Download citation
Download citation
link to html
The title compound, C48H36N2S4, can be crystallized as two polymorphic structures, (I) and (II), both of which are in the triclinic space group P\overline 1 and possess Ci symmetry. In the crystal structure of polymorph (I), the adjacent naphthalene moieties are orientated towards one another and are inclined to one another by 78.7 (1)°, resulting in weak C—H...π interactions. In polymorph (II), the adjacent substituents are orientated away from one another, enclosing the pyrazine N atoms. In this way, the S atom of one substituent sits below the plane of the naphthalene ring of the other substituent.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010400023X/fa1045sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010400023X/fa1045Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010400023X/fa1045IIsup3.hkl
Contains datablock II

CCDC references: 233139; 233140

Comment top

Tetra-substituted pyrazine derivatives have been used for a number of years as ligands in coordination chemistry, and a review of the Cambridge Structural Database (Version 5.25 of November 2003; Allen, 2002), indicated the presence of more than 40 such complexes. The majority include mono- and binuclear coordination complexes, and some coordination polymers, involving the ligands 2,3,5,6-tetra(2-pyridyl)pyrazine and 2,3,5,6-pyrazinetetracarboxylic acid.

Two cases of polymorphs of tetra-substitued pyrazine derivaties are also known, namely 2,3,5,6-tetraphenylpyrazine (Bartnik et al., 1999) and 2,3,5,6-tetra(2-pyridyl)pyrazine (Bock et al., 1992; Greaves & Stoeckli-Evans, 1992). The title compound, L, which possesses four extended `arms', was synthesized in order to explore its coordination behaviour with first-row transition metals. Two polymorphic forms, (I) and (II), have been isolated. Both crystallize in space group P1 and possess Ci symmetry. Polymorph (I) was obtained by slow diffusion of methanol into a toluene solution of L. Polymorph (II) was obtained by slow evaporation of a 1:1 methanol/chloroform solution of L. In both cases, the crystals were colourless.

The molecular structures of the two polymorphs, (I) and (II), are shown in Figs. 1(a) and 2(a), respectively. The bond distances and angles are normal for such compounds, and selected geometric parameters are given in Tables 1 and 2. The molecular structures of (I) and (II) differ in the orientation of the naphthalen-2-ylsulfanyl moieties with respect to the plane of the pyrazine ring. This difference is reflected in the torsion angles about the C1—C3 and C2—C4 bonds, and S1—C3 and S2—C4 bonds, which are quite different in the two polymorphs (see Tables 1 and 2). It can be seen that opposite naphthalene moieties are parallel to one another by symmetry. The various dihedral angles formed by the naphthalene and pyrazine rings are given in Table 3.

In polymorph (I), adjacent napthalene ring planes are inclined to one another by 78.7 (1)°, resulting in a weak C—H···π interaction involving atom C12 and the centroid of the plane formed by atoms C17i–C22i [the C—H···centroid distance is 2.64 (3) Å]. This interaction? is illustrated in the CPK view of (I) (Fig. 1 b).

In polymorph (II), the adjacent substituents are orientated away from one another, enclosing the pyrazine N atoms. The plane of the naphthalene moiety defined by atoms C5–C14 is inclined to the plane of the second naphthalene moiety (C15–C24) by 57.0 (1)°. In this way, the S atom, S2, of one substituent sits below the plane of the naphthalene ring of the other substituent. This conformation is illustrated in the CPK view of (II) (Fig. 2 b). However, there are no short intramolecular interactions, as atom S2 is more than 3.7 Å from atom C12, for example.

In the crystal packing of (I) and (II), the molecules stack along the a axes, as shown in Figs. 3 and 4, respectively. There are no short intermolecular interactions between symmetry-related molecules in either structure.

Experimental top

In a 200 ml three-necked flask, NaOH (575 mg, 14.4 mmol, 4.4 equivalents) was dissolved in refluxing tetrahydrofuran (THF; 45 ml) and H2O (5 ml). Naphthalene-2-thiol (2.188 g, 13.7 mmol, 4.1 equivalents), dissolved in THF (45 ml), was then added dropwise. The deprotonation of naphthalene-2-thiol occurred in 1 h. To this solution, a solution containing 2,3,5,6-tetrakis-bromomethylpyrazine (TBr; 1.515 g, 3.3 mmol, 1 equivalent) in THF (75 ml) was added dropwise. The reaction was then left to reflux for 29 h. The solvent was removed with a rotary evaporator, and a yellow powder (2.250 g) was obtained. The compound was purified on a chromatography column using CH2Cl2/toluene (10:3) as eluant (yield 42%). After evaporation of the solvent, a colourless powder was obtained. Crystals suitable for X-ray analysis of polymorph (I) were prepared by diffusion of an equal volume of methanol into a toluene solution containing the product. Suitable crystals of polymorph (II) were prepared by slow evaporation of a chloroform/methanol (1:1) mixture after heating for 1 h at refluxing temperature. 1H NMR (CDCl3, 400 MHz): δ 7.84 (m, 8H, H6,9), 7.76 (m, 8H, H7,11), 7.48 [dd, 4H, 3 J(12,11) = 9.4, 4 J(12,4) = 1.9 Hz, H12], 7.47 (s, 4H, H4), 7.39 [dd, 4H, 3 J(8,7) = 8.6 Hz, 4 J(8,6/9) = 1.9 Hz, H8], 4.49 (s, 8H, H2); 13C NMR (CDCl3, 50 MHz): δ 149.59 (4 C, C1), 134.21 (4 C, C3), 133.88 (4 C, C5), 132.43 (4 C,C10), 129.13 (4 C, C11), 128.38 (12 C, C6,8,9), 127.91(4 C, C7), 127.38 (4 C, C12), 126.70 (4 C, C4), 37.25 (4 C, C2); ESI-MS: 769.09 [M+H]+; IR (KBr disc, cm−1): 3049 (w), 2926 (w), 1622 (m), 1582 (m), 1500 (m), 1446 (m), 1402 (s), 1336 (w), 1269 (w), 1243 (w), 1199 (w), 1131 (m), 1077 (m) 1013 (w), 957 (w), 942 (w), 902 (w), 885 (w), 863 (w), 852 (s), 821 (s), 806 (s), 798 (s), 763 (w), 749 (s), 737 (s), 636 (w), 598 (w), 479 (s), 469 (s). Analysis calculated for C48H36N2S4: C 74.96, H 4.72, N 3.64%; found: C 74.90, H 4.93, N 3.41%.

Refinement top

Crystals of both (I) and (II) diffracted weakly and the ratios of observed reflections to number of parameters were low (ca 7). It was only possible to access a maximum of ca 93% of the Ewald sphere in the triclinic system using the image-plate diffraction system if maximum atomic resolution was to be obtained, i.e. 0.81 Å. All H atoms were initially located in difference Fourier maps, and were subsequently included in the refinement in calculated positions and treated as riding atoms, using SHELXL97 (Sheldrick, 1997) default parameters. Polymorph (I) was measured at 153 K, and hence the C—H distances were 0.95–0.99 Å; polymorph (II) was measured at 293 K, and hence the C–H distances were 0.93–0.97 Å. In both cases, Uiso(H) values were taken to be equal to 1.2Ueq(C).

Computing details top

For both compounds, data collection: EXPOSE (Stoe & Cie, 2000); cell refinement: CELL (Stoe & Cie, 2000); data reduction: INTEGRATE (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: PLATON (Spek, 1990) for (I); PLATON/PLUTON (Spek, 1990) for (II). For both compounds, software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. (a) A view of polymorph (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. [Symmetry code: (a) 1 − x, 2 − y, 1 − z.] (b) A CPK view of polmorph (I).
[Figure 2] Fig. 2. (a) A view of polymorph (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. [Symmetry code: (a) 1 − x, −y, −z.] (b) A CPK view of polmorph (II).
[Figure 3] Fig. 3. The molecular packing of polymorph (I), viewed along the a axis.
[Figure 4] Fig. 4. The molecular packing of polymorph (II), viewed along the a axis.
(I) 2,3,5,6-tetrakis(naphthalen-2-ylsulfanylmethyl)pyrazine top
Crystal data top
C48H36N2S4Z = 1
Mr = 769.09F(000) = 402
Triclinic, P1Dx = 1.391 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.878 (1) ÅCell parameters from 3169 reflections
b = 9.0432 (14) Åθ = 2.4–25.9°
c = 15.613 (2) ŵ = 0.30 mm1
α = 73.631 (17)°T = 153 K
β = 82.265 (16)°Rod, colourless
γ = 82.091 (18)°0.45 × 0.20 × 0.10 mm
V = 918.2 (2) Å3
Data collection top
STOE image-plate diffraction system
diffractometer
1735 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 25.9°, θmin = 2.4°
ϕ oscillation scansh = 88
7208 measured reflectionsk = 1111
3332 independent reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.00 w = [exp(3.00(sinθ/λ)2)]/ [σ2(Fo2) + (0.0281P)2]
where P = (Fo2 + 2Fc2)/3
3332 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C48H36N2S4γ = 82.091 (18)°
Mr = 769.09V = 918.2 (2) Å3
Triclinic, P1Z = 1
a = 6.878 (1) ÅMo Kα radiation
b = 9.0432 (14) ŵ = 0.30 mm1
c = 15.613 (2) ÅT = 153 K
α = 73.631 (17)°0.45 × 0.20 × 0.10 mm
β = 82.265 (16)°
Data collection top
STOE image-plate diffraction system
diffractometer
1735 reflections with I > 2σ(I)
7208 measured reflectionsRint = 0.055
3332 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
3332 reflectionsΔρmin = 0.22 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. (I)n the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken (I)nto account (I)ndividually (I)n the estimation of e.s.d.'s (I)n distances, angles and torsion angles; correlations between e.s.d.'s (I)n cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s (I)s used for estimating e.s.d.'s (I)nvolving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) (I)s used only for calculating R-factors(gt) etc. and (I)s not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3620 (3)0.8960 (2)0.54130 (14)0.0307 (5)
S10.08272 (10)0.78122 (8)0.46604 (5)0.0373 (2)
S20.68109 (12)0.64792 (8)0.68490 (5)0.0428 (2)
C10.3564 (4)0.9781 (3)0.45529 (17)0.0273 (6)
C20.5055 (4)0.9179 (3)0.58570 (17)0.0286 (6)
C30.1956 (4)0.9552 (3)0.40560 (18)0.0317 (6)
H3A0.25120.94700.34510.038*
H3B0.09451.04580.39850.038*
C40.5073 (4)0.8199 (3)0.68170 (17)0.0344 (6)
H4A0.37360.78940.70560.041*
H4B0.54690.88010.71940.041*
C50.0927 (4)0.7800 (3)0.39389 (19)0.0320 (6)
C60.2311 (4)0.6698 (3)0.42972 (19)0.0369 (7)
H60.21870.60050.48760.044*
C70.3806 (4)0.6610 (3)0.3834 (2)0.0390 (7)
H70.47250.58730.40950.047*
C80.4005 (4)0.7621 (3)0.29549 (19)0.0339 (7)
C90.5600 (4)0.7636 (3)0.2455 (2)0.0426 (7)
H90.65730.69400.27020.051*
C100.5742 (4)0.8638 (3)0.1625 (2)0.0443 (8)
H100.68230.86500.13030.053*
C110.4306 (4)0.9643 (3)0.1250 (2)0.0431 (8)
H110.44021.03190.06650.052*
C120.2775 (4)0.9676 (3)0.17029 (19)0.0380 (7)
H120.18121.03720.14320.046*
C130.2593 (4)0.8680 (3)0.25802 (18)0.0321 (6)
C140.1061 (4)0.8753 (3)0.30832 (19)0.0342 (6)
H140.01140.94680.28280.041*
C150.8451 (4)0.6458 (3)0.76307 (19)0.0355 (7)
C160.8005 (4)0.7110 (3)0.83366 (18)0.0366 (7)
H160.67310.76350.84260.044*
C170.9437 (4)0.7004 (3)0.89363 (18)0.0337 (6)
C180.9043 (4)0.7646 (3)0.96732 (19)0.0395 (7)
H180.77830.81820.97770.047*
C191.0448 (4)0.7508 (3)1.0244 (2)0.0442 (8)
H191.01590.79451.07390.053*
C201.2307 (4)0.6724 (3)1.0095 (2)0.0474 (8)
H201.32820.66411.04880.057*
C211.2731 (4)0.6084 (3)0.9401 (2)0.0443 (8)
H211.40020.55530.93130.053*
C221.1318 (4)0.6188 (3)0.87985 (19)0.0361 (7)
C231.1687 (4)0.5489 (3)0.8085 (2)0.0438 (8)
H231.29240.49080.80020.053*
C241.0309 (4)0.5629 (3)0.7514 (2)0.0416 (7)
H241.06010.51630.70310.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0323 (12)0.0324 (11)0.0292 (12)0.0003 (9)0.0083 (10)0.0100 (10)
S10.0380 (4)0.0390 (4)0.0364 (4)0.0057 (3)0.0140 (3)0.0071 (3)
S20.0559 (5)0.0353 (4)0.0406 (5)0.0031 (3)0.0196 (4)0.0126 (3)
C10.0282 (13)0.0309 (13)0.0260 (14)0.0023 (11)0.0062 (12)0.0136 (11)
C20.0293 (13)0.0335 (14)0.0253 (14)0.0041 (11)0.0083 (12)0.0125 (11)
C30.0304 (14)0.0363 (14)0.0308 (15)0.0020 (11)0.0104 (12)0.0101 (12)
C40.0367 (15)0.0375 (14)0.0291 (15)0.0043 (12)0.0074 (13)0.0069 (12)
C50.0299 (14)0.0320 (14)0.0369 (17)0.0005 (11)0.0059 (13)0.0137 (12)
C60.0388 (15)0.0326 (14)0.0399 (17)0.0037 (12)0.0052 (14)0.0099 (13)
C70.0325 (14)0.0369 (15)0.0520 (19)0.0066 (12)0.0034 (14)0.0182 (14)
C80.0315 (14)0.0345 (15)0.0420 (17)0.0036 (12)0.0100 (13)0.0205 (13)
C90.0354 (15)0.0435 (17)0.058 (2)0.0043 (13)0.0088 (15)0.0259 (15)
C100.0438 (17)0.0488 (17)0.049 (2)0.0044 (14)0.0211 (16)0.0240 (15)
C110.0454 (17)0.0488 (18)0.0417 (19)0.0047 (14)0.0131 (15)0.0234 (14)
C120.0382 (16)0.0413 (16)0.0358 (17)0.0014 (12)0.0074 (14)0.0119 (13)
C130.0308 (14)0.0338 (14)0.0372 (17)0.0012 (11)0.0075 (13)0.0185 (12)
C140.0279 (14)0.0382 (15)0.0382 (17)0.0048 (11)0.0046 (12)0.0118 (13)
C150.0411 (16)0.0337 (15)0.0307 (17)0.0010 (12)0.0066 (14)0.0068 (12)
C160.0376 (15)0.0369 (15)0.0339 (16)0.0031 (12)0.0077 (13)0.0086 (13)
C170.0414 (16)0.0292 (14)0.0287 (15)0.0015 (12)0.0045 (13)0.0055 (12)
C180.0402 (16)0.0417 (16)0.0368 (17)0.0010 (13)0.0072 (14)0.0118 (13)
C190.0534 (18)0.0459 (17)0.0373 (18)0.0051 (14)0.0132 (15)0.0136 (14)
C200.0517 (18)0.0412 (16)0.052 (2)0.0044 (14)0.0266 (16)0.0107 (15)
C210.0402 (17)0.0389 (16)0.054 (2)0.0044 (13)0.0161 (16)0.0120 (15)
C220.0398 (16)0.0294 (14)0.0364 (17)0.0010 (12)0.0020 (14)0.0074 (13)
C230.0413 (17)0.0429 (17)0.0454 (19)0.0066 (13)0.0068 (15)0.0131 (14)
C240.0447 (17)0.0409 (16)0.0371 (17)0.0029 (13)0.0004 (14)0.0121 (13)
Geometric parameters (Å, º) top
N1—C11.342 (3)C10—H100.9500
N1—C21.345 (3)C11—C121.353 (4)
S1—C51.761 (2)C11—H110.9500
S1—C31.809 (3)C12—C131.422 (4)
S2—C151.764 (3)C12—H120.9500
S2—C41.820 (3)C13—C141.415 (3)
C1—C2i1.392 (4)C14—H140.9500
C1—C31.501 (3)C15—C161.371 (4)
C2—C1i1.392 (4)C15—C241.407 (4)
C2—C41.512 (3)C16—C171.424 (4)
C3—H3A0.9900C16—H160.9500
C3—H3B0.9900C17—C181.408 (4)
C4—H4A0.9900C17—C221.420 (4)
C4—H4B0.9900C18—C191.371 (4)
C5—C141.378 (4)C18—H180.9500
C5—C61.420 (4)C19—C201.398 (4)
C6—C71.357 (4)C19—H190.9500
C6—H60.9500C20—C211.348 (4)
C7—C81.431 (4)C20—H200.9500
C7—H70.9500C21—C221.417 (4)
C8—C131.411 (4)C21—H210.9500
C8—C91.426 (4)C22—C231.408 (4)
C9—C101.362 (4)C23—C241.356 (4)
C9—H90.9500C23—H230.9500
C10—C111.391 (4)C24—H240.9500
C1—N1—C2117.5 (2)C10—C11—H11119.4
C5—S1—C3101.12 (12)C11—C12—C13120.7 (3)
C15—S2—C4105.59 (13)C11—C12—H12119.7
N1—C1—C2i120.8 (2)C13—C12—H12119.7
N1—C1—C3117.8 (2)C8—C13—C14119.9 (2)
C2i—C1—C3121.5 (2)C8—C13—C12118.5 (2)
N1—C2—C1i121.7 (2)C14—C13—C12121.5 (3)
N1—C2—C4115.2 (2)C5—C14—C13120.8 (3)
C1i—C2—C4123.0 (2)C5—C14—H14119.6
C1—C3—S1110.34 (17)C13—C14—H14119.6
C1—C3—H3A109.6C16—C15—C24120.0 (2)
S1—C3—H3A109.6C16—C15—S2125.2 (2)
C1—C3—H3B109.6C24—C15—S2114.8 (2)
S1—C3—H3B109.6C15—C16—C17120.5 (3)
H3A—C3—H3B108.1C15—C16—H16119.8
C2—C4—S2108.9 (2)C17—C16—H16119.8
C2—C4—H4A109.9C18—C17—C22118.8 (2)
S2—C4—H4A109.9C18—C17—C16122.5 (3)
C2—C4—H4B109.9C22—C17—C16118.7 (3)
S2—C4—H4B109.9C19—C18—C17121.0 (3)
H4A—C4—H4B108.3C19—C18—H18119.5
C14—C5—C6118.8 (2)C17—C18—H18119.5
C14—C5—S1126.0 (2)C18—C19—C20119.9 (3)
C6—C5—S1115.2 (2)C18—C19—H19120.1
C7—C6—C5121.6 (3)C20—C19—H19120.1
C7—C6—H6119.2C21—C20—C19120.7 (3)
C5—C6—H6119.2C21—C20—H20119.6
C6—C7—C8120.3 (3)C19—C20—H20119.6
C6—C7—H7119.8C20—C21—C22121.3 (3)
C8—C7—H7119.8C20—C21—H21119.3
C13—C8—C9118.7 (3)C22—C21—H21119.3
C13—C8—C7118.4 (2)C23—C22—C21122.8 (3)
C9—C8—C7122.9 (3)C23—C22—C17118.8 (2)
C10—C9—C8120.7 (3)C21—C22—C17118.3 (3)
C10—C9—H9119.7C24—C23—C22121.2 (3)
C8—C9—H9119.7C24—C23—H23119.4
C9—C10—C11120.1 (2)C22—C23—H23119.4
C9—C10—H10119.9C23—C24—C15120.6 (3)
C11—C10—H10119.9C23—C24—H24119.7
C12—C11—C10121.2 (3)C15—C24—H24119.7
C12—C11—H11119.4
C2—N1—C1—C2i0.2 (4)C11—C12—C13—C14176.6 (3)
C2—N1—C1—C3179.5 (2)C6—C5—C14—C132.4 (4)
C1—N1—C2—C1i0.2 (4)S1—C5—C14—C13177.3 (2)
C1—N1—C2—C4178.7 (2)C8—C13—C14—C50.0 (4)
N1—C1—C3—S115.3 (3)C12—C13—C14—C5178.7 (3)
C2i—C1—C3—S1165.4 (2)C4—S2—C15—C1627.0 (3)
C5—S1—C3—C1178.9 (2)C4—S2—C15—C24156.2 (2)
N1—C2—C4—S295.7 (2)C24—C15—C16—C172.4 (4)
C1i—C2—C4—S283.2 (3)S2—C15—C16—C17179.1 (2)
C15—S2—C4—C2125.36 (19)C15—C16—C17—C18179.6 (3)
C3—S1—C5—C149.8 (3)C15—C16—C17—C221.2 (4)
C3—S1—C5—C6169.9 (2)C22—C17—C18—C190.8 (4)
C14—C5—C6—C73.0 (4)C16—C17—C18—C19179.3 (3)
S1—C5—C6—C7176.7 (2)C17—C18—C19—C200.2 (4)
C5—C6—C7—C81.1 (4)C18—C19—C20—C210.7 (5)
C6—C7—C8—C131.3 (4)C19—C20—C21—C220.2 (5)
C6—C7—C8—C9176.7 (3)C20—C21—C22—C23177.8 (3)
C13—C8—C9—C101.0 (4)C20—C21—C22—C170.8 (4)
C7—C8—C9—C10179.0 (3)C18—C17—C22—C23177.3 (3)
C8—C9—C10—C111.1 (5)C16—C17—C22—C231.2 (4)
C9—C10—C11—C121.6 (5)C18—C17—C22—C211.3 (4)
C10—C11—C12—C130.1 (4)C16—C17—C22—C21179.8 (3)
C9—C8—C13—C14176.3 (3)C21—C22—C23—C24179.1 (3)
C7—C8—C13—C141.8 (4)C17—C22—C23—C242.3 (4)
C9—C8—C13—C122.5 (4)C22—C23—C24—C151.2 (5)
C7—C8—C13—C12179.4 (3)C16—C15—C24—C231.2 (4)
C11—C12—C13—C82.1 (4)S2—C15—C24—C23178.3 (2)
Symmetry code: (i) x+1, y+2, z+1.
(II) 2,3,5,6-tetrakis(naphthalen-2-ylsulfanylmethyl)pyrazine top
Crystal data top
C48H36N2S4Z = 1
Mr = 769.09F(000) = 402
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7641 (11) ÅCell parameters from 2628 reflections
b = 9.7771 (19) Åθ = 2.2–26.0°
c = 18.006 (4) ŵ = 0.28 mm1
α = 75.40 (2)°T = 293 K
β = 87.87 (2)°Plate, colourless
γ = 86.66 (2)°0.50 × 0.30 × 0.03 mm
V = 980.1 (3) Å3
Data collection top
STOE image-plate diffraction system
diffractometer
1467 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
Detector resolution: 0.81Å pixels mm-1h = 77
ϕ oscillation scansk = 1112
7633 measured reflectionsl = 2222
3545 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086 w = [exp(4.00(sinθ/λ)2)]/ [σ2(Fo2) + (0.0241P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3545 reflectionsΔρmax = 0.15 e Å3
245 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0125 (14)
Crystal data top
C48H36N2S4γ = 86.66 (2)°
Mr = 769.09V = 980.1 (3) Å3
Triclinic, P1Z = 1
a = 5.7641 (11) ÅMo Kα radiation
b = 9.7771 (19) ŵ = 0.28 mm1
c = 18.006 (4) ÅT = 293 K
α = 75.40 (2)°0.50 × 0.30 × 0.03 mm
β = 87.87 (2)°
Data collection top
STOE image-plate diffraction system
diffractometer
1467 reflections with I > 2σ(I)
7633 measured reflectionsRint = 0.062
3545 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
3545 reflectionsΔρmin = 0.18 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. (I)n the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken (I)nto account (I)ndividually (I)n the estimation of e.s.d.'s (I)n distances, angles and torsion angles; correlations between e.s.d.'s (I)n cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s (I)s used for estimating e.s.d.'s (I)nvolving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) (I)s used only for calculating R-factors(gt) etc. and (I)s not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6922 (5)0.0392 (2)0.04072 (13)0.0495 (7)
S10.4067 (2)0.33094 (9)0.07442 (5)0.0697 (3)
S20.67603 (16)0.26801 (8)0.17826 (4)0.0524 (3)
C10.5474 (6)0.1353 (3)0.00134 (15)0.0454 (8)
C20.6474 (6)0.0962 (3)0.03917 (16)0.0457 (8)
C30.6003 (7)0.2845 (3)0.00787 (17)0.0601 (9)
H3B0.58320.34950.04230.072*
H3A0.76000.29400.02550.072*
C40.8107 (6)0.2007 (3)0.08628 (15)0.0523 (8)
H4B0.96140.15470.09230.063*
H4A0.83130.27690.06190.063*
C50.4713 (6)0.1988 (3)0.15920 (17)0.0505 (8)
C60.6834 (7)0.2099 (3)0.19910 (18)0.0584 (9)
H6A0.78790.28600.18070.070*
C70.7374 (6)0.1107 (3)0.26437 (18)0.0547 (9)
H7A0.87900.11890.28970.066*
C80.5803 (6)0.0044 (3)0.29375 (16)0.0464 (8)
C90.6313 (6)0.1109 (4)0.36094 (17)0.0612 (9)
H9A0.77180.10470.38730.073*
C100.4782 (8)0.2214 (4)0.3873 (2)0.0713 (11)
H10A0.51370.29040.43160.086*
C110.2651 (8)0.2322 (4)0.3477 (2)0.0704 (11)
H11A0.16140.30890.36580.085*
C120.2100 (6)0.1319 (3)0.28353 (18)0.0585 (9)
H12A0.06740.13990.25870.070*
C130.3651 (6)0.0158 (3)0.25384 (16)0.0452 (8)
C140.3162 (6)0.0894 (3)0.18596 (17)0.0508 (8)
H14A0.17600.08330.15940.061*
C150.8540 (5)0.4048 (3)0.22703 (15)0.0412 (7)
C160.7849 (5)0.4810 (3)0.29849 (15)0.0429 (7)
H16A0.64850.45960.31820.052*
C170.9175 (6)0.5910 (3)0.34236 (15)0.0442 (8)
C180.8492 (6)0.6727 (4)0.41597 (17)0.0609 (10)
H18A0.71500.65210.43730.073*
C190.9779 (7)0.7805 (4)0.45554 (18)0.0695 (11)
H19A0.92920.83410.50330.083*
C201.1829 (7)0.8121 (4)0.42539 (19)0.0661 (10)
H20A1.27010.88570.45330.079*
C211.2550 (6)0.7355 (3)0.35556 (17)0.0520 (8)
H21A1.39150.75730.33610.062*
C221.1257 (5)0.6234 (3)0.31201 (15)0.0417 (7)
C231.1921 (6)0.5427 (3)0.23896 (16)0.0463 (8)
H23A1.32860.56190.21840.056*
C241.0613 (6)0.4372 (3)0.19773 (16)0.0459 (8)
H24A1.10930.38580.14950.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.062 (2)0.0371 (14)0.0481 (15)0.0059 (14)0.0088 (13)0.0067 (11)
S10.1101 (10)0.0429 (5)0.0595 (6)0.0251 (5)0.0053 (5)0.0138 (4)
S20.0533 (6)0.0529 (5)0.0475 (5)0.0158 (4)0.0055 (4)0.0027 (4)
C10.064 (2)0.0300 (14)0.0405 (16)0.0061 (16)0.0147 (15)0.0033 (12)
C20.059 (2)0.0364 (16)0.0408 (16)0.0082 (16)0.0122 (15)0.0064 (13)
C30.087 (3)0.0334 (16)0.0594 (19)0.0035 (16)0.0102 (17)0.0089 (13)
C40.062 (2)0.0412 (16)0.0485 (17)0.0114 (16)0.0065 (15)0.0010 (13)
C50.062 (3)0.0403 (17)0.0542 (19)0.0069 (17)0.0049 (17)0.0191 (14)
C60.063 (3)0.0490 (19)0.066 (2)0.0086 (18)0.0101 (19)0.0209 (17)
C70.043 (2)0.061 (2)0.064 (2)0.0047 (18)0.0008 (17)0.0248 (17)
C80.047 (2)0.0503 (18)0.0475 (18)0.0031 (17)0.0058 (16)0.0214 (14)
C90.062 (3)0.072 (2)0.0490 (19)0.011 (2)0.0041 (17)0.0137 (17)
C100.089 (3)0.065 (2)0.055 (2)0.014 (2)0.013 (2)0.0032 (18)
C110.080 (3)0.053 (2)0.077 (3)0.007 (2)0.020 (2)0.0126 (19)
C120.053 (2)0.057 (2)0.070 (2)0.0028 (19)0.0038 (18)0.0246 (18)
C130.042 (2)0.0439 (17)0.0535 (18)0.0047 (16)0.0059 (16)0.0188 (14)
C140.050 (2)0.0490 (18)0.0594 (19)0.0094 (17)0.0027 (16)0.0226 (15)
C150.039 (2)0.0389 (15)0.0460 (17)0.0044 (14)0.0010 (14)0.0107 (13)
C160.039 (2)0.0496 (17)0.0407 (16)0.0067 (15)0.0041 (13)0.0099 (13)
C170.044 (2)0.0452 (17)0.0415 (17)0.0025 (15)0.0037 (14)0.0077 (13)
C180.057 (2)0.076 (2)0.0431 (18)0.007 (2)0.0040 (16)0.0000 (16)
C190.070 (3)0.076 (2)0.049 (2)0.004 (2)0.0065 (18)0.0098 (18)
C200.067 (3)0.060 (2)0.061 (2)0.013 (2)0.0154 (19)0.0014 (17)
C210.044 (2)0.0522 (18)0.060 (2)0.0111 (17)0.0082 (16)0.0144 (16)
C220.039 (2)0.0393 (16)0.0468 (17)0.0022 (15)0.0067 (14)0.0126 (13)
C230.040 (2)0.0470 (17)0.0532 (18)0.0046 (16)0.0066 (14)0.0142 (14)
C240.045 (2)0.0478 (17)0.0430 (16)0.0017 (16)0.0066 (14)0.0075 (13)
Geometric parameters (Å, º) top
N1—C11.339 (4)C10—H10A0.9300
N1—C21.341 (4)C11—C121.355 (5)
S1—C51.777 (3)C11—H11A0.9300
S1—C31.822 (3)C12—C131.409 (4)
S2—C151.765 (3)C12—H12A0.9300
S2—C41.807 (3)C13—C141.416 (4)
C1—C2i1.403 (4)C14—H14A0.9300
C1—C31.506 (4)C15—C161.375 (3)
C2—C1i1.403 (4)C15—C241.408 (4)
C2—C41.506 (4)C16—C171.410 (4)
C3—H3B0.9700C16—H16A0.9300
C3—H3A0.9700C17—C181.421 (4)
C4—H4B0.9700C17—C221.421 (4)
C4—H4A0.9700C18—C191.357 (5)
C5—C141.355 (4)C18—H18A0.9300
C5—C61.408 (5)C19—C201.401 (5)
C6—C71.361 (4)C19—H19A0.9300
C6—H6A0.9300C20—C211.357 (4)
C7—C81.408 (4)C20—H20A0.9300
C7—H7A0.9300C21—C221.411 (4)
C8—C91.417 (4)C21—H21A0.9300
C8—C131.423 (4)C22—C231.407 (4)
C9—C101.354 (5)C23—C241.359 (4)
C9—H9A0.9300C23—H23A0.9300
C10—C111.409 (5)C24—H24A0.9300
C1—N1—C2117.7 (3)C10—C11—H11A119.7
C5—S1—C3100.06 (15)C11—C12—C13121.1 (3)
C15—S2—C4104.07 (14)C11—C12—H12A119.4
N1—C1—C2i121.5 (3)C13—C12—H12A119.4
N1—C1—C3115.4 (3)C12—C13—C14122.8 (3)
C2i—C1—C3123.0 (3)C12—C13—C8118.4 (3)
N1—C2—C1i120.8 (3)C14—C13—C8118.8 (3)
N1—C2—C4115.7 (3)C5—C14—C13120.8 (3)
C1i—C2—C4123.4 (3)C5—C14—H14A119.6
C1—C3—S1111.3 (2)C13—C14—H14A119.6
C1—C3—H3B109.4C16—C15—C24119.2 (3)
S1—C3—H3B109.4C16—C15—S2116.9 (2)
C1—C3—H3A109.4C24—C15—S2123.9 (2)
S1—C3—H3A109.4C15—C16—C17121.0 (3)
H3B—C3—H3A108.0C15—C16—H16A119.5
C2—C4—S2105.7 (2)C17—C16—H16A119.5
C2—C4—H4B110.6C16—C17—C18122.4 (3)
S2—C4—H4B110.6C16—C17—C22119.3 (2)
C2—C4—H4A110.6C18—C17—C22118.3 (3)
S2—C4—H4A110.6C19—C18—C17120.7 (3)
H4B—C4—H4A108.7C19—C18—H18A119.7
C14—C5—C6120.2 (3)C17—C18—H18A119.7
C14—C5—S1120.3 (3)C18—C19—C20120.8 (3)
C6—C5—S1119.4 (2)C18—C19—H19A119.6
C7—C6—C5120.8 (3)C20—C19—H19A119.6
C7—C6—H6A119.6C21—C20—C19120.2 (3)
C5—C6—H6A119.6C21—C20—H20A119.9
C6—C7—C8120.5 (3)C19—C20—H20A119.9
C6—C7—H7A119.8C20—C21—C22121.0 (3)
C8—C7—H7A119.8C20—C21—H21A119.5
C7—C8—C9122.2 (3)C22—C21—H21A119.5
C7—C8—C13118.9 (3)C23—C22—C21122.8 (3)
C9—C8—C13118.9 (3)C23—C22—C17118.1 (3)
C10—C9—C8120.9 (3)C21—C22—C17119.0 (3)
C10—C9—H9A119.6C24—C23—C22121.5 (3)
C8—C9—H9A119.6C24—C23—H23A119.3
C9—C10—C11120.1 (3)C22—C23—H23A119.3
C9—C10—H10A120.0C23—C24—C15120.9 (3)
C11—C10—H10A120.0C23—C24—H24A119.6
C12—C11—C10120.6 (3)C15—C24—H24A119.6
C12—C11—H11A119.7
C2—N1—C1—C2i1.2 (5)C9—C8—C13—C14178.9 (3)
C2—N1—C1—C3177.5 (2)C6—C5—C14—C130.5 (4)
C1—N1—C2—C1i1.2 (5)S1—C5—C14—C13179.4 (2)
C1—N1—C2—C4178.2 (2)C12—C13—C14—C5179.5 (3)
N1—C1—C3—S1101.8 (3)C8—C13—C14—C50.2 (4)
C2i—C1—C3—S174.5 (3)C4—S2—C15—C16176.8 (2)
C5—S1—C3—C158.9 (3)C4—S2—C15—C244.6 (3)
N1—C2—C4—S293.8 (3)C24—C15—C16—C170.4 (4)
C1i—C2—C4—S283.2 (3)S2—C15—C16—C17179.1 (2)
C15—S2—C4—C2173.1 (2)C15—C16—C17—C18179.2 (3)
C3—S1—C5—C14107.1 (3)C15—C16—C17—C220.1 (4)
C3—S1—C5—C673.9 (3)C16—C17—C18—C19178.0 (3)
C14—C5—C6—C70.8 (5)C22—C17—C18—C191.1 (5)
S1—C5—C6—C7179.7 (3)C17—C18—C19—C201.2 (6)
C5—C6—C7—C80.8 (5)C18—C19—C20—C210.5 (6)
C6—C7—C8—C9179.2 (3)C19—C20—C21—C220.1 (5)
C6—C7—C8—C130.4 (4)C20—C21—C22—C23179.1 (3)
C7—C8—C9—C10179.1 (3)C20—C21—C22—C170.1 (4)
C13—C8—C9—C100.3 (5)C16—C17—C22—C230.5 (4)
C8—C9—C10—C110.3 (5)C18—C17—C22—C23179.7 (3)
C9—C10—C11—C120.7 (6)C16—C17—C22—C21178.7 (3)
C10—C11—C12—C131.2 (5)C18—C17—C22—C210.5 (4)
C11—C12—C13—C14178.5 (3)C21—C22—C23—C24178.6 (3)
C11—C12—C13—C81.2 (4)C17—C22—C23—C240.6 (4)
C7—C8—C13—C12179.6 (3)C22—C23—C24—C150.2 (5)
C9—C8—C13—C120.8 (4)C16—C15—C24—C230.3 (4)
C7—C8—C13—C140.1 (4)S2—C15—C24—C23178.9 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC48H36N2S4C48H36N2S4
Mr769.09769.09
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)153293
a, b, c (Å)6.878 (1), 9.0432 (14), 15.613 (2)5.7641 (11), 9.7771 (19), 18.006 (4)
α, β, γ (°)73.631 (17), 82.265 (16), 82.091 (18)75.40 (2), 87.87 (2), 86.66 (2)
V3)918.2 (2)980.1 (3)
Z11
Radiation typeMo KαMo Kα
µ (mm1)0.300.28
Crystal size (mm)0.45 × 0.20 × 0.100.50 × 0.30 × 0.03
Data collection
DiffractometerSTOE image-plate diffraction system
diffractometer
STOE image-plate diffraction system
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7208, 3332, 1735 7633, 3545, 1467
Rint0.0550.062
(sin θ/λ)max1)0.6150.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 1.00 0.034, 0.086, 1.01
No. of reflections33323545
No. of parameters244245
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.220.15, 0.18

Computer programs: EXPOSE (Stoe & Cie, 2000), CELL (Stoe & Cie, 2000), INTEGRATE (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990), PLATON/PLUTON (Spek, 1990), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
N1—C11.342 (3)S2—C41.820 (3)
N1—C21.345 (3)C1—C2i1.392 (4)
S1—C51.761 (2)C1—C31.501 (3)
S1—C31.809 (3)C2—C41.512 (3)
S2—C151.764 (3)
C1—N1—C2117.5 (2)N1—C2—C1i121.7 (2)
C5—S1—C3101.12 (12)N1—C2—C4115.2 (2)
C15—S2—C4105.59 (13)C1i—C2—C4123.0 (2)
N1—C1—C2i120.8 (2)C1—C3—S1110.34 (17)
N1—C1—C3117.8 (2)C2—C4—S2108.9 (2)
C2i—C1—C3121.5 (2)
N1—C1—C3—S115.3 (3)N1—C2—C4—S295.7 (2)
C5—S1—C3—C1178.9 (2)C15—S2—C4—C2125.36 (19)
Symmetry code: (i) x+1, y+2, z+1.
Selected geometric parameters (Å, º) for (II) top
N1—C11.339 (4)S2—C41.807 (3)
N1—C21.341 (4)C1—C2i1.403 (4)
S1—C51.777 (3)C1—C31.506 (4)
S1—C31.822 (3)C2—C41.506 (4)
S2—C151.765 (3)
C1—N1—C2117.7 (3)N1—C2—C1i120.8 (3)
C5—S1—C3100.06 (15)N1—C2—C4115.7 (3)
C15—S2—C4104.07 (14)C1i—C2—C4123.4 (3)
N1—C1—C2i121.5 (3)C1—C3—S1111.3 (2)
N1—C1—C3115.4 (3)C2—C4—S2105.7 (2)
C2i—C1—C3123.0 (3)
N1—C1—C3—S1101.8 (3)N1—C2—C4—S293.8 (3)
C5—S1—C3—C158.9 (3)C15—S2—C4—C2173.1 (2)
Symmetry code: (i) x+1, y, z.
Dihedral angles between aromatic rings (I)n polymorphs (I) and (II): Plane A = pyrazine ring; Plane B = Naphthalene(S1); Plane C = Naphthalene(S2). top
PolymorphPlane-PlaneAngle(°)PolymorphPlane-PlaneAngle(°)
(I)A-B6.8 (1)(II)A-B39.8 (1)
A-C75.3 (1)A-C82.6 (1)
B-C78.7 (1)B-C57.0 (1)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds