Download citation
Download citation
link to html
The title tetracyclic diterpenoid, 10,13,16,17-tetra­hydroxy-9-methyl-15-oxo-20-norkaurane-18,10-carbolactone hemihydrate, C20H28O6·0.5H2O, is a plant metabolite from Parinari sprucei, part of the Venezuelan Amazon flora. The asymmetric unit consists of two nearly identical mol­ecules of the diterpenoid and one mol­ecule of water. Some of the geometric parameters reflect steric strain in the mol­ecule. The extended structure is characterized by hydrogen bonds and weaker hydrogen-mediated interactions, which involve all of the hydroxy groups and propagate in sheets that coincide with the (002) family of planes. The water mol­ecule acts as a double hydrogen-bond donor and single acceptor and thus plays a critical role in the pattern of intermolecular interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103019814/fa1027sup1.cif
Contains datablocks text, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103019814/fa1027Isup2.hkl
Contains datablock I

CCDC reference: 226137

Comment top

Tetracyclic diterpenoids with hydrocarbon skeletons deriving from a rearranged norkaurane type are widespread among the plant metabolites (Bruno et al., 2002; Niu et al., 2002; Hanson, 2003, and previous reports). Many of these substances exhibit biological activities that are well known from ancient times and used by traditional healers in the treatment of various diseases. Such substances are usually employed in Chinese medicine and agricultural practices. Owing to their possible utilization in pharmacology and farming, this class of substances has been widely investigated, and several studies concerning both the development of new synthetic strategies (King et al., 1997; Zhang et al., 2001; Vieira et al., 2002) and structural and biological characterizations have been reported recently (Hedden & Phillips, 2000; Duan et al. 2001; Rundle et al., 2001; Yang et al., 2002). However, while there have been many spectroscopic studies on kauranoid derivatives, only a limited number of crystallographic analyses are present in the literature (e.g. Karle, 1972; Zabel et al., 1980; Reynolds et al. 1991; Hokelek et al., 2001; Sun et al., 2002).

The title compound, (I), was isolated from the leaves of Parinari sprucei, a tree of the Chrysobalanaceae family growing in the Amazon forest, as part of research on the medicinal and food plants native to Latin America (Braca et al., 1999, 2000). A few other species of the Parinari genus have been studied in depth, leading to the identification of nor- and ent-kaurene diterpenes (Lee et al., 1996; Garo et al., 1997) strictly correlated to (I). The crystallographic study of (I) reported here was carried out in order to obtain structural information that could help find a correlation between the stereochemistry of the functional groups and the biological effects of these substances (Puliti & Mattia, 1999, 2000; Puliti et al., 2001; Ciasullo et al., 2002).

The asymmetric unit of the crystal is formed by two diterpenoid units (10,13,16,17-tetrahydroxy-9-methyl-15-oxo-20-norkauran-18-oic acid- γ-lactone) and one water molecule. The two independent organic molecules display geometric and conformational similarity, and are related by a pseudo-twofold axis almost parallel to the c direction, coupled with a translation of 2.2 Å. Upon best-fit superposition, the r.m.s. deviation of corresponding atoms, excluding the disordered hydroxymethyl group on atom C16 (see below), is only 0.027 Å, the largest difference (0.069 Å) being associated with the carbonyl O6 atoms. Both of the molecules exhibit partial disorder limited to the exocyclic hydroxymethyl group on atom C16, which is disordered over ?two orientations in one molecule and three orientations in the other. A similar disorder, involving the axial hydroxymethyl substituent on atom C4, was found in psiadian, a related kaurane diterpene (Mossa et al., 1992). In (I), the lactone ring lies on the same side (α-oriented) as the axial C20 methyl group, which is shifted from atom C10 of the normal kaurane skeleton to the C9-atom position. These structural features are also present in tetrachyrin (Zabel et al., 1980) and in other tetracyclic friedo-kauranoids, analogues of rosane lactone, such as eupatalbin and eupatoralbin (Herz et al., 1979) as well as in kaurene lactones from Zimbabwean plants belonging to the Parinari genus (Garo et al., 1997). In addition to the tertiary hydroxy group on atom C13, which is equatorially oriented, a second tertiary hydroxy group is present on atom C16, where the hydroxymethyl substituent affected by positional disorder is also located.

Fig. 1 shows a perspective view of the two independent molecules of (I), together with the atom-labelling scheme. (The atom numbers for the second molecule are 20 greater than those in the first, while the latter reflects the chemical numbering scheme.) The enantiomer was chosen according to the absolute stereochemistry of a eupatalbin derivative, deduced by CD analysis (Herz et al., 1979), and that of a kaurene-γ-lactone Br derivative, determined using anomalous dispersion (Garo et al., 1997; note that the stereochemistry at atom C9 is reported incorrectly by these authors as R). On this basis, the configurations at the chiral centres of (I) are fixed as 4R,5R,8R,9S,10S,13S,16R.

On average, bond lengths and angles are in the expected ranges (Herz et al., 1979; Zabel et al., 1980; Garo et al., 1997; Hokelek et al., 1999, 2001; Sun et al., 2002). Some deviations from the normal values of bond lengths and angles can be attributed to intramolecular steric strain. In particular, the bond lengthening along the atomic sequence C10—C9—C8—C15—C16, as well as some deviations from the ideal Csp3 and Csp2 angles, help alleviate the short intramolecular O1···C20, O3···C5 and O4···C11 contacts.

The A/B and B/C? ring junctions are trans. Rings A and C rings are in chair conformations, slightly distorted toward half-boats, while ring B adopts a twist-boat conformation. The γ-lactone group and ring D are both in envelope forms, with apices at C5 and C14, respectively. The displacements of these atoms from the best planes through the remaining ring atoms are 0.633 (2) Å for atom C5 and 0.683 (3) Å for atom C14 [0.624 (2) Å for atom C25 and 0.711 (2) Å for atom C34].

The packing pattern is governed chiefly by hydrogen-bond interactions, which extend along the a and b directions, at c = 0 and 1/2 (Fig. 2). Each water molecule is engaged in three hydrogen bonds, serving as a double donor toward the lactone carbonyl groups of the two independent diterpenoic units and as a single acceptor from the tertiary hydroxyl group (O2) attached to atom C13 of a screw-related molecule. Furthermore, weaker hydrogen-mediated contacts connect the organic moieties, yielding a complex array of interactions. The geometry of the hydrogen-bonding interactions and other contacts is given in Table 2. Excluding the disordered groups, the intermolecular van der Waals distances are greater than 3.40 Å for C···O and greater than 3.72 Å for C···C.

Experimental top

Compound (I) was isolated from the CHCl3 extract of air-dried leaves of Parinari sprucei collected in the Amazon forest of Venezuela. Single crystals were obtained by slow evaporation from chloroform at room temperature.

Refinement top

All H atoms were located in difference Fourier maps and included, in the final refinements with expected geometry and Uiso(H) values of 1.5 Ueq(parent atom). H atoms attached to C and O atoms were constrained to lie 1.00 and 0.95 Å, respectively, from their parent atoms. Hydroxy H atoms were refined as members of rigid groups, allowing rotation about the adjacent C—O bonds. The H atoms of disordered hydroxymethyl groups were fixed in the last cycles of refinement. The water molecule was refined as a rigid group.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: Structure Determination Package (Enraf–Nonius, 1985); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A perspective view of the two independent molecules of (I), showing the atom labelling for non-H atoms. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing projected onto the ac plane; H atoms have been omitted for clarity. Dashed lines indicate hydrogen-bonds. [Symmetry codes: (i) 1 − x,y − 1/2,1/2 − z; (ii) 1/2 − x,1 − y,1/2 + z.]
10,13,16,17-tetrahydroxy-9-methyl-15-oxo-20-nor-kauran-18-oic acid-γ-lactone top
Crystal data top
2(C20H28O6)·H2OF(000) = 1608
Mr = 746.86Dx = 1.375 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 11.627 (3) Åθ = 27.0–29.5°
b = 14.7157 (19) ŵ = 0.84 mm1
c = 21.081 (3) ÅT = 291 K
V = 3607.0 (11) Å3Rectangular prism, colourless
Z = 40.48 × 0.17 × 0.09 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 74.8°, θmin = 3.7°
Graphite monochromatorh = 014
ω–2θ scans as suggested by peak–shape analysisk = 018
4152 measured reflectionsl = 026
4152 independent reflections3 standard reflections every 200 min
3553 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0557P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4152 reflectionsΔρmax = 0.36 e Å3
512 parametersΔρmin = 0.23 e Å3
32 restraintsAbsolute structure: The absolute configuration was chosen according to that of the known bromine derivative of norkauren-γ-lactone (Garo et al., 1997) and is also supported by the refined Flack parameter (Flack, 1983).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (18)
Crystal data top
2(C20H28O6)·H2OV = 3607.0 (11) Å3
Mr = 746.86Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 11.627 (3) ŵ = 0.84 mm1
b = 14.7157 (19) ÅT = 291 K
c = 21.081 (3) Å0.48 × 0.17 × 0.09 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
4152 measured reflections3 standard reflections every 200 min
4152 independent reflections intensity decay: none
3553 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.36 e Å3
S = 1.04Δρmin = 0.23 e Å3
4152 reflectionsAbsolute structure: The absolute configuration was chosen according to that of the known bromine derivative of norkauren-γ-lactone (Garo et al., 1997) and is also supported by the refined Flack parameter (Flack, 1983).
512 parametersAbsolute structure parameter: 0.04 (18)
32 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.09940 (14)0.50010 (12)0.38470 (7)0.0383 (4)
O20.0439 (2)0.50488 (14)0.06255 (8)0.0569 (5)
H1O0.08160.45170.04770.085*
O30.21416 (15)0.50402 (16)0.23607 (8)0.0550 (5)
O40.1140 (2)0.36981 (15)0.14609 (11)0.0687 (6)
H2O0.19000.35300.13440.103*
O60.11379 (17)0.54300 (17)0.48547 (8)0.0612 (6)
C10.0464 (2)0.39808 (16)0.34619 (11)0.0401 (5)
H1A0.11600.39140.31870.060*
H1B0.01010.35020.33360.060*
C20.0807 (3)0.3843 (2)0.41608 (12)0.0512 (7)
H2A0.13640.33270.41860.077*
H2B0.01060.36650.44060.077*
C30.1349 (2)0.4680 (2)0.44769 (12)0.0491 (6)
H3A0.21710.47330.43420.074*
H3B0.13350.46010.49480.074*
C40.0705 (2)0.55520 (18)0.42990 (11)0.0408 (5)
C50.07694 (19)0.56657 (16)0.35691 (10)0.0354 (5)
H50.15600.55010.34220.053*
C60.0471 (3)0.65943 (17)0.33247 (11)0.0491 (7)
H6A0.03180.67650.34700.074*
H6B0.10260.70500.34980.074*
C70.0517 (3)0.66063 (16)0.25919 (12)0.0499 (7)
H7A0.13120.67800.24570.075*
H7B0.00190.70880.24350.075*
C80.0203 (2)0.57105 (14)0.22747 (10)0.0327 (4)
C90.06334 (19)0.50929 (15)0.26801 (10)0.0334 (4)
C100.00729 (18)0.49281 (15)0.33555 (9)0.0301 (4)
C110.0828 (2)0.41999 (17)0.23172 (10)0.0382 (5)
H11A0.01300.38090.23680.057*
H11B0.14900.38710.25140.057*
C120.1073 (2)0.43221 (18)0.16004 (11)0.0434 (5)
H12A0.18700.45640.15430.065*
H12B0.10300.37170.13850.065*
C130.0224 (2)0.49649 (17)0.12925 (10)0.0393 (5)
C140.0297 (2)0.58705 (17)0.16089 (10)0.0418 (5)
H14A0.01640.63340.13730.063*
H14B0.11130.60820.16350.063*
C150.1250 (2)0.51299 (17)0.20750 (10)0.0397 (5)
C160.1020 (2)0.46725 (19)0.14227 (11)0.0461 (6)
C17A0.1903 (3)0.4982 (2)0.09411 (14)0.0683 (9)0.80
H17A0.17340.46780.05270.102*0.80
H17B0.26790.47730.10830.102*0.80
O5A0.1944 (3)0.5945 (2)0.08404 (13)0.0758 (9)0.80
H3O0.14410.61040.05030.114*0.80
C17B0.1903 (3)0.4982 (2)0.09411 (14)0.0683 (9)0.20
H17C0.18670.56590.09080.102*0.20
H17D0.16900.47260.05170.102*0.20
O5B0.3064 (4)0.4722 (10)0.1083 (5)0.096 (4)0.20
H4O0.31520.46610.15290.144*0.20
C180.0553 (2)0.53491 (18)0.43808 (11)0.0401 (5)
C190.1091 (3)0.6363 (2)0.46970 (12)0.0602 (8)
H19A0.19310.64720.46280.090*
H19B0.06480.69150.45670.090*
H19C0.09480.62330.51560.090*
C200.1810 (2)0.5567 (2)0.27536 (12)0.0485 (6)
H20A0.17070.61530.29870.073*
H20B0.21420.56910.23250.073*
H20C0.23430.51640.29970.073*
O210.38029 (14)0.78946 (13)0.30019 (7)0.0406 (4)
O220.50877 (16)0.82283 (13)0.01270 (7)0.0450 (4)
H21O0.53860.87830.02890.068*
O230.72687 (14)0.79774 (14)0.17847 (8)0.0461 (4)
O240.65908 (17)0.93747 (12)0.08694 (8)0.0469 (4)
H22O0.73860.95030.09200.070*
O260.33393 (18)0.73224 (17)0.39406 (9)0.0613 (6)
C210.5385 (2)0.89018 (15)0.28138 (10)0.0403 (5)
H21A0.48790.94120.26710.060*
H21B0.61490.89760.26030.060*
C220.5545 (2)0.89586 (17)0.35400 (11)0.0442 (6)
H22A0.61160.94470.36380.066*
H22B0.47960.91350.37390.066*
C230.5961 (2)0.80602 (18)0.38393 (11)0.0429 (5)
H23A0.58240.80800.43080.064*
H23B0.68070.79950.37680.064*
C240.5335 (2)0.72267 (16)0.35565 (10)0.0372 (5)
C250.56073 (19)0.72095 (14)0.28466 (10)0.0320 (4)
H250.64350.73680.27810.048*
C260.5345 (2)0.63212 (15)0.25121 (10)0.0379 (5)
H26A0.45140.61640.25700.057*
H26B0.58170.58220.27010.057*
C270.5615 (2)0.64083 (15)0.18040 (11)0.0403 (5)
H27A0.64440.62540.17390.060*
H27B0.51500.59460.15690.060*
C280.53877 (18)0.73406 (13)0.15075 (9)0.0288 (4)
C290.44668 (18)0.79237 (15)0.18832 (10)0.0303 (4)
C300.48493 (19)0.79964 (14)0.26067 (10)0.0297 (4)
C310.4383 (2)0.88640 (15)0.15709 (10)0.0340 (4)
H31A0.36880.91830.17390.051*
H31B0.50730.92290.16950.051*
C320.4310 (2)0.88339 (16)0.08470 (10)0.0349 (5)
H32A0.35270.86180.07210.052*
H32B0.44100.94630.06760.052*
C330.5211 (2)0.82140 (16)0.05493 (9)0.0333 (5)
C340.5030 (2)0.72522 (15)0.08015 (10)0.0370 (5)
H34A0.55290.68050.05730.055*
H34B0.42080.70610.07610.055*
C350.64704 (18)0.79140 (15)0.14312 (9)0.0315 (4)
C360.64355 (19)0.84299 (15)0.07892 (10)0.0348 (5)
C37A0.7377 (2)0.8086 (2)0.03447 (11)0.0547 (7)0.60
H37A0.81270.80940.05770.082*0.60
H37B0.72060.74410.02300.082*0.60
O25A0.7492 (3)0.8590 (3)0.02109 (14)0.0641 (9)0.60
H23O0.77050.91950.01080.096*0.60
C37B0.7377 (2)0.8086 (2)0.03447 (11)0.0547 (7)0.20
H37C0.71580.82380.01020.082*0.20
H37D0.81070.84160.04430.082*0.20
O25B0.7580 (7)0.7156 (4)0.0385 (4)0.063 (2)0.20
H24O0.82810.70140.01760.095*0.20
C37C0.7377 (2)0.8086 (2)0.03447 (11)0.0547 (7)0.20
H37E0.71230.74950.01560.082*0.20
H37F0.74700.85300.00110.082*0.20
O25C0.8439 (4)0.7960 (10)0.0635 (4)0.075 (3)0.20
H25O0.84260.74140.08760.112*0.20
C380.4072 (2)0.74509 (17)0.35415 (11)0.0422 (5)
C390.5592 (3)0.6376 (2)0.39278 (13)0.0553 (7)
H39A0.64390.62590.39220.083*
H39B0.51800.58500.37320.083*
H39C0.53280.64550.43760.083*
C400.3272 (2)0.74649 (19)0.18324 (12)0.0455 (6)
H40A0.33040.68480.20310.068*
H40B0.30530.74050.13760.068*
H40C0.26880.78450.20580.068*
O1W0.32631 (19)0.63066 (16)0.51173 (9)0.0617 (5)
H1W0.25910.59460.50670.093*
H2W0.33470.66960.47610.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0377 (8)0.0545 (9)0.0228 (7)0.0003 (8)0.0056 (6)0.0017 (7)
O20.0857 (14)0.0632 (11)0.0217 (8)0.0137 (11)0.0090 (9)0.0060 (8)
O30.0397 (9)0.0895 (14)0.0357 (9)0.0008 (10)0.0000 (7)0.0017 (10)
O40.0714 (14)0.0631 (13)0.0717 (15)0.0082 (11)0.0046 (12)0.0175 (12)
O60.0540 (11)0.1030 (16)0.0266 (8)0.0035 (12)0.0098 (8)0.0043 (10)
C10.0541 (13)0.0426 (12)0.0237 (10)0.0107 (11)0.0045 (10)0.0061 (9)
C20.0651 (16)0.0594 (16)0.0291 (12)0.0175 (14)0.0069 (11)0.0071 (11)
C30.0420 (12)0.0732 (18)0.0320 (11)0.0072 (13)0.0071 (10)0.0024 (12)
C40.0437 (12)0.0553 (14)0.0234 (10)0.0016 (11)0.0012 (9)0.0016 (10)
C50.0361 (10)0.0441 (12)0.0260 (10)0.0023 (9)0.0058 (9)0.0001 (9)
C60.0770 (19)0.0403 (12)0.0302 (11)0.0116 (13)0.0036 (12)0.0033 (10)
C70.082 (2)0.0344 (12)0.0329 (12)0.0078 (13)0.0059 (13)0.0030 (9)
C80.0444 (11)0.0310 (9)0.0228 (9)0.0048 (9)0.0018 (9)0.0052 (8)
C90.0368 (11)0.0386 (10)0.0248 (9)0.0020 (10)0.0015 (8)0.0079 (8)
C100.0320 (9)0.0369 (10)0.0213 (9)0.0014 (9)0.0040 (8)0.0019 (8)
C110.0456 (12)0.0459 (12)0.0229 (10)0.0102 (10)0.0005 (9)0.0071 (9)
C120.0495 (13)0.0525 (14)0.0283 (11)0.0097 (12)0.0059 (10)0.0007 (10)
C130.0510 (13)0.0464 (13)0.0205 (10)0.0072 (11)0.0018 (9)0.0026 (9)
C140.0575 (14)0.0435 (12)0.0246 (10)0.0033 (11)0.0000 (10)0.0085 (9)
C150.0398 (11)0.0513 (13)0.0279 (10)0.0101 (10)0.0083 (9)0.0043 (10)
C160.0497 (13)0.0584 (15)0.0303 (11)0.0061 (12)0.0058 (11)0.0085 (11)
C17A0.072 (2)0.092 (2)0.0398 (14)0.022 (2)0.0134 (15)0.0138 (16)
O5A0.0789 (19)0.098 (2)0.0504 (15)0.0344 (18)0.0012 (15)0.0119 (15)
C17B0.072 (2)0.092 (2)0.0398 (14)0.022 (2)0.0134 (15)0.0138 (16)
O5B0.086 (7)0.144 (9)0.058 (6)0.004 (7)0.020 (6)0.017 (7)
C180.0413 (11)0.0551 (14)0.0239 (9)0.0079 (11)0.0019 (9)0.0003 (10)
C190.0649 (17)0.083 (2)0.0328 (12)0.0065 (17)0.0019 (12)0.0194 (13)
C200.0445 (13)0.0670 (17)0.0339 (12)0.0167 (12)0.0024 (10)0.0117 (12)
O210.0369 (8)0.0561 (10)0.0288 (8)0.0055 (7)0.0057 (6)0.0110 (7)
O220.0657 (11)0.0540 (10)0.0153 (7)0.0054 (9)0.0076 (7)0.0021 (6)
O230.0402 (8)0.0675 (12)0.0305 (8)0.0064 (8)0.0076 (7)0.0015 (8)
O240.0491 (10)0.0468 (9)0.0448 (10)0.0160 (8)0.0036 (8)0.0054 (8)
O260.0547 (11)0.0952 (16)0.0341 (9)0.0054 (12)0.0096 (9)0.0209 (10)
C210.0604 (15)0.0353 (11)0.0253 (10)0.0019 (11)0.0025 (10)0.0023 (9)
C220.0619 (15)0.0429 (13)0.0279 (11)0.0022 (12)0.0023 (11)0.0085 (10)
C230.0527 (13)0.0523 (14)0.0238 (10)0.0021 (12)0.0029 (10)0.0036 (10)
C240.0459 (12)0.0422 (12)0.0235 (10)0.0043 (10)0.0016 (9)0.0058 (9)
C250.0388 (10)0.0335 (10)0.0237 (9)0.0028 (9)0.0020 (8)0.0010 (8)
C260.0549 (14)0.0288 (10)0.0300 (10)0.0019 (10)0.0082 (10)0.0024 (8)
C270.0592 (14)0.0320 (11)0.0296 (10)0.0042 (11)0.0038 (10)0.0033 (8)
C280.0383 (10)0.0277 (9)0.0203 (8)0.0032 (8)0.0019 (8)0.0025 (7)
C290.0338 (10)0.0350 (10)0.0222 (9)0.0002 (8)0.0016 (8)0.0029 (8)
C300.0338 (10)0.0313 (10)0.0241 (10)0.0028 (8)0.0062 (8)0.0029 (8)
C310.0398 (11)0.0369 (10)0.0254 (9)0.0085 (9)0.0003 (8)0.0038 (8)
C320.0408 (11)0.0376 (11)0.0263 (10)0.0022 (9)0.0002 (8)0.0070 (9)
C330.0421 (11)0.0404 (11)0.0173 (9)0.0012 (10)0.0047 (8)0.0001 (8)
C340.0492 (12)0.0362 (11)0.0254 (10)0.0038 (10)0.0078 (9)0.0023 (8)
C350.0361 (10)0.0376 (10)0.0207 (9)0.0026 (9)0.0004 (8)0.0046 (8)
C360.0353 (11)0.0460 (12)0.0232 (10)0.0004 (10)0.0016 (8)0.0013 (9)
C37A0.0444 (14)0.087 (2)0.0330 (12)0.0081 (14)0.0084 (11)0.0020 (13)
O25A0.069 (2)0.084 (2)0.0393 (16)0.016 (2)0.0192 (16)0.0141 (17)
C37B0.0444 (14)0.087 (2)0.0330 (12)0.0081 (14)0.0084 (11)0.0020 (13)
O25B0.045 (4)0.092 (6)0.053 (5)0.005 (5)0.011 (4)0.004 (5)
C37C0.0444 (14)0.087 (2)0.0330 (12)0.0081 (14)0.0084 (11)0.0020 (13)
O25C0.053 (5)0.108 (6)0.062 (5)0.018 (5)0.005 (4)0.024 (5)
C380.0506 (13)0.0502 (13)0.0258 (10)0.0018 (11)0.0049 (10)0.0126 (10)
C390.078 (2)0.0549 (15)0.0335 (12)0.0036 (15)0.0073 (13)0.0151 (11)
C400.0394 (12)0.0633 (16)0.0339 (11)0.0112 (11)0.0042 (10)0.0153 (12)
O1W0.0621 (12)0.0825 (15)0.0406 (10)0.0093 (11)0.0053 (9)0.0170 (10)
Geometric parameters (Å, º) top
O1—C101.494 (2)O23—C351.194 (3)
O1—C181.339 (3)O24—C361.412 (3)
O2—C131.434 (3)O24—H22O0.9500
O2—H1O0.9500O26—C381.212 (3)
O3—C151.206 (3)C21—C221.545 (3)
O4—C161.443 (3)C21—C301.534 (3)
O4—H2O0.9500C21—H21A1.0000
O6—C181.215 (3)C21—H21B1.0000
C1—C21.540 (3)C22—C231.543 (3)
C1—C101.544 (3)C22—H22A1.0000
C1—H1A1.0000C22—H22B1.0000
C1—H1B1.0000C23—C241.546 (3)
C2—C31.536 (4)C23—H23A1.0000
C2—H2A1.0000C23—H23B1.0000
C2—H2B1.0000C24—C251.530 (3)
C3—C41.533 (4)C24—C381.506 (4)
C3—H3A1.0000C24—C391.506 (3)
C3—H3B1.0000C25—C261.516 (3)
C4—C181.503 (3)C25—C301.541 (3)
C4—C191.526 (4)C25—H251.0000
C4—C51.550 (3)C26—C271.531 (3)
C5—C61.501 (3)C26—H26A1.0000
C5—C101.530 (3)C26—H26B1.0000
C5—H51.0000C27—C281.531 (3)
C6—C71.546 (3)C27—H27A1.0000
C6—H6A1.0000C27—H27B1.0000
C6—H6B1.0000C28—C291.584 (3)
C7—C81.523 (3)C28—C341.551 (3)
C7—H7A1.0000C28—C351.524 (3)
C7—H7B1.0000C29—C301.592 (3)
C8—C91.582 (3)C29—C311.535 (3)
C8—C141.537 (3)C29—C401.548 (3)
C8—C151.546 (3)C31—C321.529 (3)
C9—C101.585 (3)C31—H31A1.0000
C9—C111.537 (3)C31—H31B1.0000
C9—C201.543 (3)C32—C331.525 (3)
C11—C121.548 (3)C32—H32A1.0000
C11—H11A1.0000C32—H32B1.0000
C11—H11B1.0000C33—C341.526 (3)
C12—C131.513 (3)C33—C361.544 (3)
C12—H12A1.0000C34—H34A1.0000
C12—H12B1.0000C34—H34B1.0000
C13—C141.493 (3)C35—C361.552 (3)
C13—C161.534 (4)C36—C37A1.527 (3)
C14—H14A1.0000C36—C37B1.527 (3)
C14—H14B1.0000C36—C37C1.527 (3)
C15—C161.554 (3)C37A—O25A1.393 (3)
C16—C17A1.514 (4)C37A—H37A1.0000
C16—C17B1.514 (4)C37A—H37B1.0000
C17A—O5A1.434 (4)C37B—O25B1.391 (6)
C17A—H17A1.0000C37B—H37C1.0000
C17A—H17B1.0000C37B—H37D1.0000
C17B—O5B1.435 (7)C37C—O25C1.392 (6)
C17B—H17C1.0000C37C—H37E1.0000
C17B—H17D1.0000C37C—H37F1.0000
O5A—H3O0.9500O25A—H23O0.9500
O5B—H4O0.9500O25B—H24O0.9500
C19—H19A1.0000O25C—H25O0.9500
C19—H19B1.0000C39—H39A1.0000
C19—H19C1.0000C39—H39B1.0000
C20—H20A1.0000C39—H39C1.0000
C20—H20B1.0000C40—H40A1.0000
C20—H20C1.0000C40—H40B1.0000
O21—C301.482 (2)C40—H40C1.0000
O21—C381.348 (3)O1W—H1W0.9500
O22—C331.433 (2)O1W—H2W0.9500
O22—H21O0.9500
C10—O1—C18109.61 (17)C30—C21—H21A109.2
C13—O2—H1O109.5C22—C21—H21A109.2
C16—O4—H2O109.5C30—C21—H21B109.2
C2—C1—C10111.3 (2)C22—C21—H21B109.2
C2—C1—H1A109.4H21A—C21—H21B107.9
C10—C1—H1A109.4C23—C22—C21113.38 (19)
C2—C1—H1B109.4C23—C22—H22A108.9
C10—C1—H1B109.4C21—C22—H22A108.9
H1A—C1—H1B108.0C23—C22—H22B108.9
C3—C2—C1114.6 (2)C21—C22—H22B108.9
C3—C2—H2A108.6H22A—C22—H22B107.7
C1—C2—H2A108.6C22—C23—C24112.0 (2)
C3—C2—H2B108.6C22—C23—H23A109.2
C1—C2—H2B108.6C24—C23—H23A109.2
H2A—C2—H2B107.6C22—C23—H23B109.2
C4—C3—C2111.4 (2)C24—C23—H23B109.2
C4—C3—H3A109.3H23A—C23—H23B107.9
C2—C3—H3A109.3C38—C24—C39112.8 (2)
C4—C3—H3B109.3C25—C24—C38100.68 (18)
C2—C3—H3B109.3C25—C24—C39117.0 (2)
H3A—C3—H3B108.0C38—C24—C23107.1 (2)
C18—C4—C19112.2 (2)C39—C24—C23111.4 (2)
C18—C4—C3106.3 (2)C25—C24—C23107.03 (19)
C19—C4—C3112.2 (2)C26—C25—C24115.31 (19)
C5—C4—C18100.49 (19)C26—C25—C30112.33 (18)
C5—C4—C19116.6 (2)C24—C25—C30100.96 (17)
C3—C4—C5108.1 (2)C26—C25—H25109.3
C6—C5—C10113.4 (2)C24—C25—H25109.3
C6—C5—C4115.34 (19)C30—C25—H25109.3
C10—C5—C4100.65 (17)C25—C26—C27109.87 (19)
C6—C5—H5109.0C25—C26—H26A109.7
C10—C5—H5109.0C27—C26—H26A109.7
C4—C5—H5109.0C25—C26—H26B109.7
C5—C6—C7110.2 (2)C27—C26—H26B109.7
C5—C6—H6A109.6H26A—C26—H26B108.2
C7—C6—H6A109.6C28—C27—C26115.95 (19)
C5—C6—H6B109.6C28—C27—H27A108.3
C7—C6—H6B109.6C26—C27—H27A108.3
H6A—C6—H6B108.1C28—C27—H27B108.3
C8—C7—C6114.9 (2)C26—C27—H27B108.3
C8—C7—H7A108.5H27A—C27—H27B107.4
C6—C7—H7A108.5C27—C28—C29113.46 (18)
C8—C7—H7B108.5C27—C28—C35113.36 (19)
C6—C7—H7B108.5C34—C28—C3599.58 (16)
H7A—C7—H7B107.5C27—C28—C34111.29 (17)
C7—C8—C9114.06 (19)C35—C28—C29108.13 (16)
C7—C8—C14111.04 (18)C34—C28—C29110.14 (17)
C7—C8—C15114.2 (2)C31—C29—C40107.87 (18)
C14—C8—C1597.68 (17)C31—C29—C28108.44 (17)
C14—C8—C9110.42 (18)C40—C29—C28109.60 (19)
C15—C8—C9108.30 (17)C31—C29—C30111.58 (17)
C11—C9—C20107.8 (2)C40—C29—C30110.25 (17)
C11—C9—C8108.22 (17)C28—C29—C30109.06 (16)
C20—C9—C8109.85 (18)O21—C30—C21105.12 (17)
C11—C9—C10112.13 (17)O21—C30—C25102.06 (16)
C20—C9—C10110.09 (18)C21—C30—C25109.10 (18)
C8—C9—C10108.70 (17)O21—C30—C29107.60 (17)
O1—C10—C5101.77 (16)C21—C30—C29116.38 (17)
O1—C10—C1104.72 (16)C25—C30—C29115.07 (17)
C5—C10—C1109.81 (19)C32—C31—C29113.92 (18)
O1—C10—C9108.50 (16)C32—C31—H31A108.8
C1—C10—C9115.79 (18)C29—C31—H31A108.8
C5—C10—C9114.78 (17)C32—C31—H31B108.8
C9—C11—C12114.42 (19)C29—C31—H31B108.8
C9—C11—H11A108.7H31A—C31—H31B107.7
C12—C11—H11A108.7C33—C32—C31112.92 (18)
C9—C11—H11B108.7C33—C32—H32A109.0
C12—C11—H11B108.7C31—C32—H32A109.0
H11A—C11—H11B107.6C33—C32—H32B109.0
C13—C12—C11111.8 (2)C31—C32—H32B109.0
C13—C12—H12A109.3H32A—C32—H32B107.8
C11—C12—H12A109.3O22—C33—C32109.38 (18)
C13—C12—H12B109.3O22—C33—C34110.26 (18)
C11—C12—H12B109.3C32—C33—C34108.47 (18)
H12A—C12—H12B107.9O22—C33—C36114.53 (18)
O2—C13—C14110.6 (2)C32—C33—C36112.08 (18)
O2—C13—C12111.1 (2)C34—C33—C36101.76 (18)
C14—C13—C12109.2 (2)C33—C34—C28102.68 (16)
O2—C13—C16111.4 (2)C33—C34—H34A111.2
C14—C13—C16102.9 (2)C28—C34—H34A111.2
C12—C13—C16111.3 (2)C33—C34—H34B111.2
C13—C14—C8104.46 (18)C28—C34—H34B111.2
C13—C14—H14A110.9H34A—C34—H34B109.1
C8—C14—H14A110.9O23—C35—C28128.3 (2)
C13—C14—H14B110.9O23—C35—C36121.8 (2)
C8—C14—H14B110.9C28—C35—C36109.95 (17)
H14A—C14—H14B108.9O24—C36—C37A107.95 (19)
O3—C15—C8127.0 (2)O24—C36—C33111.09 (19)
O3—C15—C16122.8 (2)C37A—C36—C33113.06 (18)
C8—C15—C16110.2 (2)O24—C36—C35111.95 (18)
O4—C16—C17A105.7 (2)C37A—C36—C35110.74 (16)
O4—C16—C13112.3 (2)C33—C36—C35102.06 (17)
C17A—C16—C13115.8 (2)O25A—C37A—C36114.1 (2)
O4—C16—C15111.4 (2)O25A—C37A—H37A108.7
C17A—C16—C15110.3 (2)C36—C37A—H37A108.7
C13—C16—C15101.5 (2)O25A—C37A—H37B108.7
O5A—C17A—C16114.8 (3)C36—C37A—H37B108.7
O5A—C17A—H17A108.6H37A—C37A—H37B107.6
C16—C17A—H17A108.6O25B—C37B—C36114.2 (2)
O5A—C17A—H17B108.6O25B—C37B—H37C108.7
C16—C17A—H17B108.6C36—C37B—H37C108.7
H17A—C17A—H17B107.6O25B—C37B—H37D108.7
O5B—C17B—C16114.8 (3)C36—C37B—H37D108.7
O5B—C17B—H17C108.5H37C—C37B—H37D107.6
C16—C17B—H17C108.5O25C—C37C—C36114.3 (2)
O5B—C17B—H17D108.5O25C—C37C—H37E108.7
C16—C17B—H17D108.5C36—C37C—H37E108.7
H17C—C17B—H17D107.5O25C—C37C—H37F108.7
C17A—O5A—H3O109.5C36—C37C—H37F108.7
C17B—O5B—H4O109.5H37E—C37C—H37F107.6
O1—C18—O6120.9 (2)C37A—O25A—H23O109.5
O6—C18—C4128.3 (2)C37B—O25B—H24O109.5
O1—C18—C4110.65 (19)C37C—O25C—H25O109.5
C4—C19—H19A109.5O26—C38—O21119.9 (2)
C4—C19—H19B109.5O26—C38—C24129.5 (2)
H19A—C19—H19B109.5O21—C38—C24110.47 (19)
C4—C19—H19C109.5C24—C39—H39A109.5
H19A—C19—H19C109.5C24—C39—H39B109.5
H19B—C19—H19C109.5H39A—C39—H39B109.5
C9—C20—H20A109.5C24—C39—H39C109.5
C9—C20—H20B109.5H39A—C39—H39C109.5
H20A—C20—H20B109.5H39B—C39—H39C109.5
C9—C20—H20C109.5C29—C40—H40A109.5
H20A—C20—H20C109.5C29—C40—H40B109.5
H20B—C20—H20C109.5H40A—C40—H40B109.5
C30—O21—C38109.46 (17)C29—C40—H40C109.5
C33—O22—H21O109.5H40A—C40—H40C109.5
C36—O24—H22O109.5H40B—C40—H40C109.5
C30—C21—C22112.22 (19)H1W—O1W—H2W109.5
C10—C1—C2—C340.4 (3)C22—C23—C24—C3846.3 (2)
C1—C2—C3—C442.7 (3)C22—C23—C24—C39170.0 (2)
C2—C3—C4—C1846.8 (3)C22—C23—C24—C2560.9 (3)
C2—C3—C4—C19169.8 (2)C38—C24—C25—C2683.8 (2)
C2—C3—C4—C560.4 (3)C39—C24—C25—C2638.8 (3)
C18—C4—C5—C684.7 (3)C23—C24—C25—C26164.5 (2)
C19—C4—C5—C636.9 (3)C38—C24—C25—C3037.6 (2)
C3—C4—C5—C6164.2 (2)C39—C24—C25—C30160.1 (2)
C18—C4—C5—C1037.8 (2)C23—C24—C25—C3074.2 (2)
C19—C4—C5—C10159.3 (2)C24—C25—C26—C27178.0 (2)
C3—C4—C5—C1073.4 (2)C30—C25—C26—C2763.0 (3)
C10—C5—C6—C762.3 (3)C25—C26—C27—C2834.5 (3)
C4—C5—C6—C7177.6 (2)C26—C27—C28—C35100.2 (2)
C5—C6—C7—C831.3 (4)C26—C27—C28—C34148.6 (2)
C6—C7—C8—C14152.4 (3)C26—C27—C28—C2923.7 (3)
C6—C7—C8—C1598.4 (3)C35—C28—C29—C3149.1 (2)
C6—C7—C8—C926.8 (3)C27—C28—C29—C31175.73 (18)
C7—C8—C9—C11177.4 (2)C34—C28—C29—C3158.8 (2)
C14—C8—C9—C1156.8 (2)C35—C28—C29—C40166.60 (16)
C15—C8—C9—C1149.1 (2)C27—C28—C29—C4066.7 (2)
C7—C8—C9—C2065.1 (3)C34—C28—C29—C4058.8 (2)
C14—C8—C9—C2060.7 (2)C35—C28—C29—C3072.6 (2)
C15—C8—C9—C20166.58 (19)C27—C28—C29—C3054.0 (2)
C7—C8—C9—C1055.4 (3)C34—C28—C29—C30179.53 (16)
C14—C8—C9—C10178.77 (18)C38—O21—C30—C2190.0 (2)
C15—C8—C9—C1072.9 (2)C38—O21—C30—C2523.9 (2)
C18—O1—C10—C525.4 (2)C38—O21—C30—C29145.4 (2)
C18—O1—C10—C188.9 (2)C22—C21—C30—O2151.9 (2)
C18—O1—C10—C9146.85 (19)C22—C21—C30—C2556.9 (3)
C6—C5—C10—O185.3 (2)C22—C21—C30—C29170.8 (2)
C4—C5—C10—O138.5 (2)C26—C25—C30—O2185.5 (2)
C6—C5—C10—C1164.18 (19)C24—C25—C30—O2137.9 (2)
C4—C5—C10—C172.0 (2)C26—C25—C30—C21163.60 (19)
C6—C5—C10—C931.7 (3)C24—C25—C30—C2173.0 (2)
C4—C5—C10—C9155.45 (18)C26—C25—C30—C2930.7 (3)
C2—C1—C10—O151.5 (3)C24—C25—C30—C29154.05 (18)
C2—C1—C10—C557.1 (3)C31—C29—C30—O21101.00 (19)
C2—C1—C10—C9170.9 (2)C40—C29—C30—O2118.8 (2)
C11—C9—C10—O1101.9 (2)C28—C29—C30—O21139.23 (17)
C20—C9—C10—O118.1 (2)C31—C29—C30—C2116.6 (3)
C8—C9—C10—O1138.47 (18)C40—C29—C30—C21136.4 (2)
C11—C9—C10—C5145.03 (19)C28—C29—C30—C21103.2 (2)
C20—C9—C10—C594.9 (2)C31—C29—C30—C25146.01 (19)
C8—C9—C10—C525.4 (2)C40—C29—C30—C2594.1 (2)
C11—C9—C10—C115.4 (3)C28—C29—C30—C2526.2 (2)
C20—C9—C10—C1135.4 (2)C40—C29—C31—C3272.9 (2)
C8—C9—C10—C1104.2 (2)C28—C29—C31—C3245.8 (2)
C20—C9—C11—C1273.6 (2)C30—C29—C31—C32165.90 (18)
C8—C9—C11—C1245.1 (3)C29—C31—C32—C3347.9 (3)
C10—C9—C11—C12165.01 (19)C31—C32—C33—O22179.67 (19)
C9—C11—C12—C1347.6 (3)C31—C32—C33—C3460.0 (2)
C11—C12—C13—O2178.2 (2)C31—C32—C33—C3651.5 (3)
C11—C12—C13—C1459.6 (3)O22—C33—C34—C28171.19 (18)
C11—C12—C13—C1653.4 (3)C32—C33—C34—C2869.1 (2)
O2—C13—C14—C8168.1 (2)C36—C33—C34—C2849.3 (2)
C12—C13—C14—C869.3 (2)C35—C28—C34—C3343.3 (2)
C16—C13—C14—C849.0 (2)C27—C28—C34—C33163.1 (2)
C7—C8—C14—C13163.4 (2)C29—C28—C34—C3370.2 (2)
C15—C8—C14—C1343.7 (2)C27—C28—C35—O2338.4 (3)
C9—C8—C14—C1369.1 (2)C34—C28—C35—O23156.7 (2)
C7—C8—C15—O337.7 (3)C29—C28—C35—O2388.3 (3)
C14—C8—C15—O3154.9 (3)C27—C28—C35—C36140.27 (18)
C9—C8—C15—O390.5 (3)C34—C28—C35—C3622.0 (2)
C7—C8—C15—C16140.8 (2)C29—C28—C35—C3693.02 (19)
C14—C8—C15—C1623.6 (2)O22—C33—C36—O2487.8 (2)
C9—C8—C15—C1691.0 (2)C32—C33—C36—O2437.5 (2)
O2—C13—C16—O491.2 (3)C34—C33—C36—O24153.22 (18)
C14—C13—C16—O4150.2 (2)O22—C33—C36—C37A33.7 (3)
C12—C13—C16—O433.4 (3)C32—C33—C36—C37A159.06 (17)
O2—C13—C16—C17A30.3 (3)C34—C33—C36—C37A85.24 (19)
C14—C13—C16—C17A88.2 (3)O22—C33—C36—C35152.68 (18)
C12—C13—C16—C17A154.9 (2)C32—C33—C36—C3582.0 (2)
O2—C13—C16—C15149.7 (2)C34—C33—C36—C3533.7 (2)
C14—C13—C16—C1531.2 (2)O23—C35—C36—O2455.4 (3)
C12—C13—C16—C1585.7 (2)C28—C35—C36—O24125.84 (19)
O3—C15—C16—O457.8 (3)O23—C35—C36—C37A65.1 (3)
C8—C15—C16—O4123.6 (2)C28—C35—C36—C37A113.6 (2)
O3—C15—C16—C17A59.3 (3)O23—C35—C36—C33174.3 (2)
C8—C15—C16—C17A119.3 (2)C28—C35—C36—C337.0 (2)
O3—C15—C16—C13177.5 (2)O24—C36—C37A—O25A49.7 (3)
C8—C15—C16—C133.9 (2)C33—C36—C37A—O25A73.6 (3)
O4—C16—C17A—O5A178.8 (3)C35—C36—C37A—O25A172.6 (3)
C13—C16—C17A—O5A56.2 (4)O24—C36—C37B—O25B159.4 (5)
C15—C16—C17A—O5A58.3 (3)C33—C36—C37B—O25B77.3 (5)
O4—C16—C17B—O5B56.7 (8)C35—C36—C37B—O25B36.6 (6)
C13—C16—C17B—O5B178.2 (7)O24—C36—C37C—O25C79.8 (7)
C15—C16—C17B—O5B63.8 (7)C33—C36—C37C—O25C156.9 (7)
C10—O1—C18—O6176.6 (2)C35—C36—C37C—O25C43.1 (7)
C10—O1—C18—C40.5 (3)C30—O21—C38—O26177.7 (2)
C19—C4—C18—O634.5 (4)C30—O21—C38—C240.7 (3)
C3—C4—C18—O688.5 (3)C39—C24—C38—O2632.9 (4)
C5—C4—C18—O6159.0 (3)C25—C24—C38—O26158.3 (3)
C19—C4—C18—O1148.7 (2)C23—C24—C38—O2690.0 (3)
C3—C4—C18—O188.3 (2)C39—C24—C38—O21150.5 (2)
C5—C4—C18—O124.2 (3)C25—C24—C38—O2125.1 (3)
C30—C21—C22—C2340.0 (3)C23—C24—C38—O2186.6 (2)
C21—C22—C23—C2442.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O···O1Wi0.951.792.720 (3)167
O4—H2O···O21ii0.952.773.503 (3)135
O4—H2O···O26ii0.952.513.370 (3)150
O5A—H3O···O20.952.693.102 (4)107
O5A—H3O···O22iii0.952.183.053 (4)152
O5B—H4O···O30.952.182.937 (10)135
O5B—H4O···O21ii0.952.883.420 (12)117
O22—H21O···O2iv0.951.862.775 (3)161
O22—H21O···O25A0.952.472.851 (4)104
O24—H22O···O1v0.952.083.015 (2)168
O24—H22O···O6v0.952.733.423 (3)130
O25A—H23O···O6v0.952.323.230 (5)160
O25B—H24O···O22iv0.952.133.020 (7)155
O25C—H25O···O5Avi0.952.213.029 (15)145
O25C—H25O···O230.952.482.780 (8)98
O1W—H1W···O60.951.912.842 (3)168
O1W—H2W···O260.951.962.898 (3)169
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y1/2, z+1/2; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+3/2, z; (v) x+1, y+1/2, z+1/2; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula2(C20H28O6)·H2O
Mr746.86
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)11.627 (3), 14.7157 (19), 21.081 (3)
V3)3607.0 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.84
Crystal size (mm)0.48 × 0.17 × 0.09
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4152, 4152, 3553
Rint0.000
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.098, 1.04
No. of reflections4152
No. of parameters512
No. of restraints32
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.23
Absolute structureThe absolute configuration was chosen according to that of the known bromine derivative of norkauren-γ-lactone (Garo et al., 1997) and is also supported by the refined Flack parameter (Flack, 1983).
Absolute structure parameter0.04 (18)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software, Structure Determination Package (Enraf–Nonius, 1985), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
O1—C101.494 (2)O21—C301.482 (2)
O1—C181.339 (3)O21—C381.348 (3)
O2—C131.434 (3)O22—C331.433 (2)
O3—C151.206 (3)O23—C351.194 (3)
O4—C161.443 (3)O24—C361.412 (3)
O6—C181.215 (3)O26—C381.212 (3)
C8—C91.582 (3)C28—C291.584 (3)
C8—C151.546 (3)C28—C351.524 (3)
C9—C101.585 (3)C29—C301.592 (3)
C15—C161.554 (3)C35—C361.552 (3)
C16—C17A1.514 (4)C36—C37A1.527 (3)
C17A—O5A1.434 (4)C37A—O25A1.393 (3)
C10—O1—C18109.61 (17)C30—O21—C38109.46 (17)
C5—C4—C18100.49 (19)C25—C24—C38100.68 (18)
C5—C4—C19116.6 (2)C25—C24—C39117.0 (2)
C7—C8—C9114.06 (19)C27—C28—C29113.46 (18)
C7—C8—C15114.2 (2)C27—C28—C35113.36 (19)
C14—C8—C1597.68 (17)C34—C28—C3599.58 (16)
C1—C10—C9115.79 (18)O21—C30—C29107.60 (17)
C5—C10—C9114.78 (17)C25—C30—C29115.07 (17)
C14—C13—C16102.9 (2)C34—C33—C36101.76 (18)
O3—C15—C8127.0 (2)O23—C35—C28128.3 (2)
O3—C15—C16122.8 (2)O23—C35—C36121.8 (2)
C13—C16—C15101.5 (2)C33—C36—C35102.06 (17)
O1—C18—O6120.9 (2)O26—C38—O21119.9 (2)
O6—C18—C4128.3 (2)O26—C38—C24129.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O···O1Wi0.951.792.720 (3)167.3
O4—H2O···O21ii0.952.773.503 (3)134.6
O4—H2O···O26ii0.952.513.370 (3)149.9
O5A—H3O···O20.952.693.102 (4)106.6
O5A—H3O···O22iii0.952.183.053 (4)152.1
O5B—H4O···O30.952.182.937 (10)135.4
O5B—H4O···O21ii0.952.883.420 (12)117.0
O22—H21O···O2iv0.951.862.775 (3)160.5
O22—H21O···O25A0.952.472.851 (4)103.8
O24—H22O···O1v0.952.083.015 (2)168.0
O24—H22O···O6v0.952.733.423 (3)130.0
O25A—H23O···O6v0.952.323.230 (5)159.6
O25B—H24O···O22iv0.952.133.020 (7)154.8
O25C—H25O···O5Avi0.952.213.029 (15)144.5
O25C—H25O···O230.952.482.780 (8)98.0
O1W—H1W···O60.951.912.842 (3)167.8
O1W—H2W···O260.951.962.898 (3)168.8
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y1/2, z+1/2; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+3/2, z; (v) x+1, y+1/2, z+1/2; (vi) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds