176.66 (17)C9—C10—C15—C14179.6 (2)
C6—N1—C2—C351.1 (2)C9—C10—C15—O150.1 (3)
C7—N1—C2—C3134.1 (2)C11—C10—C15—C141.8 (3)
C2—N1—C6—C550.2 (2)C15—C10—C11—C121.8 (3)
N1—C2—C3—O455.4 (2)C9—C10—C11—C12179.7 (2)
O4—C5—C6—N154.2 (2)C10—C11—C12—C130.5 (4)
O7—C7—C8—C1697.2 (2)C11—C12—C13—C140.8 (4)
O7—C7—C8—C976.3 (3)C12—C13—C14—C150.7 (4)
N1—C7—C8—C9105.1 (3)C13—C14—C15—O15179.8 (2)
N1—C7—C8—C1681.5 (2)C13—C14—C15—C100.6 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x, y1, z; (v) x+1, y, z; (vi) x+1, y, z+1; (vii) x, y+1, z; (viii) x, y, z1; (ix) x+1, y+1, z; (x) x1, y, z; (xi) x, y1, z+1; (xii) x, y, z+1; (xiii) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15···O7i0.821.882.688 (2)168
C6—H6A···O70.972.392.774 (3)103
C9—H9···O170.932.382.747 (2)103
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H19NO5
Mr305.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.790 (2), 9.971 (2), 10.832 (2)
α, β, γ (°)72.59 (3), 74.79 (3), 75.64 (3)
V3)761.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5151, 3003, 1669
Rint0.025
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.104, 1.01
No. of reflections3003
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXL97 and WinGX2003 (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O4—C31.416 (3)O17—C181.446 (3)
O4—C51.419 (3)N1—C21.464 (3)
O7—C71.240 (3)N1—C71.327 (3)
O15—C151.357 (3)N1—C61.463 (3)
O16—C161.205 (3)C8—C91.339 (3)
O17—C161.324 (3)
C3—O4—C5110.11 (19)N1—C7—C8119.2 (2)
C16—O17—C18116.27 (18)O7—C7—N1122.86 (19)
C2—N1—C7124.81 (18)O16—C16—O17123.54 (19)
C6—N1—C7121.59 (18)O17—C16—C8113.81 (17)
C2—N1—C6113.39 (17)O16—C16—C8122.63 (19)
O7—C7—C8117.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15···O7i0.821.882.688 (2)168
C6—H6A···O70.972.392.774 (3)103
C9—H9···O170.932.382.747 (2)103.
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds