metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[O-Ethyl (Z)-N-(2-chloro­phen­yl)thio­carbamato-κS](tri­cyclo­hexyl­phosphine-κP)gold(I)

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 17 March 2010; accepted 30 March 2010; online 10 April 2010)

The title compound, [Au(C9H9ClNOS)(C18H33P)], features a slightly distorted linear coordination geometry for the Au atom defined by a S,P-donor set [S—Au—P = 177.62 (5)°]. The distortion is ascribed to the close approach of the O atom, which forms an intra­molecular contact of 2.970 (5) Å. Disorder was found in the structure with two positions of equal weight being resolved for the C atoms comprising the eth­oxy group.

Related literature

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see: Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C9H9ClNOS)(C18H33P)]

  • Mr = 692.06

  • Monoclinic, P 21 /n

  • a = 12.0513 (11) Å

  • b = 18.2460 (16) Å

  • c = 13.9712 (12) Å

  • β = 108.892 (2)°

  • V = 2906.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.30 mm−1

  • T = 223 K

  • 0.16 × 0.13 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.294, Tmax = 1.000

  • 20508 measured reflections

  • 6663 independent reflections

  • 5016 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.113

  • S = 1.07

  • 6663 reflections

  • 307 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Selected bond lengths (Å)

Au—P1 2.2648 (13)
Au—S1 2.3060 (14)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The synthesis and characterisation of the title compound, (I), was investigated in the context of crystal engineering and luminescence studies of molecules of the type R3PAu[SC(OR')NR''], for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008).

The Au atom in (I), Fig. 1, is linearly coordinated within a SP donor set, Table 1. The thiocarbamate ligand coordinates as a thiolate as seen in the C1–S1 [1.734 (6) Å] and C1N1 [1.261 (8) Å] distances. A small deviation from the ideal geometry is noted, Table 1, which is ascribed to the close approach of the O1 atom [2.970 (5) Å]. No specific intermolecular interactions are noted in the crystal packing.

Related literature top

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Cy3PAuCl and EtOC(S)N(H)(C6H4Cl-2) in the presence of NaOH (Hall et al., 1993). Crystals were obtained by the slow evaporation of a CH2Cl2/hexane (3/1) solution held at room temperature.

Refinement top

The H atoms were geometrically placed (C—H = 0.94-0.99 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The atoms comprising the ethoxy group were found to be disordered with two positions resolved for the C8 and C9 atoms. From anisotropic refinement, the site occupancy factors were found to be experimentally equivalent and therefore, fixed at 0.5 in the final cycles of the refinement. The anisotropic displacement parameters for each of the pairs of C8 and C9 atoms were constrained to be equivalent. The maximum and minimum residual electron density peaks of 1.09 and 0.76 e Å-3, respectively, were located 0.82 Å and 0.86 Å from the Au atom.

Structure description top

The synthesis and characterisation of the title compound, (I), was investigated in the context of crystal engineering and luminescence studies of molecules of the type R3PAu[SC(OR')NR''], for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008).

The Au atom in (I), Fig. 1, is linearly coordinated within a SP donor set, Table 1. The thiocarbamate ligand coordinates as a thiolate as seen in the C1–S1 [1.734 (6) Å] and C1N1 [1.261 (8) Å] distances. A small deviation from the ideal geometry is noted, Table 1, which is ascribed to the close approach of the O1 atom [2.970 (5) Å]. No specific intermolecular interactions are noted in the crystal packing.

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[O-Ethyl (Z)-N-(2-chlorophenyl)thiocarbamato- κS](tricyclohexylphosphine-κP)gold(I) top
Crystal data top
[Au(C9H9ClNOS)(C18H33P)]F(000) = 1384
Mr = 692.06Dx = 1.581 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 4436 reflections
a = 12.0513 (11) Åθ = 2.1–25.0°
b = 18.2460 (16) ŵ = 5.30 mm1
c = 13.9712 (12) ÅT = 223 K
β = 108.892 (2)°Block, colourless
V = 2906.6 (4) Å30.16 × 0.13 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
6663 independent reflections
Radiation source: fine-focus sealed tube5016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1514
Tmin = 0.294, Tmax = 1.000k = 2223
20508 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0581P)2]
where P = (Fo2 + 2Fc2)/3
6663 reflections(Δ/σ)max = 0.002
307 parametersΔρmax = 1.09 e Å3
4 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Au(C9H9ClNOS)(C18H33P)]V = 2906.6 (4) Å3
Mr = 692.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0513 (11) ŵ = 5.30 mm1
b = 18.2460 (16) ÅT = 223 K
c = 13.9712 (12) Å0.16 × 0.13 × 0.08 mm
β = 108.892 (2)°
Data collection top
Bruker SMART CCD
diffractometer
6663 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5016 reflections with I > 2σ(I)
Tmin = 0.294, Tmax = 1.000Rint = 0.045
20508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0374 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.07Δρmax = 1.09 e Å3
6663 reflectionsΔρmin = 0.76 e Å3
307 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au0.529378 (18)0.173673 (11)0.875172 (14)0.04429 (9)
Cl10.42395 (18)0.22916 (13)1.26094 (19)0.1023 (7)
S10.59973 (15)0.18353 (8)1.04903 (11)0.0560 (4)
P10.45520 (12)0.16794 (7)0.70427 (10)0.0395 (3)
N10.5235 (5)0.1057 (3)1.1784 (4)0.0663 (15)
C10.5164 (6)0.1201 (3)1.0884 (5)0.0610 (16)
C20.6046 (6)0.1433 (3)1.2587 (4)0.0581 (15)
C30.5696 (6)0.2006 (4)1.3065 (5)0.0594 (15)
C40.6477 (7)0.2369 (4)1.3876 (5)0.0692 (18)
H40.62200.27601.41900.083*
C50.7621 (7)0.2153 (4)1.4216 (5)0.0707 (19)
H50.81590.24001.47620.085*
C60.7986 (7)0.1581 (4)1.3767 (5)0.073 (2)
H60.87730.14281.40090.087*
C70.7210 (6)0.1229 (4)1.2964 (5)0.0693 (17)
H70.74760.08371.26600.083*
O1A0.4364 (5)0.0846 (2)1.0101 (3)0.0862 (17)0.50
C8A0.3522 (11)0.0437 (7)1.0452 (10)0.070 (4)0.50
H8A10.39050.00041.08310.083*0.50
H8A20.32530.07461.09070.083*0.50
C9A0.2477 (12)0.0201 (8)0.9560 (10)0.078 (3)0.50
H9A10.19950.06250.92810.116*0.50
H9A20.20170.01550.97850.116*0.50
H9A30.27520.00170.90450.116*0.50
O1B0.4364 (5)0.0846 (2)1.0101 (3)0.0862 (17)0.50
C8B0.3756 (12)0.0190 (5)1.0270 (13)0.070 (4)0.50
H8B10.42110.00801.08760.083*0.50
H8B20.35300.01370.96820.083*0.50
C9B0.2715 (13)0.0587 (8)1.0410 (12)0.078 (3)0.50
H9B10.29510.08231.10680.116*0.50
H9B20.20940.02381.03670.116*0.50
H9B30.24340.09550.98860.116*0.50
C100.3110 (5)0.1225 (4)0.6683 (4)0.0550 (14)
H100.33060.07070.68730.066*
C110.2437 (5)0.1186 (3)0.5555 (4)0.0473 (12)
H11A0.22810.16850.52850.057*
H11B0.29240.09410.52100.057*
C120.1291 (6)0.0781 (5)0.5329 (5)0.079 (2)
H12A0.08340.08640.46170.094*
H12B0.14610.02550.54130.094*
C130.0565 (6)0.0979 (5)0.5947 (5)0.083 (2)
H13A0.00700.06210.58340.100*
H13B0.02080.14600.57300.100*
C140.1252 (6)0.1008 (4)0.7069 (5)0.0602 (16)
H14A0.07570.12270.74280.072*
H14B0.14410.05070.73210.072*
C150.2376 (6)0.1444 (4)0.7308 (5)0.0644 (16)
H15A0.21830.19660.71980.077*
H15B0.28300.13780.80240.077*
C160.4327 (6)0.2590 (3)0.6469 (4)0.0536 (14)
H160.35270.27350.64470.064*
C170.4317 (6)0.2634 (4)0.5363 (5)0.0648 (17)
H17A0.50740.24640.53280.078*
H17B0.37070.23080.49430.078*
C180.4091 (9)0.3410 (4)0.4943 (7)0.088 (3)
H18A0.41690.34210.42660.106*
H18B0.32870.35530.48800.106*
C190.4925 (10)0.3944 (5)0.5605 (9)0.125 (4)
H19A0.47370.44380.53240.150*
H19B0.57240.38260.56200.150*
C200.4871 (10)0.3932 (4)0.6706 (8)0.111 (3)
H20A0.54440.42780.71290.134*
H20B0.40880.40820.67020.134*
C210.5138 (9)0.3155 (4)0.7145 (7)0.096 (3)
H21A0.59530.30300.72220.115*
H21B0.50480.31420.78180.115*
C220.5459 (5)0.1134 (3)0.6470 (4)0.0447 (12)
H220.51190.11770.57250.054*
C230.6710 (6)0.1432 (4)0.6789 (6)0.0699 (17)
H23A0.66980.19340.65350.084*
H23B0.70280.14490.75290.084*
C240.7504 (7)0.0962 (5)0.6385 (6)0.086 (2)
H24A0.72340.09850.56440.104*
H24B0.83060.11550.66320.104*
C250.7504 (7)0.0176 (5)0.6717 (5)0.090 (3)
H25A0.80020.01180.64330.109*
H25B0.78280.01480.74560.109*
C260.6284 (7)0.0126 (4)0.6372 (5)0.0731 (19)
H26A0.63000.06310.66160.088*
H26B0.59920.01380.56310.088*
C270.5449 (6)0.0325 (3)0.6751 (5)0.0597 (16)
H27A0.56760.02790.74890.072*
H27B0.46520.01310.64600.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.04234 (14)0.04968 (14)0.03387 (12)0.00306 (9)0.00269 (9)0.00253 (8)
Cl10.0602 (12)0.1215 (18)0.1212 (18)0.0090 (11)0.0236 (12)0.0049 (14)
S10.0604 (9)0.0607 (9)0.0355 (7)0.0221 (7)0.0003 (6)0.0001 (6)
P10.0340 (7)0.0486 (7)0.0338 (6)0.0022 (5)0.0080 (5)0.0011 (5)
N10.070 (4)0.070 (3)0.046 (3)0.019 (3)0.001 (3)0.018 (2)
C10.064 (4)0.048 (3)0.053 (3)0.018 (3)0.007 (3)0.012 (3)
C20.058 (4)0.063 (4)0.046 (3)0.013 (3)0.007 (3)0.017 (3)
C30.055 (4)0.070 (4)0.053 (3)0.002 (3)0.018 (3)0.020 (3)
C40.079 (5)0.081 (5)0.053 (4)0.016 (4)0.030 (4)0.001 (3)
C50.073 (5)0.095 (5)0.038 (3)0.018 (4)0.008 (3)0.005 (3)
C60.060 (4)0.098 (5)0.048 (4)0.008 (4)0.001 (3)0.011 (3)
C70.065 (4)0.073 (4)0.058 (4)0.008 (3)0.005 (3)0.008 (3)
O1A0.101 (4)0.070 (3)0.057 (3)0.044 (3)0.019 (3)0.014 (2)
C8A0.094 (8)0.018 (6)0.074 (7)0.022 (6)0.003 (5)0.001 (6)
C9A0.076 (7)0.080 (7)0.079 (7)0.030 (6)0.027 (6)0.009 (5)
O1B0.101 (4)0.070 (3)0.057 (3)0.044 (3)0.019 (3)0.014 (2)
C8B0.094 (8)0.018 (6)0.074 (7)0.022 (6)0.003 (5)0.001 (6)
C9B0.076 (7)0.080 (7)0.079 (7)0.030 (6)0.027 (6)0.009 (5)
C100.041 (3)0.082 (4)0.040 (3)0.010 (3)0.010 (2)0.012 (3)
C110.043 (3)0.057 (3)0.038 (3)0.001 (2)0.008 (2)0.007 (2)
C120.050 (4)0.115 (6)0.067 (4)0.016 (4)0.013 (3)0.039 (4)
C130.058 (4)0.119 (6)0.070 (5)0.028 (4)0.017 (4)0.022 (4)
C140.054 (4)0.071 (4)0.063 (4)0.015 (3)0.029 (3)0.011 (3)
C150.057 (4)0.091 (4)0.045 (3)0.018 (4)0.016 (3)0.008 (3)
C160.057 (4)0.056 (3)0.045 (3)0.004 (3)0.013 (3)0.004 (3)
C170.073 (5)0.070 (4)0.057 (4)0.000 (3)0.028 (3)0.018 (3)
C180.106 (7)0.077 (5)0.086 (6)0.017 (5)0.035 (5)0.038 (4)
C190.123 (9)0.087 (6)0.162 (10)0.022 (6)0.043 (8)0.063 (6)
C200.136 (9)0.052 (4)0.126 (8)0.035 (5)0.015 (7)0.009 (5)
C210.116 (8)0.065 (5)0.090 (6)0.027 (4)0.009 (6)0.005 (4)
C220.040 (3)0.055 (3)0.041 (3)0.002 (2)0.014 (2)0.000 (2)
C230.049 (4)0.079 (4)0.087 (5)0.002 (3)0.029 (4)0.003 (4)
C240.055 (4)0.112 (6)0.097 (6)0.022 (4)0.033 (4)0.001 (5)
C250.079 (5)0.133 (7)0.060 (4)0.061 (5)0.022 (4)0.007 (4)
C260.085 (5)0.063 (4)0.074 (4)0.026 (4)0.029 (4)0.006 (3)
C270.071 (4)0.058 (4)0.055 (3)0.016 (3)0.028 (3)0.009 (3)
Geometric parameters (Å, º) top
Au—P12.2648 (13)C12—H12B0.9800
Au—S12.3060 (14)C13—C141.518 (9)
Cl1—C31.742 (7)C13—H13A0.9800
S1—C11.734 (6)C13—H13B0.9800
P1—C161.826 (6)C14—C151.512 (8)
P1—C101.842 (6)C14—H14A0.9800
P1—C221.842 (5)C14—H14B0.9800
N1—C11.261 (8)C15—H15A0.9800
N1—C21.405 (8)C15—H15B0.9800
C1—O1B1.364 (7)C16—C211.520 (9)
C1—O1A1.364 (7)C16—C171.544 (8)
C2—C31.378 (10)C16—H160.9900
C2—C71.380 (9)C17—C181.523 (9)
C3—C41.384 (9)C17—H17A0.9800
C4—C51.363 (10)C17—H17B0.9800
C4—H40.9400C18—C191.488 (13)
C5—C61.363 (10)C18—H18A0.9800
C5—H50.9400C18—H18B0.9800
C6—C71.366 (9)C19—C201.561 (16)
C6—H60.9400C19—H19A0.9800
C7—H70.9400C19—H19B0.9800
O1A—C8A1.466 (5)C20—C211.537 (10)
C8A—C9A1.519 (5)C20—H20A0.9800
C8A—H8A10.9800C20—H20B0.9800
C8A—H8A20.9800C21—H21A0.9800
C9A—H9A10.9700C21—H21B0.9800
C9A—H9A20.9700C22—C231.528 (8)
C9A—H9A30.9700C22—C271.529 (7)
O1B—C8B1.461 (5)C22—H220.9900
C8B—C9B1.515 (5)C23—C241.524 (9)
C8B—H8B10.9800C23—H23A0.9800
C8B—H8B20.9800C23—H23B0.9800
C9B—H9B10.9700C24—C251.507 (10)
C9B—H9B20.9700C24—H24A0.9800
C9B—H9B30.9700C24—H24B0.9800
C10—C151.485 (8)C25—C261.496 (11)
C10—C111.522 (7)C25—H25A0.9800
C10—H100.9900C25—H25B0.9800
C11—C121.507 (8)C26—C271.521 (8)
C11—H11A0.9800C26—H26A0.9800
C11—H11B0.9800C26—H26B0.9800
C12—C131.460 (10)C27—H27A0.9800
C12—H12A0.9800C27—H27B0.9800
P1—Au—S1177.62 (5)C13—C14—H14B108.9
C1—S1—Au103.2 (2)H14A—C14—H14B107.7
C16—P1—C10107.2 (3)C10—C15—C14113.0 (5)
C16—P1—C22109.0 (3)C10—C15—H15A109.0
C10—P1—C22106.1 (3)C14—C15—H15A109.0
C16—P1—Au111.85 (18)C10—C15—H15B109.0
C10—P1—Au108.91 (18)C14—C15—H15B109.0
C22—P1—Au113.32 (18)H15A—C15—H15B107.8
C1—N1—C2119.9 (5)C21—C16—C17112.4 (6)
N1—C1—O1B120.2 (5)C21—C16—P1111.7 (4)
N1—C1—O1A120.2 (5)C17—C16—P1116.0 (4)
O1B—C1—O1A0.0 (4)C21—C16—H16105.2
N1—C1—S1126.6 (5)C17—C16—H16105.2
O1B—C1—S1113.2 (4)P1—C16—H16105.2
O1A—C1—S1113.2 (4)C18—C17—C16112.1 (6)
C3—C2—C7116.9 (6)C18—C17—H17A109.2
C3—C2—N1121.0 (6)C16—C17—H17A109.2
C7—C2—N1122.1 (7)C18—C17—H17B109.2
C2—C3—C4121.7 (6)C16—C17—H17B109.2
C2—C3—Cl1118.7 (5)H17A—C17—H17B107.9
C4—C3—Cl1119.6 (6)C19—C18—C17111.6 (7)
C5—C4—C3119.3 (7)C19—C18—H18A109.3
C5—C4—H4120.3C17—C18—H18A109.3
C3—C4—H4120.3C19—C18—H18B109.3
C6—C5—C4120.1 (6)C17—C18—H18B109.3
C6—C5—H5119.9H18A—C18—H18B108.0
C4—C5—H5119.9C18—C19—C20111.6 (7)
C5—C6—C7120.1 (7)C18—C19—H19A109.3
C5—C6—H6120.0C20—C19—H19A109.3
C7—C6—H6120.0C18—C19—H19B109.3
C6—C7—C2121.9 (7)C20—C19—H19B109.3
C6—C7—H7119.1H19A—C19—H19B108.0
C2—C7—H7119.1C21—C20—C19109.6 (8)
C1—O1A—C8A111.1 (6)C21—C20—H20A109.7
C9A—C8A—O1A110.5 (9)C19—C20—H20A109.7
C9A—C8A—H8A1109.6C21—C20—H20B109.7
O1A—C8A—H8A1109.6C19—C20—H20B109.7
C9A—C8A—H8A2109.6H20A—C20—H20B108.2
O1A—C8A—H8A2109.6C16—C21—C20111.6 (7)
H8A1—C8A—H8A2108.1C16—C21—H21A109.3
C1—O1B—C8B121.3 (8)C20—C21—H21A109.3
O1B—C8B—C9B96.3 (9)C16—C21—H21B109.3
O1B—C8B—H8B1112.5C20—C21—H21B109.3
C9B—C8B—H8B1112.5H21A—C21—H21B108.0
O1B—C8B—H8B2112.5C23—C22—C27111.0 (5)
C9B—C8B—H8B2112.5C23—C22—P1110.4 (4)
H8B1—C8B—H8B2110.0C27—C22—P1110.8 (4)
C8B—C9B—H9B1109.5C23—C22—H22108.2
C8B—C9B—H9B2109.5C27—C22—H22108.2
H9B1—C9B—H9B2109.5P1—C22—H22108.2
C8B—C9B—H9B3109.5C24—C23—C22111.7 (6)
H9B1—C9B—H9B3109.5C24—C23—H23A109.3
H9B2—C9B—H9B3109.5C22—C23—H23A109.3
C15—C10—C11113.7 (5)C24—C23—H23B109.3
C15—C10—P1114.0 (4)C22—C23—H23B109.3
C11—C10—P1116.3 (4)H23A—C23—H23B107.9
C15—C10—H10103.6C25—C24—C23111.0 (6)
C11—C10—H10103.6C25—C24—H24A109.4
P1—C10—H10103.6C23—C24—H24A109.4
C12—C11—C10112.6 (5)C25—C24—H24B109.4
C12—C11—H11A109.1C23—C24—H24B109.4
C10—C11—H11A109.1H24A—C24—H24B108.0
C12—C11—H11B109.1C26—C25—C24110.5 (6)
C10—C11—H11B109.1C26—C25—H25A109.6
H11A—C11—H11B107.8C24—C25—H25A109.6
C13—C12—C11116.0 (5)C26—C25—H25B109.6
C13—C12—H12A108.3C24—C25—H25B109.6
C11—C12—H12A108.3H25A—C25—H25B108.1
C13—C12—H12B108.3C25—C26—C27112.3 (6)
C11—C12—H12B108.3C25—C26—H26A109.1
H12A—C12—H12B107.4C27—C26—H26A109.1
C12—C13—C14112.9 (6)C25—C26—H26B109.1
C12—C13—H13A109.0C27—C26—H26B109.1
C14—C13—H13A109.0H26A—C26—H26B107.9
C12—C13—H13B109.0C26—C27—C22111.8 (5)
C14—C13—H13B109.0C26—C27—H27A109.3
H13A—C13—H13B107.8C22—C27—H27A109.3
C15—C14—C13113.4 (5)C26—C27—H27B109.3
C15—C14—H14A108.9C22—C27—H27B109.3
C13—C14—H14A108.9H27A—C27—H27B107.9
C15—C14—H14B108.9
P1—Au—S1—C195.0 (12)C15—C10—C11—C1246.7 (8)
S1—Au—P1—C1640.8 (12)P1—C10—C11—C12177.8 (5)
S1—Au—P1—C1077.6 (12)C10—C11—C12—C1346.4 (9)
S1—Au—P1—C22164.6 (12)C11—C12—C13—C1447.4 (10)
C2—N1—C1—O1B178.9 (6)C12—C13—C14—C1548.6 (9)
C2—N1—C1—O1A178.9 (6)C11—C10—C15—C1449.4 (8)
C2—N1—C1—S10.7 (10)P1—C10—C15—C14174.1 (5)
Au—S1—C1—N1179.9 (6)C13—C14—C15—C1050.1 (8)
Au—S1—C1—O1B0.5 (6)C10—P1—C16—C21144.8 (6)
Au—S1—C1—O1A0.5 (6)C22—P1—C16—C21100.7 (6)
C1—N1—C2—C3100.5 (8)Au—P1—C16—C2125.4 (6)
C1—N1—C2—C782.6 (8)C10—P1—C16—C1784.6 (5)
C7—C2—C3—C41.0 (9)C22—P1—C16—C1729.9 (6)
N1—C2—C3—C4178.0 (5)Au—P1—C16—C17156.0 (4)
C7—C2—C3—Cl1179.3 (5)C21—C16—C17—C1851.3 (9)
N1—C2—C3—Cl13.6 (8)P1—C16—C17—C18178.4 (6)
C2—C3—C4—C50.3 (9)C16—C17—C18—C1953.5 (10)
Cl1—C3—C4—C5178.6 (5)C17—C18—C19—C2057.1 (11)
C3—C4—C5—C60.7 (10)C18—C19—C20—C2157.7 (12)
C4—C5—C6—C71.0 (11)C17—C16—C21—C2052.8 (10)
C5—C6—C7—C20.3 (11)P1—C16—C21—C20174.8 (7)
C3—C2—C7—C60.7 (10)C19—C20—C21—C1655.0 (12)
N1—C2—C7—C6177.7 (6)C16—P1—C22—C2369.0 (5)
N1—C1—O1A—C8A11.7 (11)C10—P1—C22—C23175.8 (4)
O1B—C1—O1A—C8A0 (39)Au—P1—C22—C2356.3 (5)
S1—C1—O1A—C8A167.9 (7)C16—P1—C22—C27167.6 (4)
C1—O1A—C8A—C9A166.2 (10)C10—P1—C22—C2752.4 (5)
N1—C1—O1B—C8B13.5 (12)Au—P1—C22—C2767.1 (4)
O1A—C1—O1B—C8B0 (47)C27—C22—C23—C2452.9 (7)
S1—C1—O1B—C8B166.9 (7)P1—C22—C23—C24176.2 (5)
C1—O1B—C8B—C9B90.8 (12)C22—C23—C24—C2556.3 (9)
C16—P1—C10—C1580.8 (5)C23—C24—C25—C2657.6 (8)
C22—P1—C10—C15162.8 (5)C24—C25—C26—C2756.9 (8)
Au—P1—C10—C1540.4 (5)C25—C26—C27—C2254.2 (8)
C16—P1—C10—C1154.5 (5)C23—C22—C27—C2651.4 (7)
C22—P1—C10—C1161.9 (5)P1—C22—C27—C26174.5 (5)
Au—P1—C10—C11175.8 (4)

Experimental details

Crystal data
Chemical formula[Au(C9H9ClNOS)(C18H33P)]
Mr692.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)12.0513 (11), 18.2460 (16), 13.9712 (12)
β (°) 108.892 (2)
V3)2906.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.30
Crystal size (mm)0.16 × 0.13 × 0.08
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.294, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20508, 6663, 5016
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.113, 1.07
No. of reflections6663
No. of parameters307
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.09, 0.76

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Au—P12.2648 (13)Au—S12.3060 (14)
 

Acknowledgements

The National University of Singapore (grant No. R-143–000-213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds