Download citation
Download citation
link to html
The X-ray structure analysis of the title compound, chloro[1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-4-ium-1-yl)-3-quinolinecarboxylate-κ2O3,O4](1,10-phenanthroline-κ2N,N′)copper chloride dihydrate, [CuCl(C17H18FN3O3)(C12H8N2)]Cl·2H2O or [CuCl(cfH)(phen)]Cl·2H2O, where cfH is 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-4-ium-1-yl)-3-quinolinecarboxylate and phen is 1,10-phenanthroline, shows that the geometry around the Cu ion is a slightly distorted square pyramid. Two O atoms of the carbonyl and carboxyl groups of ciprofloxacin and two N atoms of 1,10-phenanthroline are coordinated to the metal centre in the equatorial plane, and a Cl ion is coordinated at the apical position. Extensive intermolecular hydrogen bonding produces a supramolecular structure that consists of alternating six- and 12-membered rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103016330/fa1021sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103016330/fa1021Isup2.hkl
Contains datablock I

CCDC reference: 221068

Comment top

Ciprofloxacin (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid), cf.H, belongs to the family of fluoroquinolones and is a well known antibacterial drug (Reynolds, 1993), which inhibits bacterial growth by influencing the procaryotic enzyme gyrase (Stryer, 1995). Several ciprofloxacin–metal complexes have been isolated and their crystal structures reported (Turel, 2002), and many of them possess nearly the same antibiotic activity as cf.H alone. One of the theories dealing with the interaction between gyrase, DNA and quinolones proposes that interaction between DNA and quinolone is strongly influenced by divalent metal ions, which stabilize the negative charge of the quinolone carbonyl and carboxyl groups and DNA phosphates (Palumbo et al., 1993).

The title compound, (I), a mixed-ligand–metal complex, which, besides ciprofloxacin, includes the N,N ligand 1,10-phenanthroline, phen, also known for its biological significance (Ranford et al., 1993), may therefore contribute to the development of a new type of drug with biologically important properties. \sch

The asymmetric unit of the crystal of (I) consists of a [Cu(cf.H)(phen)Cl]+ unit, a Cl anion and two water molecules. The Cu atom is coordinated by two ciprofloxacin O atoms and two 1,10-phenanthroline N atoms in the equatorial plane, and a Cl ion in the axial position. It adopts a slightly distorted square-pyramidal geometry, with an O1—Cu—O11 angle of 93.67 (5)° and an N40—Cu—N31 angle of 81.99 (6)° (Fig.1). The Cu atom deviates from the equatorial plane by 0.166 (1) Å. The ciprofloxacin part of the [Cu(cf.H)(phen)Cl]+ unit is zwitterionic, with atom N24 protonated and atom O12 unprotonated. The apical site is occupied by atom Cl1, and the Cu—Cl1 bond of 2.606 (1) Å makes an angle of 84.3 (5)° with the best plane of the four atoms at the base of the pyramid.

All bond lengths and angles in (I) are in agreement with the values reported for the corresponding types of bonds (Orpen et al., 1989). Metal-to-ligand distances are also similar to those found in related compounds with cinoxacin [1-ethyl-1,4-dihydro-4-oxo(1,3)-dioxolo(4,5 − g)cinnoline-3-carboxylic acid, cnx], [Cu(phen)(cnx)(H2O)]NO3·H2O (Mendoza-Diaz et al., 1993), or nalidixic acid (1-ethyl-1,4-dihydro-7-methyl-4-oxo-1,8-naphthyridine-3-carboxylic acid, nal), [Cu(phen)(nal)(H2O)]NO3·3H2O (Mendoza-Diaz et al., 1987), and in [Cu(cf.H)(bipy)(Cl)0.7(NO3)0.3](NO3)·2H2O (bipy is 2,2'-bipyridine; Wallis et al., 1996). Complex (I) is almost planar, with the exception of the piperazine ring, which has the usual chair conformation, and the cyclopropyl ring, which makes a dihedral angle of 69.7 (1)° with the [Cu(cf.H)(phen)] plane.

The extended structure of (I) is dominated by layering indicative of ππ interactions between the 1,10-phenanthroline and ciprofloxacin aromatic rings. The distance between the aromatic rings of cf.H and phen in neighbouring layers is approximately 3.1 Å in structure of (I), while the analogous planes are 3.5 Å apart in the previously synthesized complex [Cu(phen)(cnx)(H2O)]NO3.H2O (Mendoza-Diaz et al., 1993). A shorter distance between the neighbouring layers accompanies a more extensive intermolecular hydrogen-bonding network (Fig.2 and 3). [Cu(cf.H)(phen)Cl]+ moieties are linked via hydrogen bonds of the types N—H···Cl, O—H···O and O—H···Cl. A hydrogen-bonded six-membered ring is present, in which atoms O1W and O2W are hydrogen-bond donors to two Cl2 ions, one of the same and the other of a neighbouring asymmetric unit (Fig. 3). The O1W···O2W distance is 2.852 (3) Å and the O···Cl distances are 3.200 (2) and 3.234 (3) Å, respectively. A 12-membered ring is formed by intermolecular hydrogen bonding between N24—H of the piperazine ring, carboxyl O12 congeners and the Cl1 atoms of neighbouring molecules. Since both rings are simultaneously linked by N24—H24A···Cl2(x, y, 1 + z),O2W—H2B···O12 and O2W—H2B···O11 hydrogen bonds, an extensive polymeric network is formed, which may contibute to the stabilization of the crystal structure.

Experimental top

The title compound was synthesized by a hydrothermal reaction. Ciprofloxacin (0.5 mmol), 1,10-phenanthroline hydrate and copper(II) chloride dihydrate were mixed in a mortar in a molar ratio of 1:1:1 and placed in a glass tube. The solvent (absolute ethanol, 2 ml) was added and the pH was adjusted to 8 by adding 2M sodium hydroxide. The tube was then frozen using liquid nitrogen, evacuated and sealed. The ampoule was heated at 393 K for 24 h to give green crystals of (I). Crystals of the same product were also obtained from the same mixture by evaporation in air. However, the quality of these latter crystals was not appropriate for single-crystal X-ray diffraction analysis.

Refinement top

Water H atoms were found in a difference Fourier map and were refined freely. All remaining H atoms were placed in calculated positions and refined using appropriate riding models, with Uiso(H) = 1.2Ueq(N,C). Is this added information correct?

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1998) and ORTEP-3 (Farrugia, 1999b); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999a).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the ??% probability level. Please provide missing information.
[Figure 2] Fig. 2. Packing diagram for (I) showing the hydrogen bonding.
[Figure 3] Fig. 3. Detail of the hydrogen bonding in (I), projected along a. Non-hydrogen-bonded atoms have been omitted for clarity.
chloro[1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-4-ium-1-yl)-3- quinolinecarboxylate-κ2O3,O4](1,10-phenanthroline-κ2N,N')copper chloride dihydrate top
Crystal data top
[CuCl(C17H18FN3O3)(C12H8N2)]Cl·2H2OZ = 2
Mr = 682.03F(000) = 702.0
Triclinic, P1Dx = 1.606 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8567 (5) ÅCell parameters from 7979 reflections
b = 11.1494 (5) Åθ = 2.0–30.0°
c = 13.2873 (10) ŵ = 1.02 mm1
α = 66.672 (5)°T = 200 K
β = 73.054 (5)°Prism, green
γ = 80.190 (5)°0.07 × 0.05 × 0.03 mm
V = 1410.0 (2) Å3
Data collection top
Nonius KappaCCD (with Oxford Cryosystems Cryostream Cooler)
diffractometer
5551 independent reflections
Radiation source: fine-focus sealed tube4894 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 0.055 pixels mm-1θmax = 26.0°, θmin = 2.3°
ω scansh = 1312
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
k = 1313
Tmin = 0.941, Tmax = 0.967l = 1616
15579 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0331P)2 + 1.0139P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
5551 reflectionsΔρmax = 0.33 e Å3
405 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (9)
Crystal data top
[CuCl(C17H18FN3O3)(C12H8N2)]Cl·2H2Oγ = 80.190 (5)°
Mr = 682.03V = 1410.0 (2) Å3
Triclinic, P1Z = 2
a = 10.8567 (5) ÅMo Kα radiation
b = 11.1494 (5) ŵ = 1.02 mm1
c = 13.2873 (10) ÅT = 200 K
α = 66.672 (5)°0.07 × 0.05 × 0.03 mm
β = 73.054 (5)°
Data collection top
Nonius KappaCCD (with Oxford Cryosystems Cryostream Cooler)
diffractometer
5551 independent reflections
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
4894 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.967Rint = 0.020
15579 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
5551 reflectionsΔρmin = 0.35 e Å3
405 parameters
Special details top

Experimental. KappaCCD Nonius diffractometer with Oxford Cryosystems 700 Series Cryostream Cooler. 376 frames in 40 sets of ω scans. Rotation/frame=60°. Crystal-detector distance=30 mm. Measuring time=40 s/°. Mosaicity=0.4°.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.41409 (2)0.38389 (2)0.44970 (2)0.01726 (9)
Cl10.29747 (5)0.17556 (5)0.49597 (4)0.02655 (12)
F0.41764 (11)0.24876 (12)0.99399 (9)0.0289 (3)
O10.46749 (12)0.33724 (12)0.58883 (10)0.0198 (3)
O120.75173 (12)0.19684 (13)0.35712 (10)0.0225 (3)
O110.57809 (12)0.32999 (13)0.37138 (10)0.0218 (3)
N10.75807 (14)0.06188 (14)0.68425 (12)0.0159 (3)
N210.62196 (14)0.06429 (14)1.06571 (12)0.0164 (3)
N240.72281 (15)0.01633 (15)1.25845 (13)0.0201 (3)
H24A0.72400.02391.33350.024*
H24B0.78700.07431.22270.024*
N310.35650 (14)0.46786 (14)0.30345 (12)0.0172 (3)
N400.25910 (14)0.49038 (14)0.50293 (12)0.0164 (3)
C10.66178 (17)0.24382 (17)0.41488 (15)0.0158 (4)
C20.74597 (17)0.10860 (17)0.57818 (15)0.0172 (4)
H20.80620.07550.52590.021*
C30.65246 (17)0.20133 (17)0.53897 (14)0.0155 (4)
C40.56086 (16)0.25322 (16)0.61454 (15)0.0146 (4)
C50.49233 (17)0.25206 (17)0.81131 (15)0.0165 (4)
H50.42480.31620.79170.020*
C60.50748 (17)0.20511 (17)0.91820 (15)0.0171 (4)
C70.60746 (17)0.11166 (17)0.95534 (14)0.0151 (4)
C80.68859 (17)0.06569 (17)0.87379 (15)0.0163 (4)
H80.75610.00170.89380.020*
C90.67370 (16)0.11070 (16)0.76356 (14)0.0143 (3)
C100.57642 (17)0.20622 (17)0.72874 (14)0.0146 (4)
C110.85815 (17)0.03907 (18)0.72055 (15)0.0190 (4)
H110.91430.01710.75780.023*
C120.8272 (2)0.1789 (2)0.7677 (2)0.0329 (5)
H12A0.74150.19850.76800.039*
H12B0.86160.23920.83270.039*
C130.9219 (2)0.1239 (2)0.65533 (18)0.0295 (5)
H13A1.01440.15050.65120.035*
H13B0.89440.10980.58650.035*
C220.73941 (18)0.02279 (18)1.08312 (15)0.0192 (4)
H22A0.81640.02811.03780.023*
H22B0.74220.09351.05500.023*
C230.74554 (19)0.08334 (18)1.20549 (15)0.0215 (4)
H23A0.67980.14901.24810.026*
H23B0.83140.12921.21020.026*
C250.59555 (19)0.08752 (19)1.24845 (16)0.0223 (4)
H25A0.57810.15201.28580.027*
H25B0.52660.02501.28650.027*
C260.5960 (2)0.15694 (18)1.12498 (16)0.0226 (4)
H26A0.51130.20471.11860.027*
H26B0.66280.22181.08820.027*
C320.40293 (19)0.44677 (18)0.20740 (15)0.0219 (4)
H320.48000.39270.19890.026*
C330.3421 (2)0.50149 (19)0.11798 (16)0.0250 (4)
H330.37590.48150.05150.030*
C340.23379 (19)0.58385 (19)0.12673 (16)0.0236 (4)
H340.19280.62250.06600.028*
C350.07142 (19)0.69550 (19)0.24449 (17)0.0248 (4)
H350.03040.74270.18470.030*
C360.02285 (18)0.70909 (19)0.34648 (17)0.0239 (4)
H360.05190.76550.35680.029*
C370.03300 (18)0.64293 (18)0.54803 (16)0.0221 (4)
H370.04450.69330.56490.027*
C380.09775 (19)0.57254 (19)0.63013 (16)0.0230 (4)
H380.06590.57510.70390.028*
C390.21070 (18)0.49708 (18)0.60510 (15)0.0198 (4)
H390.25440.44890.66290.024*
C410.19568 (17)0.56095 (17)0.42082 (15)0.0166 (4)
C420.08258 (17)0.63989 (18)0.43834 (16)0.0193 (4)
C430.24747 (17)0.54688 (17)0.31344 (15)0.0168 (4)
C440.18374 (18)0.61077 (18)0.22654 (15)0.0197 (4)
Cl20.95967 (6)0.17821 (6)0.07744 (5)0.04153 (16)
O1W0.17235 (19)0.3522 (2)0.87100 (15)0.0420 (4)
O2W0.7618 (3)0.4090 (2)0.13243 (17)0.0607 (7)
H1A0.118 (3)0.317 (3)0.926 (3)0.052 (9)*
H1B0.189 (3)0.413 (3)0.878 (2)0.046 (9)*
H2A0.835 (4)0.368 (4)0.129 (3)0.077 (15)*
H2B0.731 (4)0.375 (4)0.195 (3)0.083 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01735 (13)0.02093 (14)0.01229 (12)0.00508 (9)0.00622 (9)0.00558 (9)
Cl10.0355 (3)0.0230 (2)0.0199 (2)0.0045 (2)0.0108 (2)0.00283 (19)
F0.0258 (6)0.0454 (7)0.0187 (6)0.0157 (5)0.0080 (5)0.0203 (5)
O10.0203 (7)0.0241 (7)0.0149 (6)0.0082 (5)0.0081 (5)0.0084 (5)
O120.0213 (7)0.0315 (7)0.0156 (6)0.0058 (6)0.0054 (5)0.0121 (6)
O110.0202 (7)0.0288 (7)0.0140 (6)0.0055 (6)0.0062 (5)0.0067 (5)
N10.0163 (7)0.0178 (7)0.0148 (7)0.0043 (6)0.0064 (6)0.0076 (6)
N210.0197 (8)0.0183 (8)0.0136 (7)0.0031 (6)0.0082 (6)0.0074 (6)
N240.0258 (8)0.0228 (8)0.0137 (7)0.0027 (7)0.0091 (7)0.0053 (6)
N310.0184 (8)0.0171 (8)0.0143 (7)0.0012 (6)0.0046 (6)0.0044 (6)
N400.0170 (8)0.0177 (8)0.0147 (7)0.0003 (6)0.0058 (6)0.0050 (6)
C10.0155 (9)0.0189 (9)0.0154 (9)0.0028 (7)0.0048 (7)0.0073 (7)
C20.0181 (9)0.0205 (9)0.0147 (9)0.0004 (7)0.0037 (7)0.0091 (7)
C30.0169 (9)0.0167 (9)0.0140 (9)0.0010 (7)0.0056 (7)0.0055 (7)
C40.0156 (9)0.0136 (8)0.0157 (9)0.0003 (7)0.0061 (7)0.0052 (7)
C50.0168 (9)0.0175 (9)0.0166 (9)0.0026 (7)0.0065 (7)0.0075 (7)
C60.0163 (9)0.0210 (9)0.0168 (9)0.0016 (7)0.0033 (7)0.0112 (7)
C70.0171 (9)0.0170 (9)0.0128 (8)0.0024 (7)0.0058 (7)0.0051 (7)
C80.0174 (9)0.0171 (9)0.0162 (9)0.0027 (7)0.0079 (7)0.0068 (7)
C90.0159 (9)0.0152 (8)0.0136 (8)0.0007 (7)0.0043 (7)0.0069 (7)
C100.0159 (9)0.0159 (9)0.0130 (8)0.0021 (7)0.0039 (7)0.0057 (7)
C110.0179 (9)0.0219 (9)0.0201 (9)0.0064 (7)0.0096 (8)0.0103 (8)
C120.0312 (12)0.0228 (11)0.0446 (13)0.0050 (9)0.0186 (10)0.0084 (10)
C130.0325 (11)0.0330 (11)0.0312 (11)0.0184 (9)0.0180 (9)0.0213 (10)
C220.0191 (9)0.0229 (10)0.0162 (9)0.0036 (7)0.0064 (7)0.0083 (8)
C230.0253 (10)0.0220 (10)0.0186 (9)0.0038 (8)0.0106 (8)0.0073 (8)
C250.0246 (10)0.0275 (10)0.0192 (9)0.0030 (8)0.0093 (8)0.0123 (8)
C260.0310 (11)0.0214 (10)0.0210 (10)0.0052 (8)0.0131 (8)0.0116 (8)
C320.0242 (10)0.0216 (10)0.0176 (9)0.0024 (8)0.0050 (8)0.0066 (8)
C330.0307 (11)0.0294 (11)0.0145 (9)0.0005 (9)0.0054 (8)0.0085 (8)
C340.0266 (10)0.0273 (10)0.0163 (9)0.0008 (8)0.0107 (8)0.0038 (8)
C350.0231 (10)0.0244 (10)0.0259 (10)0.0041 (8)0.0130 (8)0.0055 (8)
C360.0185 (9)0.0224 (10)0.0308 (11)0.0036 (8)0.0091 (8)0.0094 (8)
C370.0198 (9)0.0203 (10)0.0277 (10)0.0003 (8)0.0033 (8)0.0127 (8)
C380.0261 (10)0.0246 (10)0.0194 (9)0.0030 (8)0.0014 (8)0.0117 (8)
C390.0230 (10)0.0200 (9)0.0158 (9)0.0018 (8)0.0051 (8)0.0057 (7)
C410.0168 (9)0.0138 (8)0.0186 (9)0.0020 (7)0.0056 (7)0.0042 (7)
C420.0176 (9)0.0161 (9)0.0241 (10)0.0016 (7)0.0056 (8)0.0067 (8)
C430.0180 (9)0.0148 (9)0.0164 (9)0.0023 (7)0.0048 (7)0.0035 (7)
C440.0197 (9)0.0191 (9)0.0190 (9)0.0014 (7)0.0081 (8)0.0031 (7)
Cl20.0346 (3)0.0528 (4)0.0310 (3)0.0188 (3)0.0124 (2)0.0004 (3)
O1W0.0484 (11)0.0447 (11)0.0293 (9)0.0115 (9)0.0011 (8)0.0140 (8)
O2W0.103 (2)0.0513 (13)0.0225 (10)0.0302 (14)0.0083 (11)0.0027 (9)
Geometric parameters (Å, º) top
Cu—O111.9143 (13)C12—C131.502 (3)
Cu—O11.9454 (12)C12—H12A0.9900
Cu—N402.0080 (15)C12—H12B0.9900
Cu—N312.0278 (15)C13—H13A0.9900
Cu—Cl12.6064 (5)C13—H13B0.9900
F—C61.362 (2)C22—C231.511 (3)
O1—C41.283 (2)C22—H22A0.9900
O12—C11.235 (2)C22—H22B0.9900
O11—C11.285 (2)C23—H23A0.9900
N1—C21.333 (2)C23—H23B0.9900
N1—C91.403 (2)C25—C261.510 (3)
N1—C111.463 (2)C25—H25A0.9900
N21—C71.395 (2)C25—H25B0.9900
N21—C261.477 (2)C26—H26A0.9900
N21—C221.481 (2)C26—H26B0.9900
N24—C251.485 (2)C32—C331.402 (3)
N24—C231.489 (2)C32—H320.9500
N24—H24A0.9200C33—C341.370 (3)
N24—H24B0.9200C33—H330.9500
N31—C321.327 (2)C34—C441.408 (3)
N31—C431.357 (2)C34—H340.9500
N40—C391.333 (2)C35—C361.362 (3)
N40—C411.363 (2)C35—C441.433 (3)
C1—C31.501 (2)C35—H350.9500
C2—C31.377 (3)C36—C421.432 (3)
C2—H20.9500C36—H360.9500
C3—C41.419 (2)C37—C381.372 (3)
C4—C101.447 (2)C37—C421.411 (3)
C5—C61.355 (2)C37—H370.9500
C5—C101.414 (2)C38—C391.398 (3)
C5—H50.9500C38—H380.9500
C6—C71.424 (2)C39—H390.9500
C7—C81.394 (2)C41—C421.401 (3)
C8—C91.397 (2)C41—C431.434 (2)
C8—H80.9500C43—C441.402 (3)
C9—C101.405 (2)O1W—H1A0.79 (3)
C11—C131.483 (3)O1W—H1B0.78 (3)
C11—C121.489 (3)O2W—H2A0.85 (4)
C11—H111.0000O2W—H2B0.76 (4)
O11—Cu—O193.67 (5)C13—C12—H12B117.8
O11—Cu—N40163.90 (6)H12A—C12—H12B115.0
O1—Cu—N4091.21 (6)C11—C13—C1259.83 (13)
O11—Cu—N3190.71 (6)C11—C13—H13A117.8
O1—Cu—N31169.10 (6)C12—C13—H13A117.8
N40—Cu—N3181.99 (6)C11—C13—H13B117.8
O11—Cu—Cl196.44 (4)C12—C13—H13B117.8
O1—Cu—Cl1100.36 (4)H13A—C13—H13B114.9
N40—Cu—Cl197.76 (4)N21—C22—C23113.17 (15)
N31—Cu—Cl189.05 (4)N21—C22—H22A108.9
C4—O1—Cu123.34 (11)C23—C22—H22A108.9
C1—O11—Cu127.33 (11)N21—C22—H22B108.9
C2—N1—C9119.65 (15)C23—C22—H22B108.9
C2—N1—C11121.69 (15)H22A—C22—H22B107.8
C9—N1—C11118.66 (14)N24—C23—C22112.01 (15)
C7—N21—C26118.03 (14)N24—C23—H23A109.2
C7—N21—C22114.45 (14)C22—C23—H23A109.2
C26—N21—C22112.68 (14)N24—C23—H23B109.2
C25—N24—C23109.10 (14)C22—C23—H23B109.2
C25—N24—H24A109.9H23A—C23—H23B107.9
C23—N24—H24A109.9N24—C25—C26109.48 (15)
C25—N24—H24B109.9N24—C25—H25A109.8
C23—N24—H24B109.9C26—C25—H25A109.8
H24A—N24—H24B108.3N24—C25—H25B109.8
C32—N31—C43118.11 (16)C26—C25—H25B109.8
C32—N31—Cu129.32 (13)H25A—C25—H25B108.2
C43—N31—Cu112.25 (11)N21—C26—C25111.67 (15)
C39—N40—C41118.07 (16)N21—C26—H26A109.3
C39—N40—Cu129.18 (13)C25—C26—H26A109.3
C41—N40—Cu112.72 (12)N21—C26—H26B109.3
O12—C1—O11121.94 (16)C25—C26—H26B109.3
O12—C1—C3118.77 (16)H26A—C26—H26B107.9
O11—C1—C3119.27 (15)N31—C32—C33122.23 (18)
N1—C2—C3124.72 (16)N31—C32—H32118.9
N1—C2—H2117.6C33—C32—H32118.9
C3—C2—H2117.6C34—C33—C32119.78 (18)
C2—C3—C4119.27 (16)C34—C33—H33120.1
C2—C3—C1115.25 (15)C32—C33—H33120.1
C4—C3—C1125.41 (16)C33—C34—C44119.39 (17)
O1—C4—C3125.02 (16)C33—C34—H34120.3
O1—C4—C10118.79 (15)C44—C34—H34120.3
C3—C4—C10116.20 (15)C36—C35—C44120.68 (18)
C6—C5—C10120.44 (16)C36—C35—H35119.7
C6—C5—H5119.8C44—C35—H35119.7
C10—C5—H5119.8C35—C36—C42121.14 (18)
C5—C6—F116.55 (16)C35—C36—H36119.4
C5—C6—C7124.17 (16)C42—C36—H36119.4
F—C6—C7119.24 (15)C38—C37—C42119.41 (17)
C8—C7—N21121.53 (16)C38—C37—H37120.3
C8—C7—C6114.88 (15)C42—C37—H37120.3
N21—C7—C6123.54 (15)C37—C38—C39119.92 (17)
C7—C8—C9122.07 (16)C37—C38—H38120.0
C7—C8—H8119.0C39—C38—H38120.0
C9—C8—H8119.0N40—C39—C38122.23 (17)
C8—C9—N1120.02 (15)N40—C39—H39118.9
C8—C9—C10121.52 (16)C38—C39—H39118.9
N1—C9—C10118.45 (15)N40—C41—C42123.43 (16)
C9—C10—C5116.85 (15)N40—C41—C43116.46 (16)
C9—C10—C4121.66 (15)C42—C41—C43120.05 (16)
C5—C10—C4121.47 (16)C41—C42—C37116.92 (17)
N1—C11—C13121.04 (16)C41—C42—C36118.94 (17)
N1—C11—C12118.59 (16)C37—C42—C36124.12 (17)
C13—C11—C1260.72 (14)N31—C43—C44123.57 (16)
N1—C11—H11115.2N31—C43—C41116.54 (16)
C13—C11—H11115.2C44—C43—C41119.87 (16)
C12—C11—H11115.2C43—C44—C34116.81 (17)
C11—C12—C1359.45 (13)C43—C44—C35119.18 (17)
C11—C12—H12A117.8C34—C44—C35123.99 (17)
C13—C12—H12A117.8H1A—O1W—H1B107 (3)
C11—C12—H12B117.8H2A—O2W—H2B100 (4)
O11—Cu—O1—C423.01 (14)C8—C9—C10—C4179.90 (16)
N40—Cu—O1—C4172.34 (14)N1—C9—C10—C40.8 (2)
N31—Cu—O1—C4136.5 (3)C6—C5—C10—C90.4 (3)
Cl1—Cu—O1—C474.22 (13)C6—C5—C10—C4178.93 (17)
O1—Cu—O11—C126.12 (15)O1—C4—C10—C9177.63 (16)
N40—Cu—O11—C1133.5 (2)C3—C4—C10—C92.5 (2)
N31—Cu—O11—C1163.87 (15)O1—C4—C10—C50.8 (3)
Cl1—Cu—O11—C174.75 (14)C3—C4—C10—C5179.08 (16)
O11—Cu—N31—C3219.74 (17)C2—N1—C11—C1320.1 (3)
O1—Cu—N31—C32133.5 (3)C9—N1—C11—C13160.31 (17)
N40—Cu—N31—C32174.66 (17)C2—N1—C11—C1291.3 (2)
Cl1—Cu—N31—C3276.68 (16)C9—N1—C11—C1289.1 (2)
O11—Cu—N31—C43166.93 (12)N1—C11—C12—C13111.57 (19)
O1—Cu—N31—C4353.2 (3)N1—C11—C13—C12107.6 (2)
N40—Cu—N31—C431.33 (12)C7—N21—C22—C23174.14 (15)
Cl1—Cu—N31—C4396.65 (12)C26—N21—C22—C2347.3 (2)
O11—Cu—N40—C39118.1 (2)C25—N24—C23—C2257.3 (2)
O1—Cu—N40—C3910.39 (16)N21—C22—C23—N2450.4 (2)
N31—Cu—N40—C39178.17 (16)C23—N24—C25—C2661.37 (19)
Cl1—Cu—N40—C3990.24 (15)C7—N21—C26—C25171.16 (16)
O11—Cu—N40—C4164.1 (3)C22—N21—C26—C2551.9 (2)
O1—Cu—N40—C41171.76 (12)N24—C25—C26—N2159.3 (2)
N31—Cu—N40—C410.32 (12)C43—N31—C32—C331.0 (3)
Cl1—Cu—N40—C4187.61 (12)Cu—N31—C32—C33172.00 (14)
Cu—O11—C1—O12164.80 (13)N31—C32—C33—C342.6 (3)
Cu—O11—C1—C316.9 (2)C32—C33—C34—C441.0 (3)
C9—N1—C2—C31.9 (3)C44—C35—C36—C420.3 (3)
C11—N1—C2—C3178.52 (17)C42—C37—C38—C391.0 (3)
N1—C2—C3—C40.1 (3)C41—N40—C39—C380.6 (3)
N1—C2—C3—C1177.12 (16)Cu—N40—C39—C38177.19 (13)
O12—C1—C3—C21.7 (2)C37—C38—C39—N400.0 (3)
O11—C1—C3—C2179.90 (16)C39—N40—C41—C420.0 (3)
O12—C1—C3—C4175.08 (17)Cu—N40—C41—C42178.10 (14)
O11—C1—C3—C43.3 (3)C39—N40—C41—C43177.39 (16)
Cu—O1—C4—C312.4 (2)Cu—N40—C41—C430.71 (19)
Cu—O1—C4—C10167.76 (12)N40—C41—C42—C371.0 (3)
C2—C3—C4—O1178.09 (16)C43—C41—C42—C37176.30 (16)
C1—C3—C4—O15.2 (3)N40—C41—C42—C36179.40 (16)
C2—C3—C4—C102.0 (2)C43—C41—C42—C362.1 (3)
C1—C3—C4—C10174.66 (16)C38—C37—C42—C411.5 (3)
C10—C5—C6—F176.19 (15)C38—C37—C42—C36179.78 (18)
C10—C5—C6—C71.7 (3)C35—C36—C42—C412.4 (3)
C26—N21—C7—C8144.27 (17)C35—C36—C42—C37175.84 (19)
C22—N21—C7—C88.1 (2)C32—N31—C43—C442.2 (3)
C26—N21—C7—C638.4 (2)Cu—N31—C43—C44176.34 (14)
C22—N21—C7—C6174.58 (16)C32—N31—C43—C41176.26 (16)
C5—C6—C7—C82.6 (3)Cu—N31—C43—C412.10 (19)
F—C6—C7—C8175.30 (15)N40—C41—C43—N311.9 (2)
C5—C6—C7—N21179.92 (17)C42—C41—C43—N31179.40 (16)
F—C6—C7—N212.2 (3)N40—C41—C43—C44176.58 (16)
N21—C7—C8—C9178.89 (16)C42—C41—C43—C440.9 (3)
C6—C7—C8—C91.3 (3)N31—C43—C44—C343.6 (3)
C7—C8—C9—N1179.75 (16)C41—C43—C44—C34174.78 (16)
C7—C8—C9—C100.7 (3)N31—C43—C44—C35178.03 (17)
C2—N1—C9—C8177.72 (16)C41—C43—C44—C353.6 (3)
C11—N1—C9—C81.9 (2)C33—C34—C44—C431.9 (3)
C2—N1—C9—C101.4 (2)C33—C34—C44—C35179.85 (18)
C11—N1—C9—C10179.02 (15)C36—C35—C44—C433.3 (3)
C8—C9—C10—C51.6 (3)C36—C35—C44—C34174.93 (19)
N1—C9—C10—C5179.32 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···Cl2i0.79 (3)2.42 (3)3.200 (2)170 (3)
O1W—H1B···O2Wii0.78 (3)2.08 (3)2.852 (3)170 (3)
O2W—H2A···Cl20.85 (4)2.53 (4)3.234 (3)141 (3)
O2W—H2B···O120.76 (4)2.32 (4)2.971 (2)144 (4)
O2W—H2B···O110.76 (4)2.36 (4)3.087 (3)160 (4)
N24—H24B···Cl2iii0.922.333.193 (2)155
N24—H24B···O12iii0.922.562.901 (2)102
N24—H24A···Cl1iv0.922.203.080 (2)160
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[CuCl(C17H18FN3O3)(C12H8N2)]Cl·2H2O
Mr682.03
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)10.8567 (5), 11.1494 (5), 13.2873 (10)
α, β, γ (°)66.672 (5), 73.054 (5), 80.190 (5)
V3)1410.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.07 × 0.05 × 0.03
Data collection
DiffractometerNonius KappaCCD (with Oxford Cryosystems Cryostream Cooler)
diffractometer
Absorption correctionMulti-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.941, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
15579, 5551, 4894
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.05
No. of reflections5551
No. of parameters405
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.35

Computer programs: COLLECT (Nonius, 1999), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1998) and ORTEP-3 (Farrugia, 1999b), SHELXL97 and WinGX (Farrugia, 1999a).

Selected geometric parameters (Å, º) top
Cu—O111.9143 (13)Cu—N312.0278 (15)
Cu—O11.9454 (12)Cu—Cl12.6064 (5)
Cu—N402.0080 (15)
O11—Cu—O193.67 (5)N40—Cu—N3181.99 (6)
O11—Cu—N40163.90 (6)O11—Cu—Cl196.44 (4)
O1—Cu—N4091.21 (6)O1—Cu—Cl1100.36 (4)
O11—Cu—N3190.71 (6)N40—Cu—Cl197.76 (4)
O1—Cu—N31169.10 (6)N31—Cu—Cl189.05 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···Cl2i0.79 (3)2.42 (3)3.200 (2)170 (3)
O1W—H1B···O2Wii0.78 (3)2.08 (3)2.852 (3)170 (3)
O2W—H2A···Cl20.85 (4)2.53 (4)3.234 (3)141 (3)
O2W—H2B···O120.76 (4)2.32 (4)2.971 (2)144 (4)
O2W—H2B···O110.76 (4)2.36 (4)3.087 (3)160 (4)
N24—H24B···Cl2iii0.922.333.193 (2)155
N24—H24B···O12iii0.922.562.901 (2)102
N24—H24A···Cl1iv0.922.203.080 (2)160
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds