research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of methyl 3,5-di­methyl­benzoate, 3,5-bis­­(bromo­meth­yl)phenyl acetate and 5-hy­dr­oxy­benzene-1,3-dicarbaldehyde

crossmark logo

aTechnische Universität Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 6 May 2022; accepted 24 May 2022; online 7 June 2022)

The crystal structures of the title compounds, methyl 3,5-di­methyl­benzoate (C10H12O2; 1), 3,5-bis­(bromo­meth­yl)phenyl acetate (C10H10Br2O2; 2) and 5-hy­droxy­benzene-1,3-dicarbaldehyde (C8H6O3; 3) were determined by single-crystal X-ray analysis. The crystals of 1 are composed of strands of C—H⋯O=C bonded mol­ecules, which are further arranged into layers. As a result of the presence of two bromo­methyl substituents in compound 2, mol­ecular dimers formed by crystallographically non-equivalent mol­ecules are connected to structurally different two-dimensional aggregates in which the bromine atoms participate in Br⋯Br bonds of type I and type II. In the case of compound 3, which possesses three donor/acceptor substituents, the mol­ecular association in the crystal creates a close three-dimensional network comprising Car­yl—H⋯Ohy­droxy, Cform­yl—H⋯Oform­yl and O—H⋯Oform­yl bonds.

1. Chemical context

Studies on mol­ecular recognition of carbohydrates by artificial receptors revealed that macrocyclic compounds bearing two flexible side-arms represent effective and selective receptors for complexation of gluco­pyran­osides. The binding properties of these compounds depend on the nature of their building blocks, among others, the type of bridging units that connect two aromatic platforms (Lippe & Mazik, 2013[Lippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013-9020.], 2015[Lippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427-1439.]; Amrhein et al., 2016[Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648-10659.], 2021[Amrhein, F., Schwarzer, A. & Mazik, M. (2021). Acta Cryst. E77, 233-236.]; Amrhein & Mazik, 2021[Amrhein, F. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 6282-6303.]). The design of such receptor architectures was inspired by the results of our crystallographic studies on receptor–carbohydrate complexes (Mazik et al., 2005[Mazik, M., Cavga, H. & Jones, P. G. (2005). J. Am. Chem. Soc. 127, 9045-9052.]; for recent examples, see Köhler et al., 2020[Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023-7034.], 2021[Köhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221-22229.]). For the syntheses of macrocycles consisting of benzene-based bridges, various 2- or 5-substituted benzene-1,3-di­carb­aldehydes have proven to be useful starting materials. Benzene derivatives with methyl or bromo­methyl groups in positions 1 and 3 are used to prepare the latter compounds. The crystal structures of three 1,3,5-substituted benzenes, serving as precursors for the syntheses of the macrocyclic compounds mentioned above, are described in this work.

[Scheme 1]

2. Structural commentary

The title compounds 1 and 3 crystallize in the monoclinic system (space group P21/c, Z = 4), whereas compound 2 crystallizes in the triclinic space group P[\overline{1}] with two independent but conformationally similar mol­ecules (A and B) in the asymmetric unit of the cell. In compound 1 (Fig. 1[link]), the plane through the methyl­oxycarbonyl unit is tilted at an angle of 8.70 (8) ° with respect to the benzene ring. In the independent mol­ecules of 2 (Fig. 2[link]), the planes passing through the ester units are inclined at angles of 62.9 (1) and 81.3 (1)°, respectively, to the plane of their arene ring. The two bromine atoms of each mol­ecule are located on opposite sides of the benzene ring. In the crystal of the 5-hy­droxy­benzene-1,3-dicarbaldehyde (3) (Fig. 3[link]), the mol­ecule deviates slightly from planarity, with the formyl groups rotated out of the benzene ring at angles of 4.43 (16) and 4.04 (16)°.

[Figure 1]
Figure 1
Perspective view of the mol­ecular structure of 1. Anisotropic displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Perspective view of the mol­ecular structure of 2. Anisotropic displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
Perspective view of the mol­ecular structure of 3. Anisotropic displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal structure of 1, the mol­ecules are arranged into layers extending parallel to the crystallographic [101] plane (see Fig. 4[link]). Within a given layer, the mol­ecules are linked in strands via C—H⋯O=C bonds [d(H⋯O) 2.57 Å; Table 1[link]], with a methyl H atom acting as the donor. No directional inter­actions are present between the mol­ecular strands of a layer. With the participation of a H atom of the methyl ester unit, the linkage between the mol­ecules of adjacent layers occurs by C—H⋯π contacts (Nishio et al., 2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.]) with a H⋯Cg distance of 2.77 Å. Fig. 5[link] shows a packing excerpt of the crystal structure viewed in the direction of the layer normal.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

Cg1 represents the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1i 0.98 2.57 3.5215 (19) 163
C8—H8BCg1ii 0.98 2.76 3.445 (2) 127
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{3\over 2}}].
[Figure 4]
Figure 4
Packing diagram of 1 viewed down the crystallographic b-axis.
[Figure 5]
Figure 5
Excerpt of the packing structure of 1 viewed in the direction of the layer normal. Dashed lines represent hydrogen-bonding inter­actions.

The excerpt of the crystal structure of 2 shown in Fig. 6[link] reveals two different inversion-symmetric dimers as the smallest supra­molecular entities, in which the mol­ecules are linked in an identical manner by C—H⋯O=C and C—H⋯Br bonds (Table 2[link]) (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]). These dimers, however, form differently structured domains within the crystal. The dimers formed by mol­ecule A are connected via Br⋯Br bonds (Pedireddy et al., 1999[Pedireddy, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.]) of type I [d(Br⋯Br) = 3.562 (1) Å; θ1 = 150.2°, θ2 = 158.5°] and of type II [d(Br⋯Br) = 3.859 (1) Å; θ1 = 135.0°, θ2 = 84.6°] as well as C—H⋯Br hydrogen bonds to form two-dimensional aggregates extending parallel to crystallographic [011] plane, in which the bromine atoms contribute to the formation of a cyclic four-membered synthon (Br4) and an eight-membered bonding motif (Fig. 7[link]a). The structure of the domains created by mol­ecule B is fundamentally different from those formed by mol­ecule A. In them, the dimers are linked in a strand-like fashion via type I Br⋯Br inter­actions [d(Br⋯Br) = 3.638 (1) Å; θ1 = 152.3°, θ2 = 145.9°] (Fig. 7[link]b), which are part of an eight-membered ring motif. In the direction of the crystallographic a-axis, the connection of the dimers occurs through π–·π (face-to-face) inter­actions (Tiekink & Zukerman-Schpector, 2012[Tiekink, E. R. T. & Zukerman-Schpector, J. (2012). In The Importance of Pi-Interactions in Crystal Engineering. Frontiers in Crystal Engineering. Chichester: Wiley.]) with a centroid–centroid distance of 3.653 (1) Å and an offset of 1.592 Å between the inter­acting arene rings.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C10A—H10D⋯O2Ai 0.97 2.28 3.236 (3) 168
C10A—H10C⋯Br1Ai 0.97 2.89 3.836 (3) 164
C8A—H8A3⋯O2 0.96 2.58 3.521 (4) 168
C10—H10B⋯Br2Ai 0.97 3.01 3.757 (3) 135
C10—H10A⋯O2ii 0.97 2.58 3.449 (3) 150
C9—H9B⋯Br2iii 0.97 2.95 3.854 (3) 156
C9—H9A⋯O2iii 0.97 2.45 3.334 (3) 151
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [x-1, y, z]; (iii) [-x+1, -y+1, -z].
[Figure 6]
Figure 6
(a) Structures of the dimers formed by mol­ecule A (left) and mol­ecule B (right) in the crystal structure of 2. (b) Packing structure of 2 viewed down the a-axis. Hydrogen bonds and Br⋯Br inter­actions are shown as dashed lines.
[Figure 7]
Figure 7
Patterns of inter­molecular inter­actions created by (a) mol­ecule A and (b) mol­ecule B in the crystal structure of 2.

Viewing the crystal structure of compound 3 in the direction of the a-axis reveals a stacking arrangement of mol­ecules (Fig. 8[link]). Along the stacking axis the centroid-centroid distance of 3.735 (1) Å between consecutive mol­ecules indicates the presence of offset ππ inter­actions. As is obvious from Fig. 9[link], showing the mode of non-covalent bonding in the crystal, the H atom of the hy­droxy group forms an inter­molecular O—H⋯O bond [O1—H1⋯O3 = 1.91 (2) Å, 150 (2)°; Table 3[link]], while its O atom forms a C—H⋯O bond [C2—H2⋯O1 = 2.43 Å, 159.6°; Table 3[link]], thus creating a supra­molecular synthon with the graph set R44(17) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) in which four mol­ecules take part. The OH group is also involved in formation of an inversion-symmetric ring motif of the structure R22(8). Another supra­molecular motif corresponding to the R22(14) graph set is formed by the formyl groups of inversion-related mol­ecules.

Table 3
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.43 3.3354 (16) 160
C8—H8⋯O2ii 0.95 2.58 3.1973 (18) 123
O1—H1⋯O3iii 0.85 (2) 1.91 (2) 2.6795 (13) 150 (2)
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 8]
Figure 8
Packing diagram of 3 viewed down the a-axis. Dashed lines represent hydrogen bonds.
[Figure 9]
Figure 9
Mode of inter­molecular non-covalent inter­actions in the crystal structure of 3. The cyclic supra­molecular synthons are marked by colour highlighting.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.43, update November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for benzene derivates containing the corresponding substituents resulted in several hits, but with relatively strong structural differences from the searched structures. The compound with the closest relation to 1 is ethyl 2,3,5,6-tetra­methyl­benzoate (FICVET; Pinkus et al. 2005[Pinkus, A. G., Klausmeyer, K. K., Feazell, R. P. & Lin, E. C. H. Y. (2005). Acta Cryst. E61, o662-o663.]), the crystal structure of which features C—H⋯O and C—H⋯π inter­actions. In the case of bromo­methyl-substituted benzenes, the crystal structures of 1,2,4,5-tetra­kis­(bromo­meth­yl)-3,6-di­meth­oxy­benzene, 1,2,4,5-tetra­kis­(bromo­meth­yl)-3,6-bis­(hex­yloxy)benzene and 1,2,4,5-tetra­­kis­(bromo­meth­yl)-3,6-bis­(2-ethyl­but­oxy)benzene (BAS­ZIG, BASZOM, BASZUS; Velde et al. 2012[Velde, C. M. L. V., Zeller, M. & Azov, V. A. (2012). J. Mol. Struct. 1016, 109-117.]) as well as 1,3,5-tris­(bromo­meth­yl)-2,4,6-tri­meth­oxy­benzene (IDOBAG; Koch et al. 2013[Koch, N., Seichter, W. & Mazik, M. (2013). Acta Cryst. E69, o679.]) are worth mentioning. The crystal structure of IDOBAG, for example, is characterized by the presence of C—H⋯O and C—H⋯Br hydrogen bonds as well as C—Br⋯Br halogen bonds of type II, as observed also in the crystal structure of 2. In the crystal structure of 2-hy­droxy­isophthalaldehyde (NEJJOB; Zondervan et al. 1997[Zondervan, C., van den Beuken, E. K., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). Tetrahedron Lett. 38, 3111-3114.]), an analogue of 3, the mol­ecules inter­act via O—H⋯O hydrogen bonds, forming chains. In addition, the hy­droxy group is involved in an intra­molecular O—H⋯O hydrogen bond with the neighbouring carbonyl oxygen atom.

5. Synthesis and crystallization

Compounds 13 were prepared according to literature procedures (Kurz & Göbel, 1996[Kurz, K. & Göbel, M. W. (1996). Helv. Chim. Acta, 79, 1967-1979.]; Battaini et al., 2003[Battaini, G., Monzani, E., Perotti, A., Para, C., Casella, L., Santagostini, L., Gullotti, M., Dillinger, R., Näther, C. & Tuczek, F. (2003). J. Am. Chem. Soc. 125, 4185-4198.]; Star et al., 2003[Star, A., Liu, Y., Grant, K., Ridvan, L., Stoddart, J. F., Steuerman, D. W., Diehl, M. R., Boukai, A. & Heath, J. R. (2003). Macromolecules, 36, 553-560.]).

Suitable crystals of compounds 2 and 3 for X-ray analysis were obtained by slow evaporation from a hexane solution, while crystals of 1 were grown from a subcooled melt.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atom H1 in 3 was located in a difference-Fourier map and freely refined. Other H atoms were positioned geometrically and refined isotropically using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5Ueq(C).

Table 4
Experimental details

  1 2 3
Crystal data
Chemical formula C10H12O2 C10H10Br2O2 C8H6O3
Mr 164.20 322.00 150.13
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 153 130 153
a, b, c (Å) 8.4631 (6), 7.9793 (4), 13.4042 (9) 7.7936 (2), 9.1655 (2), 17.2292 (4) 3.7345 (1), 11.9549 (4), 15.0846 (5)
α, β, γ (°) 90, 98.835 (6), 90 88.1637 (12), 80.9050 (12), 65.8659 (11) 90, 94.212 (2), 90
V3) 894.44 (10) 1108.30 (5) 671.64 (4)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 7.29 0.12
Crystal size (mm) 0.40 × 0.25 × 0.16 0.46 × 0.39 × 0.27 0.42 × 0.28 × 0.19
 
Data collection
Diffractometer Stoe IPDS 2T Bruker Kappa APEXII CCD area detector Bruker Kappa APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker, (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.134, 0.244
No. of measured, independent and observed [I > 2σ(I)] reflections 7437, 1762, 1449 29065, 5842, 5305 11533, 1819, 1519
Rint 0.046 0.033 0.058
(sin θ/λ)max−1) 0.617 0.680 0.691
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.05 0.028, 0.070, 1.04 0.047, 0.131, 1.06
No. of reflections 1762 5842 1819
No. of parameters 112 255 104
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.19 1.21, −0.98 0.33, −0.28
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]), APEX2 and SAINT (Bruker, 2014[Bruker, (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002) for (1); APEX2 (Bruker, 2014) for (2), (3). Cell refinement: X-AREA (Stoe & Cie, 2002) for (1); SAINT (Bruker, 2014) for (2), (3). Data reduction: X-RED (Stoe & Cie, 2002) for (1); SAINT (Bruker, 2014) for (2), (3). Program(s) used to solve structure: SIR2014 (Burla et al., 2015) for (1); SHELXS97 (Sheldrick, 2008) for (2), (3). Program(s) used to refine structure: SHELXL (Sheldrick, 2015) for (1), (2); SHELXL2014/7 (Sheldrick, 2015) for (3). Molecular graphics: XP (Sheldrick, 2008) for (1); ORTEP-3 for Windows (Farrugia, 2012) for (2), (3). Software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010), ShelXle (Hübschle et al., 2011) for (1); SHELXTL (Sheldrick, 2008) for (2), (3).

Methyl 3,5-dimethylbenzoate (1) top
Crystal data top
C10H12O2F(000) = 352
Mr = 164.20Dx = 1.219 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4631 (6) ÅCell parameters from 7437 reflections
b = 7.9793 (4) Åθ = 2.7–27.2°
c = 13.4042 (9) ŵ = 0.08 mm1
β = 98.835 (6)°T = 153 K
V = 894.44 (10) Å3Piece, colorless
Z = 40.40 × 0.25 × 0.16 mm
Data collection top
Stoe IPDS 2T
diffractometer
1449 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.046
Plane graphite monochromatorθmax = 26.0°, θmin = 2.7°
Detector resolution: 6.67 pixels mm-1h = 109
rotation method scansk = 99
7437 measured reflectionsl = 1616
1762 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.2723P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1762 reflectionsΔρmax = 0.24 e Å3
112 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27708 (14)0.33954 (14)0.48553 (8)0.0433 (3)
O20.20755 (12)0.58613 (12)0.54594 (7)0.0309 (3)
C10.12649 (14)0.34326 (16)0.62305 (9)0.0244 (3)
C20.10405 (16)0.16993 (17)0.62357 (10)0.0276 (3)
H20.14060.10270.57330.033*
C30.02860 (16)0.09507 (16)0.69720 (10)0.0283 (3)
C40.02303 (16)0.19629 (17)0.77063 (10)0.0279 (3)
H40.07470.14580.82110.033*
C50.00096 (15)0.36934 (17)0.77210 (10)0.0257 (3)
C60.07405 (15)0.44202 (17)0.69705 (10)0.0249 (3)
H60.08940.55990.69650.030*
C70.21123 (15)0.41859 (17)0.54403 (10)0.0271 (3)
C80.29088 (18)0.6711 (2)0.47431 (11)0.0361 (4)
H8A0.28080.79260.48220.054*
H8B0.24420.63870.40560.054*
H8C0.40420.63980.48660.054*
C90.00480 (19)0.09303 (17)0.69749 (12)0.0383 (4)
H9A0.01360.12910.76470.057*
H9B0.10050.14870.68050.057*
H9C0.08790.12310.64750.057*
C100.05669 (18)0.47866 (18)0.85204 (11)0.0333 (3)
H10A0.03400.54280.88700.050*
H10B0.10100.40800.90080.050*
H10C0.13920.55600.82010.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0488 (7)0.0417 (6)0.0461 (7)0.0006 (5)0.0280 (5)0.0072 (5)
O20.0345 (6)0.0299 (6)0.0308 (5)0.0021 (4)0.0126 (4)0.0040 (4)
C10.0207 (6)0.0273 (7)0.0253 (7)0.0015 (5)0.0035 (5)0.0001 (5)
C20.0262 (7)0.0260 (7)0.0300 (7)0.0039 (5)0.0025 (5)0.0042 (5)
C30.0269 (7)0.0232 (7)0.0329 (7)0.0006 (5)0.0012 (5)0.0017 (5)
C40.0283 (7)0.0284 (7)0.0265 (7)0.0026 (5)0.0023 (5)0.0046 (5)
C50.0249 (7)0.0274 (7)0.0247 (6)0.0005 (5)0.0034 (5)0.0001 (5)
C60.0245 (6)0.0221 (6)0.0280 (7)0.0004 (5)0.0040 (5)0.0004 (5)
C70.0223 (6)0.0316 (7)0.0276 (7)0.0001 (5)0.0045 (5)0.0024 (5)
C80.0320 (8)0.0441 (9)0.0337 (8)0.0061 (6)0.0098 (6)0.0092 (6)
C90.0418 (9)0.0237 (8)0.0480 (9)0.0012 (6)0.0024 (7)0.0011 (6)
C100.0388 (8)0.0339 (8)0.0300 (7)0.0009 (6)0.0140 (6)0.0028 (6)
Geometric parameters (Å, º) top
O1—C71.2073 (16)C5—C61.3956 (18)
O2—C71.3375 (17)C5—C101.5121 (18)
O2—C81.4448 (16)C6—H60.9500
C1—C61.3917 (18)C8—H8A0.9800
C1—C21.3961 (19)C8—H8B0.9800
C1—C71.4936 (17)C8—H8C0.9800
C2—C31.3900 (19)C9—H9A0.9800
C2—H20.9500C9—H9B0.9800
C3—C41.3944 (19)C9—H9C0.9800
C3—C91.5144 (19)C10—H10A0.9800
C4—C51.3931 (19)C10—H10B0.9800
C4—H40.9500C10—H10C0.9800
C7—O2—C8116.20 (11)O1—C7—C1124.76 (13)
C6—C1—C2119.92 (12)O2—C7—C1111.94 (11)
C6—C1—C7121.19 (12)O2—C8—H8A109.5
C2—C1—C7118.86 (12)O2—C8—H8B109.5
C3—C2—C1120.46 (12)H8A—C8—H8B109.5
C3—C2—H2119.8O2—C8—H8C109.5
C1—C2—H2119.8H8A—C8—H8C109.5
C2—C3—C4118.70 (12)H8B—C8—H8C109.5
C2—C3—C9120.23 (13)C3—C9—H9A109.5
C4—C3—C9121.07 (13)C3—C9—H9B109.5
C5—C4—C3121.89 (12)H9A—C9—H9B109.5
C5—C4—H4119.1C3—C9—H9C109.5
C3—C4—H4119.1H9A—C9—H9C109.5
C4—C5—C6118.46 (12)H9B—C9—H9C109.5
C4—C5—C10121.74 (12)C5—C10—H10A109.5
C6—C5—C10119.80 (12)C5—C10—H10B109.5
C1—C6—C5120.57 (12)H10A—C10—H10B109.5
C1—C6—H6119.7C5—C10—H10C109.5
C5—C6—H6119.7H10A—C10—H10C109.5
O1—C7—O2123.30 (12)H10B—C10—H10C109.5
C6—C1—C2—C30.43 (19)C7—C1—C6—C5178.18 (12)
C7—C1—C2—C3178.69 (11)C4—C5—C6—C10.48 (19)
C1—C2—C3—C40.42 (19)C10—C5—C6—C1179.82 (12)
C1—C2—C3—C9179.91 (13)C8—O2—C7—O11.2 (2)
C2—C3—C4—C50.0 (2)C8—O2—C7—C1178.09 (11)
C9—C3—C4—C5179.44 (13)C6—C1—C7—O1170.41 (14)
C3—C4—C5—C60.5 (2)C2—C1—C7—O17.8 (2)
C3—C4—C5—C10179.82 (12)C6—C1—C7—O28.91 (17)
C2—C1—C6—C50.03 (19)C2—C1—C7—O2172.85 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 represents the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.982.573.5215 (19)163
C8—H8B···Cg1ii0.982.763.445 (2)127
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z+3/2.
3,5-Bis(bromomethyl)phenyl acetate (2) top
Crystal data top
C10H10Br2O2Z = 4
Mr = 322.00F(000) = 624
Triclinic, P1Dx = 1.930 Mg m3
a = 7.7936 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1655 (2) ÅCell parameters from 9654 reflections
c = 17.2292 (4) Åθ = 2.7–36.8°
α = 88.1637 (12)°µ = 7.29 mm1
β = 80.9050 (12)°T = 130 K
γ = 65.8659 (11)°Irregular, colourless
V = 1108.30 (5) Å30.46 × 0.39 × 0.27 mm
Data collection top
Bruker Kappa APEXII CCD area detector
diffractometer
5305 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.9°, θmin = 1.2°
Tmin = 0.134, Tmax = 0.244h = 1010
29065 measured reflectionsk = 1212
5842 independent reflectionsl = 2322
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0273P)2 + 2.052P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5842 reflectionsΔρmax = 1.21 e Å3
255 parametersΔρmin = 0.98 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.08475 (4)0.81672 (3)0.00562 (2)0.02904 (7)
Br20.48472 (4)0.08778 (3)0.11939 (2)0.03302 (8)
O10.5485 (3)0.6991 (2)0.19580 (10)0.0223 (3)
O20.8281 (3)0.4838 (2)0.16971 (12)0.0300 (4)
C10.4550 (3)0.6259 (3)0.15806 (14)0.0180 (4)
C20.3764 (3)0.7009 (3)0.09361 (13)0.0177 (4)
H20.39060.79270.07560.021*
C30.2757 (3)0.6375 (3)0.05580 (13)0.0168 (4)
C40.2561 (3)0.5002 (3)0.08395 (14)0.0183 (4)
H40.18960.45700.05870.022*
C50.3346 (3)0.4268 (3)0.14936 (14)0.0189 (4)
C60.4351 (3)0.4903 (3)0.18721 (14)0.0190 (4)
H60.48790.44250.23120.023*
C70.7388 (4)0.6174 (3)0.19617 (14)0.0204 (4)
C80.8159 (4)0.7190 (3)0.23218 (15)0.0262 (5)
H8A0.92570.65180.25480.039*
H8B0.72030.78870.27250.039*
H8C0.85150.78170.19250.039*
C90.1944 (3)0.7141 (3)0.01535 (14)0.0221 (5)
H9A0.23490.63370.05750.026*
H9B0.24320.79370.03260.026*
C100.3063 (4)0.2828 (3)0.18047 (17)0.0258 (5)
H10A0.17670.29720.17830.031*
H10B0.32490.27120.23510.031*
Br1A0.43346 (3)0.44424 (3)0.61006 (2)0.02337 (6)
Br2A0.92345 (4)0.40729 (3)0.60976 (2)0.02744 (7)
O1A0.9262 (3)0.0059 (2)0.34359 (11)0.0285 (4)
O2A0.6523 (3)0.1522 (3)0.30204 (12)0.0443 (6)
C1A0.8337 (3)0.0113 (3)0.42092 (14)0.0200 (4)
C2A0.7921 (3)0.1409 (3)0.47025 (16)0.0219 (5)
H2A0.81180.22960.45090.026*
C3A0.7203 (3)0.1375 (3)0.54912 (15)0.0210 (5)
C4A0.6907 (3)0.0042 (3)0.57655 (14)0.0192 (4)
H4A0.64130.00220.62920.023*
C5A0.7340 (3)0.1266 (3)0.52649 (13)0.0171 (4)
C6A0.8055 (3)0.1220 (3)0.44763 (13)0.0178 (4)
H6A0.83400.20790.41330.021*
C7A0.8205 (4)0.0866 (3)0.28849 (14)0.0219 (5)
C8A0.9420 (4)0.0791 (4)0.21112 (16)0.0317 (6)
H8A10.90010.03690.17120.048*
H8A21.07220.01090.21450.048*
H8A30.93170.18460.19800.048*
C9A0.6879 (4)0.2709 (3)0.60537 (19)0.0323 (6)
H9A10.78290.31340.58930.039*
H9A20.70360.22910.65740.039*
C10A0.7074 (3)0.2710 (3)0.55685 (15)0.0225 (5)
H10C0.69860.33150.51360.027*
H10D0.58960.23860.59380.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02417 (13)0.02849 (13)0.03098 (14)0.00553 (10)0.01021 (10)0.00568 (10)
Br20.03039 (14)0.01534 (12)0.05357 (18)0.00887 (10)0.00889 (12)0.00249 (11)
O10.0273 (9)0.0173 (8)0.0254 (9)0.0095 (7)0.0116 (7)0.0010 (7)
O20.0238 (9)0.0277 (10)0.0385 (11)0.0103 (8)0.0035 (8)0.0084 (8)
C10.0183 (10)0.0160 (10)0.0198 (11)0.0063 (8)0.0051 (8)0.0011 (8)
C20.0205 (10)0.0141 (10)0.0182 (10)0.0069 (8)0.0028 (8)0.0009 (8)
C30.0170 (10)0.0163 (10)0.0139 (10)0.0042 (8)0.0005 (8)0.0014 (8)
C40.0159 (10)0.0169 (10)0.0218 (11)0.0068 (8)0.0020 (8)0.0019 (8)
C50.0152 (10)0.0162 (10)0.0228 (11)0.0055 (8)0.0010 (8)0.0012 (8)
C60.0194 (10)0.0174 (10)0.0186 (10)0.0056 (8)0.0049 (8)0.0037 (8)
C70.0248 (11)0.0231 (11)0.0166 (10)0.0126 (9)0.0045 (9)0.0028 (9)
C80.0337 (13)0.0302 (13)0.0228 (12)0.0199 (11)0.0081 (10)0.0016 (10)
C90.0238 (11)0.0252 (12)0.0163 (11)0.0088 (9)0.0040 (9)0.0007 (9)
C100.0232 (12)0.0225 (12)0.0330 (13)0.0118 (10)0.0019 (10)0.0063 (10)
Br1A0.02379 (12)0.01843 (11)0.01960 (11)0.00036 (9)0.00319 (9)0.00021 (8)
Br2A0.02581 (13)0.02373 (13)0.03068 (14)0.00786 (10)0.00669 (10)0.00987 (10)
O1A0.0182 (8)0.0409 (11)0.0200 (9)0.0068 (8)0.0022 (7)0.0120 (8)
O2A0.0272 (10)0.0641 (15)0.0212 (10)0.0028 (10)0.0076 (8)0.0062 (10)
C1A0.0124 (9)0.0250 (11)0.0187 (11)0.0037 (8)0.0039 (8)0.0067 (9)
C2A0.0141 (10)0.0168 (10)0.0339 (13)0.0041 (8)0.0091 (9)0.0083 (9)
C3A0.0131 (10)0.0183 (11)0.0285 (12)0.0013 (8)0.0081 (9)0.0012 (9)
C4A0.0136 (10)0.0228 (11)0.0175 (10)0.0032 (8)0.0035 (8)0.0003 (8)
C5A0.0116 (9)0.0193 (10)0.0195 (11)0.0048 (8)0.0047 (8)0.0027 (8)
C6A0.0144 (9)0.0192 (10)0.0180 (10)0.0041 (8)0.0051 (8)0.0000 (8)
C7A0.0280 (12)0.0197 (11)0.0194 (11)0.0101 (10)0.0076 (9)0.0039 (9)
C8A0.0399 (15)0.0364 (15)0.0227 (13)0.0211 (13)0.0022 (11)0.0086 (11)
C9A0.0200 (12)0.0241 (13)0.0471 (17)0.0002 (10)0.0115 (11)0.0131 (12)
C10A0.0176 (10)0.0240 (12)0.0267 (12)0.0091 (9)0.0050 (9)0.0045 (9)
Geometric parameters (Å, º) top
Br1—C91.962 (2)Br1A—C9A1.960 (3)
Br2—C101.965 (3)Br2A—C10A1.979 (2)
O1—C71.362 (3)O1A—C7A1.353 (3)
O1—C11.407 (3)O1A—C1A1.403 (3)
O2—C71.196 (3)O2A—C7A1.184 (3)
C1—C21.379 (3)C1A—C2A1.379 (4)
C1—C61.383 (3)C1A—C6A1.380 (3)
C2—C31.392 (3)C2A—C3A1.390 (4)
C2—H20.9300C2A—H2A0.9300
C3—C41.392 (3)C3A—C4A1.389 (3)
C3—C91.492 (3)C3A—C9A1.498 (4)
C4—C51.389 (3)C4A—C5A1.392 (3)
C4—H40.9300C4A—H4A0.9300
C5—C61.391 (3)C5A—C6A1.391 (3)
C5—C101.495 (3)C5A—C10A1.488 (3)
C6—H60.9300C6A—H6A0.9300
C7—C81.492 (3)C7A—C8A1.494 (4)
C8—H8A0.9600C8A—H8A10.9600
C8—H8B0.9600C8A—H8A20.9600
C8—H8C0.9600C8A—H8A30.9600
C9—H9A0.9700C9A—H9A10.9700
C9—H9B0.9700C9A—H9A20.9700
C10—H10A0.9700C10A—H10C0.9700
C10—H10B0.9700C10A—H10D0.9700
C7—O1—C1118.16 (18)C7A—O1A—C1A118.43 (19)
C2—C1—C6122.2 (2)C2A—C1A—C6A121.8 (2)
C2—C1—O1116.6 (2)C2A—C1A—O1A119.6 (2)
C6—C1—O1121.1 (2)C6A—C1A—O1A118.3 (2)
C1—C2—C3119.2 (2)C1A—C2A—C3A119.3 (2)
C1—C2—H2120.4C1A—C2A—H2A120.3
C3—C2—H2120.4C3A—C2A—H2A120.3
C4—C3—C2119.3 (2)C4A—C3A—C2A119.4 (2)
C4—C3—C9120.7 (2)C4A—C3A—C9A120.0 (2)
C2—C3—C9120.0 (2)C2A—C3A—C9A120.5 (2)
C5—C4—C3120.8 (2)C3A—C4A—C5A121.0 (2)
C5—C4—H4119.6C3A—C4A—H4A119.5
C3—C4—H4119.6C5A—C4A—H4A119.5
C4—C5—C6119.9 (2)C6A—C5A—C4A119.2 (2)
C4—C5—C10120.1 (2)C6A—C5A—C10A120.1 (2)
C6—C5—C10120.0 (2)C4A—C5A—C10A120.7 (2)
C1—C6—C5118.6 (2)C1A—C6A—C5A119.3 (2)
C1—C6—H6120.7C1A—C6A—H6A120.3
C5—C6—H6120.7C5A—C6A—H6A120.3
O2—C7—O1123.3 (2)O2A—C7A—O1A122.4 (2)
O2—C7—C8126.2 (2)O2A—C7A—C8A126.0 (2)
O1—C7—C8110.5 (2)O1A—C7A—C8A111.6 (2)
C7—C8—H8A109.5C7A—C8A—H8A1109.5
C7—C8—H8B109.5C7A—C8A—H8A2109.5
H8A—C8—H8B109.5H8A1—C8A—H8A2109.5
C7—C8—H8C109.5C7A—C8A—H8A3109.5
H8A—C8—H8C109.5H8A1—C8A—H8A3109.5
H8B—C8—H8C109.5H8A2—C8A—H8A3109.5
C3—C9—Br1111.76 (16)C3A—C9A—Br1A112.24 (17)
C3—C9—H9A109.3C3A—C9A—H9A1109.2
Br1—C9—H9A109.3Br1A—C9A—H9A1109.2
C3—C9—H9B109.3C3A—C9A—H9A2109.2
Br1—C9—H9B109.3Br1A—C9A—H9A2109.2
H9A—C9—H9B107.9H9A1—C9A—H9A2107.9
C5—C10—Br2111.29 (17)C5A—C10A—Br2A110.38 (16)
C5—C10—H10A109.4C5A—C10A—H10C109.6
Br2—C10—H10A109.4Br2A—C10A—H10C109.6
C5—C10—H10B109.4C5A—C10A—H10D109.6
Br2—C10—H10B109.4Br2A—C10A—H10D109.6
H10A—C10—H10B108.0H10C—C10A—H10D108.1
C7—O1—C1—C2116.6 (2)C7A—O1A—C1A—C2A81.9 (3)
C7—O1—C1—C666.7 (3)C7A—O1A—C1A—C6A104.9 (3)
C6—C1—C2—C30.8 (4)C6A—C1A—C2A—C3A0.2 (3)
O1—C1—C2—C3177.5 (2)O1A—C1A—C2A—C3A172.7 (2)
C1—C2—C3—C40.2 (3)C1A—C2A—C3A—C4A0.4 (3)
C1—C2—C3—C9178.3 (2)C1A—C2A—C3A—C9A175.3 (2)
C2—C3—C4—C50.4 (3)C2A—C3A—C4A—C5A0.8 (3)
C9—C3—C4—C5178.8 (2)C9A—C3A—C4A—C5A175.0 (2)
C3—C4—C5—C60.3 (3)C3A—C4A—C5A—C6A0.9 (3)
C3—C4—C5—C10177.8 (2)C3A—C4A—C5A—C10A178.1 (2)
C2—C1—C6—C50.9 (4)C2A—C1A—C6A—C5A0.3 (3)
O1—C1—C6—C5177.4 (2)O1A—C1A—C6A—C5A172.73 (19)
C4—C5—C6—C10.3 (3)C4A—C5A—C6A—C1A0.6 (3)
C10—C5—C6—C1178.5 (2)C10A—C5A—C6A—C1A178.4 (2)
C1—O1—C7—O24.0 (3)C1A—O1A—C7A—O2A5.1 (4)
C1—O1—C7—C8174.9 (2)C1A—O1A—C7A—C8A175.6 (2)
C4—C3—C9—Br170.6 (2)C4A—C3A—C9A—Br1A95.8 (3)
C2—C3—C9—Br1111.0 (2)C2A—C3A—C9A—Br1A88.5 (3)
C4—C5—C10—Br280.7 (2)C6A—C5A—C10A—Br2A99.1 (2)
C6—C5—C10—Br2101.1 (2)C4A—C5A—C10A—Br2A79.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10A—H10D···O2Ai0.972.283.236 (3)168
C10A—H10C···Br1Ai0.972.893.836 (3)164
C8A—H8A3···O20.962.583.521 (4)168
C10—H10B···Br2Ai0.973.013.757 (3)135
C10—H10A···O2ii0.972.583.449 (3)150
C9—H9B···Br2iii0.972.953.854 (3)156
C9—H9A···O2iii0.972.453.334 (3)151
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y+1, z.
5-Hydroxybenzene-1,3-dicarbaldehyde (3) top
Crystal data top
C8H6O3F(000) = 312
Mr = 150.13Dx = 1.485 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.7345 (1) ÅCell parameters from 6158 reflections
b = 11.9549 (4) Åθ = 2.7–30.5°
c = 15.0846 (5) ŵ = 0.12 mm1
β = 94.212 (2)°T = 153 K
V = 671.64 (4) Å3Rod, colourless
Z = 40.42 × 0.28 × 0.19 mm
Data collection top
Bruker Kappa APEXII CCD area detector
diffractometer
Rint = 0.058
φ and ω scansθmax = 29.4°, θmin = 2.7°
11533 measured reflectionsh = 54
1819 independent reflectionsk = 1616
1519 reflections with I > 2σ(I)l = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.2868P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1819 reflectionsΔρmax = 0.33 e Å3
104 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6355 (3)0.48950 (8)0.38804 (7)0.0332 (3)
O21.0631 (3)0.10838 (8)0.62211 (7)0.0336 (3)
O30.2117 (3)0.11521 (8)0.23777 (6)0.0291 (3)
C10.6468 (4)0.37799 (10)0.40378 (8)0.0214 (3)
C20.8207 (3)0.34507 (10)0.48515 (8)0.0207 (3)
H20.91890.40000.52540.025*
C30.8496 (3)0.23282 (10)0.50697 (7)0.0197 (3)
C40.7080 (4)0.15111 (10)0.44830 (8)0.0214 (3)
H40.72940.07400.46310.026*
C50.5354 (3)0.18440 (10)0.36798 (8)0.0206 (3)
C60.5036 (3)0.29757 (10)0.34512 (8)0.0204 (3)
H60.38500.31910.28990.024*
C71.0363 (4)0.20285 (11)0.59351 (8)0.0235 (3)
H71.14190.26150.62900.028*
C80.3862 (4)0.09684 (11)0.30752 (9)0.0253 (3)
H80.42890.02100.32400.030*
H10.519 (7)0.5065 (19)0.3394 (16)0.056 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0477 (7)0.0190 (5)0.0297 (5)0.0017 (4)0.0184 (5)0.0031 (4)
O20.0445 (7)0.0281 (5)0.0269 (5)0.0034 (4)0.0066 (4)0.0052 (4)
O30.0329 (6)0.0298 (5)0.0233 (5)0.0024 (4)0.0071 (4)0.0047 (4)
C10.0228 (7)0.0204 (6)0.0203 (5)0.0004 (4)0.0036 (4)0.0005 (4)
C20.0214 (7)0.0217 (6)0.0183 (5)0.0005 (4)0.0034 (4)0.0010 (4)
C30.0184 (6)0.0228 (6)0.0175 (5)0.0005 (4)0.0012 (4)0.0005 (4)
C40.0227 (7)0.0206 (5)0.0204 (5)0.0000 (4)0.0011 (4)0.0002 (4)
C50.0193 (6)0.0234 (6)0.0187 (5)0.0008 (4)0.0011 (4)0.0025 (4)
C60.0194 (6)0.0236 (6)0.0175 (5)0.0006 (4)0.0023 (4)0.0003 (4)
C70.0248 (7)0.0257 (6)0.0195 (5)0.0022 (5)0.0027 (4)0.0006 (4)
C80.0267 (7)0.0248 (6)0.0236 (6)0.0025 (5)0.0026 (5)0.0026 (5)
Geometric parameters (Å, º) top
O1—C11.3541 (15)C3—C71.4781 (16)
O1—H10.85 (2)C4—C51.3882 (16)
O2—C71.2105 (16)C4—H40.9500
O3—C81.2163 (16)C5—C61.3991 (17)
C1—C61.3870 (16)C5—C81.4709 (17)
C1—C21.4022 (16)C6—H60.9500
C2—C31.3840 (17)C7—H70.9500
C2—H20.9500C8—H80.9500
C3—C41.3958 (16)
C1—O1—H1113.2 (16)C4—C5—C6121.19 (11)
O1—C1—C6124.40 (11)C4—C5—C8117.88 (11)
O1—C1—C2115.87 (11)C6—C5—C8120.92 (11)
C6—C1—C2119.73 (11)C1—C6—C5119.43 (11)
C3—C2—C1120.23 (11)C1—C6—H6120.3
C3—C2—H2119.9C5—C6—H6120.3
C1—C2—H2119.9O2—C7—C3124.21 (12)
C2—C3—C4120.56 (11)O2—C7—H7117.9
C2—C3—C7117.95 (11)C3—C7—H7117.9
C4—C3—C7121.49 (11)O3—C8—C5124.23 (12)
C5—C4—C3118.86 (11)O3—C8—H8117.9
C5—C4—H4120.6C5—C8—H8117.9
C3—C4—H4120.6
O1—C1—C2—C3179.31 (12)O1—C1—C6—C5179.13 (13)
C6—C1—C2—C30.0 (2)C2—C1—C6—C50.1 (2)
C1—C2—C3—C40.3 (2)C4—C5—C6—C10.1 (2)
C1—C2—C3—C7179.88 (12)C8—C5—C6—C1179.87 (12)
C2—C3—C4—C50.5 (2)C2—C3—C7—O2176.10 (14)
C7—C3—C4—C5179.96 (12)C4—C3—C7—O24.3 (2)
C3—C4—C5—C60.3 (2)C4—C5—C8—O3175.61 (14)
C3—C4—C5—C8179.58 (12)C6—C5—C8—O34.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.433.3354 (16)160
C8—H8···O2ii0.952.583.1973 (18)123
O1—H1···O3iii0.85 (2)1.91 (2)2.6795 (13)150 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Open access funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.

References

First citationAmrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAmrhein, F. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 6282–6303.  Web of Science CrossRef Google Scholar
First citationAmrhein, F., Schwarzer, A. & Mazik, M. (2021). Acta Cryst. E77, 233–236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBattaini, G., Monzani, E., Perotti, A., Para, C., Casella, L., Santagostini, L., Gullotti, M., Dillinger, R., Näther, C. & Tuczek, F. (2003). J. Am. Chem. Soc. 125, 4185–4198.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker, (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKoch, N., Seichter, W. & Mazik, M. (2013). Acta Cryst. E69, o679.  CSD CrossRef IUCr Journals Google Scholar
First citationKöhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034.  Google Scholar
First citationKöhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221–22229.  Web of Science PubMed Google Scholar
First citationKurz, K. & Göbel, M. W. (1996). Helv. Chim. Acta, 79, 1967–1979.  CrossRef CAS Web of Science Google Scholar
First citationLippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013–9020.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427–1439.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMazik, M., Cavga, H. & Jones, P. G. (2005). J. Am. Chem. Soc. 127, 9045–9052.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationPedireddy, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.  Google Scholar
First citationPinkus, A. G., Klausmeyer, K. K., Feazell, R. P. & Lin, E. C. H. Y. (2005). Acta Cryst. E61, o662–o663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStar, A., Liu, Y., Grant, K., Ridvan, L., Stoddart, J. F., Steuerman, D. W., Diehl, M. R., Boukai, A. & Heath, J. R. (2003). Macromolecules, 36, 553–560.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2012). In The Importance of Pi-Interactions in Crystal Engineering. Frontiers in Crystal Engineering. Chichester: Wiley.  Google Scholar
First citationVelde, C. M. L. V., Zeller, M. & Azov, V. A. (2012). J. Mol. Struct. 1016, 109–117.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZondervan, C., van den Beuken, E. K., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). Tetrahedron Lett. 38, 3111–3114.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds