research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and fluorescence of 1-[8-phenyl-9-(phenyl­ethyn­yl)-4H-benzo[def]carbazol-4-yl]ethan-1-one

crossmark logo

aDepartment of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan, bDepartment of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan, and cDepartment of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
*Correspondence e-mail: jscchuang@nycu.edu.tw

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 2 February 2022; accepted 28 April 2022; online 13 May 2022)

The crystal of the title compound, C60H38N2O2, which crystallizes in the monoclinic space group P21/n, was obtained by thermal evaporation of a 1:1 di­chloro­methane and hexa­nes solution of the pure compound. The crystal structure is stabilized by ππ inter­actions between benzo[def]carbazole moieties and carbon­yl–carbonyl inter­actions between the two acetyl groups.

1. Chemical context

For recent background literature on the chemistry of related carbazole-derived compounds and their applications, including syntheses of bioactive carbazoles, see: (Chakraborty et al., 1965[Chakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681-685.]; Bondock et al., 2019[Bondock, S., Alqahtani, S. & Fouda, A. M. (2019). Synth. Commun. 49, 2188-2202.]) and references cited therein. The syntheses of related benzo[def]carbazoles are described by Pocock et al. (2021[Pocock, I. A., Alotaibi, A. M., Jagdev, K., Prior, C., Burgess, G. R., Male, L. & Grainger, R. S. (2021). Chem. Commun. 57, 7252-7255.]) and Geng et al. (2016[Geng, Z., Shibasaki, K. & Kijima, M. (2016). Synth. Met. 213, 57-64.]). For applications of benzo[def]carbazole derivatives, see: Vespa et al. (2018[Vespa, M., Cann, J. R., Dayneko, S. V., Melville, O. A., Hendsbee, A. D., Zou, Y., Lessard, B. H. & Welch, G. C. (2018). Eur. J. Org. Chem. pp. 4592-4599.]), Atakan & Gunbas (2016[Atakan, G. & Gunbas, G. (2016). RSC Adv. 6, 25620-25623.]) and Myśliwiec et al. (2015[Myśliwiec, D., Kondratowicz, M., Lis, T., Chmielewski, P. J. & Stępień, M. (2015). J. Am. Chem. Soc. 137, 1643-1649.]).

The photophysical properties of 4H-benzo[def]carbazole have been studied over the past few decades (Bender et al., 1964[Bender, D. F., Sawicki, E. & Wilson, R. M. (1964). Anal. Chem. 36, 1011-1017.]; Zander et al., 1966[Zander, M. & Franke, W. H. (1966). Chem. Ber. 99, 1279-1284.]; Favini et al., 1971[Favini, G., Gamba, A., Grasso, D. & Millefiori, S. (1971). Trans. Faraday Soc. 67, 3139-3148.]; Horaguchi et al., 1980[Horaguchi, T., Yamazaki, R. & Abe, T. (1980). Bull. Chem. Soc. Jpn, 53, 494-497.]). The spectra show that the wavelengths of absorption and emission maxima are in the ranges 230–410 nm and 345–520 nm, respectively, at different temperatures and for different solvents. The effect of the solvent on absorption and fluorescence bands as well as comparisons with theoretical expectations have been used to estimate the dipole moment of the first excited state. Geng et al. (2016[Geng, Z., Shibasaki, K. & Kijima, M. (2016). Synth. Met. 213, 57-64.]) reported the optimized geometry, electron-density distributions, and HOMO and LUMO of carbazole and 4H-benzo[def]carbazole. Changes in the HOMO–LUMO gap (Eg) and the design of mol­ecules for material applications can be realized by comparing frontier mol­ecular orbitals, HOMO and LUMO energy levels, and exploring their electron-density maps.

[Scheme 1]

In order to obtain the benzo[def]carbazole 2 efficiently, we utilized the pathway through the conversion of di­phenyl­phenanthrene 1 to N-acetyl benzo[def]carbazole 2. We obtained N-acetyl carbazole 2 in qu­anti­tative yield utilizing Buchwalds' method by treatment of di­phenyl­phenanthrene 1 as a substrate in the presence of Pd(OAc)2 (10 mol %), NaOAc (1.0 equiv.), Cu(OAc)2 (2.0 equiv.) and powdered mol­ecular sieves in toluene under oxygen at 393 K for 24 h. Single crystals of 2 were grown from the a mixture of hexa­nes and DCM (v/v = 1:1) at room temperature by slow thermal evaporation.

2. Structural commentary

Compound 2 crystallizes in the monoclinic space group P21/n with two independent mol­ecules in the asymmetric unit. The atomic labelling scheme is shown in Fig. 1[link]. The C—C bond lengths are within the expected values known for aromatic systems (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Figure 1]
Figure 1
The mol­ecular structure of 2, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

In the structure of 2, both independent conformers occupy their own coordinates in the asymmetric unit, but are in the same configuration. On the other hand, owing to the space group of the title compound, P21/n, which is centrosymmetric, both mol­ecules will produce two identical configurations that are 180° inverted from each other. In the stereoscopic view, we can observe that the phenyl group and the phenyl alkynyl moiety in the two independent conformers have different dihedral angles with respect to the benzo[def]carbazole, which are 22.2 (1), 25.7 (2)° and 50.8 (2), 59.7 (2)°, respectively.

3. Supra­molecular features

In the crystal, there are no classical hydrogen bonds present and the crystal packing of 2 (Fig. 2[link]) is mainly determined by inter­molecular ππ inter­actions between the benzo[def]carbazole moieties with centroid–centroid distances of 3.795 (2) to 4.553 (1) Å (Fig. 3[link]a, grey dashed line), acet­yl–acetyl dipolar inter­actions of 3.459 (3) to 3.689 (3) Å (Fig. 3[link]a, blue dashed line), C—H⋯π inter­actions of 2.935 (2) to 3.314 (3) Å (Fig. 3[link]b, green dashed line), and ππ inter­actions with centroid–centroid distances of 3.801 (2) to 5.672 (2) Å (Fig. 3[link]b, red dashed lines) between phenyl alkynyl moieties. Specifically, the crystal is stabilized by the phenyl groups of the alkynyl moiety, which inter­acts weakly with each other (Fig. 3[link]b, red dashed lines) through ππ stacking. Furthermore, the phenyl group also inter­acts with another neighboring phenyl moiety and with the phenyl alkynyl moiety through C—H⋯π inter­actions (Table 1[link]). In addition, ππ stacking and carbon­yl–carbonyl inter­actions with δC+ and δO between the two acetyl groups are observed. The mol­ecules are ordered into infinite ribbons extending along the [001] direction through alternating inter­molecular C—H⋯π and ππ stacking inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg6 and Cg22 are the centroids of the C25–C30 and C52–C57 rings,respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.48 3.417 (3) 169
C49—H49⋯O1ii 0.95 2.42 3.294 (2) 153
C19—H19⋯Cg22iii 0.95 2.94 3.652 (2) 132
C33—H33⋯Cg6iii 0.05 2.96 3.756 (2) 142
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
The packing of 2.
[Figure 3]
Figure 3
(a) A partial view of the crystal packing of 2. Inter­molecular ππ inter­actions between the benzo[def]carbazole moieties and acet­yl–acetyl dipolar inter­actions are depicted by grey and blue dashed lines, respectively. (b) A view along the b axis of the crystal packing of 2. The green and red dashed lines represent C—H⋯π and ππ inter­actions, respectively.

4. Database survey

A search of the Cambridge Structural Database (WebCSD accessed 21 April 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) results in over a thousand carbazole derivatives of which 45 are derivatives of benzo[def]carbazole. Most of the compounds are cyclized with the benzo moiety to the skeleton of benzo[def]carbazole. Of these, 31 mol­ecular structures are derivatives of the main structure of phenanthro[1,10,9,8-cdefg]carbazole that is commonly used to design functional mol­ecules, such as organic transistors or n-doped thermoelectric devices [KUTZUX (Cann et al., 2020[Cann, J., Gelfand, B. S. & Welch, G. C. (2020). Mol. Syst. Des. Eng. 5, 1181-1185.]); ZAJMUW (Martell et al., 2021[Martell, M., Ocheje, M. U., Gelfand, B. S., Rondeau-Gagné, S. & Welch, G. C. (2021). New J. Chem. 45, 21001-21005.])], white-light emissive material (ILIGIW; Chatsirisupachai et al., 2021[Chatsirisupachai, J., Nalaoh, P., Kaiyasuan, C., Chasing, P., Sudyoadsuk, T. & Promarak, V. (2021). Mater. Chem. Front. 5, 2361-2372.]), N-annulated perylene di­imide for stable organic materials with unique optical, electronic, magnetic properties (MEHDUB; Wei et al., 2017[Wei, H., Zhang, L., Phan, H., Huang, X., Herng, T. S., Zhou, J., Zeng, W., Ding, J., Luo, S., Wu, J. & Zeng, Z. (2017). Chem. Eur. J. 23, 9419-9424.]), organic solar cells [NEXKOT (Ma et al., 2018[Ma, Z., Fu, H., Meng, D., Jiang, W., Sun, Y. & Wang, Z. (2018). Chem. Asian J. 13, 918-923.]); EZETOU (Hendsbee et al., 2016[Hendsbee, A. D., Sun, J.-P., Law, W. K., Yan, H., Hill, I. G., Spasyuk, D. M. & Welch, G. C. (2016). Chem. Mater. 28, 7098-7109.])] and the green solvent processing of organic charge-transporting materials (HUVQEX; Harding et al., 2020[Harding, C. R., Cann, J., Laventure, A., Sadeghianlemraski, M., Abd-Ellah, M., Rao, K. R., Gelfand, B. S., Aziz, H., Kaake, L., Risko, C. & Welch, G. C. (2020). Mater. Horiz. 7, 2959-2969.]). Other compounds have benzo[def]carbazole derivatives as the skeleton, for instance, 4,5-imino­phenanthrene (IMNPHN; Ern et al., 1971[Ern, V., Guggenberger, L. J. & Sloan, G. J. (1971). J. Chem. Phys. 54, 5371-5378.]), aka 4H-benzo[def]carbazole, capped [3]cyclo­(2,6)benzo[def]carbazoledi­chloro­methane solvate (ROZQAA; Myśliwiec et al., 2015[Myśliwiec, D., Kondratowicz, M., Lis, T., Chmielewski, P. J. & Stępień, M. (2015). J. Am. Chem. Soc. 137, 1643-1649.]), picenoporphyrins [QUQYAC01 (Nath et al., 2003[Nath, M., Huffman, J. C. & Zaleski, J. M. (2003). Chem. Commun. pp. 858-859.]); QUQYAC (Aihara et al., 2001[Aihara, H., Jaquinod, L., Nurco, D. J. & Smith, K. M. (2001). Angew. Chem. Int. Ed. 40, 3439-3441.])] and 4H-naphtho­[1,2,3,4-def]carbazole (IWOBEE; Pocock et al., 2021[Pocock, I. A., Alotaibi, A. M., Jagdev, K., Prior, C., Burgess, G. R., Male, L. & Grainger, R. S. (2021). Chem. Commun. 57, 7252-7255.]). In addition, there is no alkynyl phenyl group on C8 and a phenyl group on C9 of the benzo[def]carbazole as in the title compound in any structure found in the WebCSD search. The title compound is the only one with an N-acetyl group attached to the benzo[def]carbazole unit.

5. Synthesis and crystallization

To a dried reaction tube, phenanthrene 1 (0.1 mmol), Pd(OAc)2 (2.25 mg, 0.01 mmol), Cu(OAc)2 (36.3 mg, 0.2 mmol), NaOAc (16.4 mg, 0.2 mmol) and powdered mol­ecular sieves (40 mg, activated 3 Å) were added under air and covered with a septum. The tube was evacuated and refilled with N2. Under a positive N2 pressure, toluene (2 mL) was added via a syringe followed by degassing under a weak vacuum to this tube, and it was refilled with O2 three times. The reaction mixture was sealed and stirred at 293 K for 24 h under an O2 atmosphere. After completion of the reaction, the solution was cooled to room temperature and diluted with ethyl acetate followed by filtration through a thin pad of Celite. The crude product was purified by flash chromatography (hexa­nes/EtOAc) on silica gel to afford N-acetyl benzo[def]carbazole 2. Crystals of the title compound were obtained by thermal evaporation of the pure compound from a 1:1 solution of di­chloro­methane and hexa­nes.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C60H38N2O2
Mr 818.92
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 15.835 (2), 7.0408 (8), 37.245 (4)
β (°) 96.464 (4)
V3) 4126.0 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.10 × 0.04 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.663, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 24738, 8499, 5655
Rint 0.050
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.113, 1.00
No. of reflections 8499
No. of parameters 579
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXD and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-[8-Phenyl-9-(phenylethynyl)-4H-benzo[def]carbazol-4-yl]ethan-1-one top
Crystal data top
C60H38N2O2F(000) = 1712
Mr = 818.92Dx = 1.318 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.835 (2) ÅCell parameters from 4269 reflections
b = 7.0408 (8) Åθ = 2.6–26.2°
c = 37.245 (4) ŵ = 0.08 mm1
β = 96.464 (4)°T = 100 K
V = 4126.0 (8) Å3Lamellar, colorless
Z = 40.10 × 0.04 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
5655 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.050
φ and ω scansθmax = 26.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1919
Tmin = 0.663, Tmax = 0.745k = 78
24738 measured reflectionsl = 4629
8499 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0436P)2 + 1.1066P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
8499 reflectionsΔρmax = 0.21 e Å3
579 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.74487 (10)0.1747 (2)0.68964 (4)0.0415 (4)
O20.22802 (9)0.3551 (2)0.34700 (4)0.0362 (4)
N10.65540 (10)0.1891 (2)0.63820 (4)0.0240 (4)
N20.34803 (10)0.2839 (2)0.32282 (4)0.0206 (4)
C10.80629 (14)0.1151 (4)0.63534 (6)0.0419 (6)
H1A0.85960.10730.65140.063*
H1B0.81100.21470.61730.063*
H1C0.79500.00700.62310.063*
C20.73527 (13)0.1615 (3)0.65688 (6)0.0303 (5)
C30.58209 (13)0.2340 (3)0.65598 (5)0.0224 (4)
C40.51389 (13)0.2467 (3)0.62913 (5)0.0201 (4)
C50.43028 (13)0.2837 (3)0.63400 (5)0.0208 (4)
C60.37150 (12)0.2849 (2)0.60078 (5)0.0186 (4)
C70.28426 (13)0.3221 (3)0.60435 (5)0.0211 (4)
C80.21214 (13)0.3538 (3)0.60968 (5)0.0219 (4)
C90.12705 (12)0.4010 (3)0.61566 (5)0.0210 (4)
C100.05863 (13)0.3555 (3)0.59016 (5)0.0249 (5)
H100.06830.29030.56870.030*
C110.02299 (14)0.4048 (3)0.59603 (5)0.0308 (5)
H110.06920.37340.57850.037*
C120.03801 (14)0.4993 (3)0.62720 (6)0.0316 (5)
H120.09430.53330.63110.038*
C130.62873 (12)0.1764 (3)0.59994 (5)0.0208 (4)
C140.66663 (12)0.1343 (3)0.56942 (5)0.0235 (4)
H140.72550.10560.57060.028*
C150.61385 (12)0.1359 (3)0.53622 (5)0.0227 (4)
H150.63920.10700.51490.027*
C160.52804 (12)0.1766 (3)0.53256 (5)0.0196 (4)
H160.49630.17640.50930.024*
C170.48803 (12)0.2183 (2)0.56351 (5)0.0167 (4)
C180.39959 (12)0.2569 (2)0.56697 (5)0.0173 (4)
C190.11147 (13)0.4960 (3)0.64717 (5)0.0253 (5)
H190.15730.52730.66490.030*
C200.02936 (14)0.5442 (3)0.65260 (6)0.0305 (5)
H200.01910.60890.67410.037*
C210.41488 (14)0.3148 (3)0.67003 (5)0.0245 (5)
H210.35920.34260.67580.029*
C220.48259 (14)0.3041 (3)0.69689 (5)0.0299 (5)
H220.47110.32600.72100.036*
C230.56690 (14)0.2634 (3)0.69129 (5)0.0287 (5)
H230.61100.25640.71080.034*
C240.54160 (12)0.2140 (3)0.59572 (5)0.0188 (4)
C250.33834 (11)0.2660 (3)0.53370 (5)0.0177 (4)
C260.34917 (12)0.3975 (3)0.50668 (5)0.0202 (4)
H260.39610.48230.50950.024*
C270.29199 (13)0.4057 (3)0.47564 (5)0.0247 (5)
H270.29980.49660.45740.030*
C280.22389 (12)0.2826 (3)0.47107 (5)0.0253 (5)
H280.18480.28860.44980.030*
C290.21288 (12)0.1506 (3)0.49758 (5)0.0251 (5)
H290.16640.06470.49450.030*
C300.26971 (12)0.1436 (3)0.52868 (5)0.0218 (4)
H300.26140.05310.54690.026*
C310.98472 (13)0.2404 (3)0.48214 (5)0.0291 (5)
H311.03320.24760.49960.035*
C320.90969 (13)0.3266 (3)0.48863 (5)0.0263 (5)
H320.90690.39430.51050.032*
C330.83845 (12)0.3151 (3)0.46351 (5)0.0219 (4)
H330.78680.37390.46820.026*
C340.84273 (12)0.2167 (3)0.43118 (5)0.0185 (4)
C350.76930 (12)0.2040 (3)0.40509 (5)0.0189 (4)
C360.70893 (12)0.1952 (3)0.38286 (5)0.0185 (4)
C370.63290 (12)0.1977 (2)0.35821 (5)0.0175 (4)
C380.55469 (12)0.2330 (2)0.37392 (5)0.0179 (4)
C390.48281 (12)0.2459 (2)0.34919 (5)0.0177 (4)
C400.40077 (12)0.2841 (3)0.35681 (5)0.0196 (4)
C410.26149 (13)0.3182 (3)0.32008 (5)0.0254 (5)
C420.21216 (13)0.3046 (3)0.28353 (5)0.0331 (5)
H42A0.15200.32930.28550.050*
H42B0.21860.17700.27370.050*
H42C0.23360.39870.26740.050*
C430.98923 (13)0.1438 (3)0.45019 (5)0.0283 (5)
H431.04090.08470.44570.034*
C440.91876 (12)0.1324 (3)0.42466 (5)0.0237 (5)
H440.92240.06670.40260.028*
C450.63535 (12)0.1767 (2)0.32106 (5)0.0176 (4)
C460.55753 (12)0.1896 (2)0.29627 (5)0.0175 (4)
C470.54453 (12)0.1717 (3)0.25823 (5)0.0214 (4)
H470.59080.14410.24490.026*
C480.46346 (12)0.1948 (3)0.24062 (5)0.0232 (4)
H480.45650.18370.21500.028*
C490.39071 (12)0.2335 (3)0.25765 (5)0.0224 (4)
H490.33650.24950.24420.027*
C500.40171 (12)0.2472 (3)0.29484 (5)0.0196 (4)
C510.48426 (12)0.2248 (2)0.31221 (5)0.0181 (4)
C520.71793 (12)0.1450 (3)0.30673 (5)0.0184 (4)
C530.74376 (12)0.2607 (3)0.27948 (5)0.0213 (4)
H530.70660.35640.26890.026*
C540.82284 (12)0.2372 (3)0.26773 (5)0.0220 (4)
H540.83950.31670.24920.026*
C550.87774 (12)0.0993 (3)0.28276 (5)0.0232 (4)
H550.93250.08520.27490.028*
C560.85243 (12)0.0183 (3)0.30930 (5)0.0227 (5)
H560.88970.11480.31950.027*
C570.77323 (12)0.0036 (3)0.32107 (5)0.0201 (4)
H570.75640.07880.33920.024*
C580.54071 (12)0.2608 (3)0.41017 (5)0.0209 (4)
H580.58670.25450.42890.025*
C590.45910 (13)0.2973 (3)0.41824 (5)0.0225 (4)
H590.45100.31500.44290.027*
C600.38710 (13)0.3102 (3)0.39243 (5)0.0227 (4)
H600.33210.33540.39920.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0442 (10)0.0477 (10)0.0288 (9)0.0090 (8)0.0134 (7)0.0041 (7)
O20.0260 (8)0.0502 (10)0.0333 (9)0.0050 (7)0.0069 (7)0.0010 (7)
N10.0293 (10)0.0201 (9)0.0207 (8)0.0037 (7)0.0054 (7)0.0012 (7)
N20.0204 (9)0.0200 (9)0.0208 (8)0.0013 (7)0.0002 (7)0.0002 (7)
C10.0284 (13)0.0526 (16)0.0417 (14)0.0024 (11)0.0091 (11)0.0081 (11)
C20.0311 (12)0.0246 (12)0.0319 (12)0.0068 (9)0.0109 (10)0.0046 (9)
C30.0301 (11)0.0140 (10)0.0224 (10)0.0064 (9)0.0003 (9)0.0014 (8)
C40.0327 (12)0.0111 (10)0.0162 (9)0.0051 (8)0.0011 (8)0.0002 (7)
C50.0335 (12)0.0105 (9)0.0190 (10)0.0055 (8)0.0051 (8)0.0006 (7)
C60.0263 (11)0.0092 (9)0.0209 (10)0.0028 (8)0.0047 (8)0.0008 (7)
C70.0324 (12)0.0138 (10)0.0176 (10)0.0010 (9)0.0053 (9)0.0016 (7)
C80.0335 (12)0.0127 (10)0.0201 (10)0.0024 (9)0.0062 (9)0.0029 (8)
C90.0286 (11)0.0148 (10)0.0209 (10)0.0008 (8)0.0086 (9)0.0038 (8)
C100.0349 (12)0.0189 (11)0.0215 (10)0.0031 (9)0.0059 (9)0.0026 (8)
C110.0307 (12)0.0308 (12)0.0305 (12)0.0039 (10)0.0018 (10)0.0014 (9)
C120.0257 (12)0.0291 (13)0.0418 (13)0.0011 (10)0.0116 (10)0.0002 (10)
C130.0281 (11)0.0119 (10)0.0210 (10)0.0047 (8)0.0026 (8)0.0006 (8)
C140.0208 (11)0.0201 (11)0.0292 (11)0.0014 (8)0.0014 (9)0.0006 (8)
C150.0278 (11)0.0198 (11)0.0214 (10)0.0014 (9)0.0059 (9)0.0010 (8)
C160.0249 (11)0.0160 (10)0.0174 (9)0.0035 (8)0.0003 (8)0.0010 (7)
C170.0245 (10)0.0093 (9)0.0161 (9)0.0025 (8)0.0022 (8)0.0003 (7)
C180.0237 (10)0.0093 (9)0.0190 (9)0.0025 (8)0.0025 (8)0.0015 (7)
C190.0319 (12)0.0237 (11)0.0212 (10)0.0050 (9)0.0072 (9)0.0024 (8)
C200.0368 (13)0.0281 (12)0.0294 (11)0.0044 (10)0.0155 (10)0.0078 (9)
C210.0398 (13)0.0161 (11)0.0189 (10)0.0057 (9)0.0087 (9)0.0009 (8)
C220.0514 (15)0.0230 (12)0.0161 (10)0.0101 (10)0.0066 (10)0.0016 (8)
C230.0476 (14)0.0197 (11)0.0170 (10)0.0106 (10)0.0045 (9)0.0002 (8)
C240.0256 (11)0.0116 (9)0.0191 (9)0.0039 (8)0.0021 (8)0.0007 (7)
C250.0200 (10)0.0163 (10)0.0173 (9)0.0027 (8)0.0048 (8)0.0004 (7)
C260.0229 (11)0.0180 (10)0.0200 (10)0.0017 (8)0.0044 (8)0.0008 (8)
C270.0318 (12)0.0230 (11)0.0199 (10)0.0038 (9)0.0061 (9)0.0034 (8)
C280.0248 (11)0.0266 (12)0.0235 (10)0.0059 (9)0.0014 (9)0.0001 (9)
C290.0204 (11)0.0239 (11)0.0304 (11)0.0002 (9)0.0001 (9)0.0000 (9)
C300.0237 (11)0.0191 (11)0.0233 (10)0.0020 (8)0.0056 (8)0.0032 (8)
C310.0277 (12)0.0270 (12)0.0290 (11)0.0037 (10)0.0126 (9)0.0031 (9)
C320.0361 (13)0.0231 (11)0.0185 (10)0.0037 (9)0.0018 (9)0.0025 (8)
C330.0248 (11)0.0193 (11)0.0212 (10)0.0018 (8)0.0006 (8)0.0007 (8)
C340.0229 (10)0.0128 (10)0.0190 (9)0.0033 (8)0.0012 (8)0.0040 (7)
C350.0236 (11)0.0142 (10)0.0184 (10)0.0023 (8)0.0005 (8)0.0021 (7)
C360.0251 (11)0.0132 (10)0.0174 (9)0.0020 (8)0.0030 (9)0.0011 (7)
C370.0228 (10)0.0101 (9)0.0183 (9)0.0020 (8)0.0029 (8)0.0024 (7)
C380.0242 (10)0.0097 (9)0.0190 (9)0.0037 (8)0.0011 (8)0.0009 (7)
C390.0241 (11)0.0120 (10)0.0170 (9)0.0019 (8)0.0021 (8)0.0005 (7)
C400.0241 (11)0.0126 (10)0.0211 (10)0.0039 (8)0.0010 (8)0.0001 (8)
C410.0234 (11)0.0207 (11)0.0317 (11)0.0011 (9)0.0017 (9)0.0029 (9)
C420.0226 (11)0.0424 (14)0.0328 (12)0.0048 (10)0.0031 (9)0.0055 (10)
C430.0224 (11)0.0247 (12)0.0362 (12)0.0028 (9)0.0034 (9)0.0006 (9)
C440.0297 (12)0.0167 (11)0.0236 (10)0.0021 (9)0.0015 (9)0.0016 (8)
C450.0217 (10)0.0104 (9)0.0199 (9)0.0020 (8)0.0017 (8)0.0015 (7)
C460.0227 (10)0.0112 (9)0.0178 (9)0.0021 (8)0.0009 (8)0.0004 (7)
C470.0251 (11)0.0192 (10)0.0195 (10)0.0000 (8)0.0004 (8)0.0002 (8)
C480.0297 (12)0.0233 (11)0.0155 (9)0.0015 (9)0.0025 (8)0.0012 (8)
C490.0237 (11)0.0207 (11)0.0211 (10)0.0012 (9)0.0056 (8)0.0012 (8)
C500.0221 (10)0.0137 (10)0.0225 (10)0.0010 (8)0.0008 (8)0.0007 (8)
C510.0227 (10)0.0117 (9)0.0188 (10)0.0031 (8)0.0024 (8)0.0001 (7)
C520.0230 (10)0.0153 (10)0.0160 (9)0.0026 (8)0.0019 (8)0.0018 (7)
C530.0277 (11)0.0176 (10)0.0174 (9)0.0003 (9)0.0033 (8)0.0012 (8)
C540.0303 (11)0.0201 (11)0.0152 (9)0.0056 (9)0.0014 (8)0.0013 (8)
C550.0234 (11)0.0268 (11)0.0195 (10)0.0016 (9)0.0035 (8)0.0025 (8)
C560.0258 (11)0.0210 (11)0.0201 (10)0.0053 (9)0.0024 (9)0.0003 (8)
C570.0260 (11)0.0168 (10)0.0171 (10)0.0021 (8)0.0000 (8)0.0017 (7)
C580.0296 (11)0.0149 (10)0.0177 (10)0.0038 (8)0.0002 (8)0.0010 (7)
C590.0337 (12)0.0179 (10)0.0167 (9)0.0047 (9)0.0052 (9)0.0011 (8)
C600.0266 (11)0.0167 (11)0.0256 (11)0.0037 (8)0.0064 (9)0.0011 (8)
Geometric parameters (Å, º) top
O1—C21.216 (2)C28—H280.9500
O2—C411.214 (2)C29—C301.386 (3)
N1—C21.387 (3)C29—H290.9500
N1—C31.435 (3)C30—H300.9500
N1—C131.443 (2)C31—C321.379 (3)
N2—C411.384 (2)C31—C431.380 (3)
N2—C401.436 (2)C31—H310.9500
N2—C501.440 (2)C32—C331.385 (3)
C1—C21.489 (3)C32—H320.9500
C1—H1A0.9800C33—C341.397 (2)
C1—H1B0.9800C33—H330.9500
C1—H1C0.9800C34—C441.388 (3)
C3—C231.379 (3)C34—C351.432 (3)
C3—C41.390 (3)C35—C361.194 (2)
C4—C51.381 (3)C36—C371.430 (3)
C4—C241.385 (3)C37—C451.396 (2)
C5—C211.408 (2)C37—C381.450 (3)
C5—C61.462 (3)C38—C391.384 (2)
C6—C181.396 (2)C38—C581.406 (2)
C6—C71.427 (3)C39—C401.387 (3)
C7—C81.202 (3)C39—C511.388 (2)
C8—C91.429 (3)C40—C601.380 (3)
C9—C101.395 (3)C41—C421.494 (3)
C9—C191.396 (3)C42—H42A0.9800
C10—C111.379 (3)C42—H42B0.9800
C10—H100.9500C42—H42C0.9800
C11—C121.382 (3)C43—C441.384 (3)
C11—H110.9500C43—H430.9500
C12—C201.380 (3)C44—H440.9500
C12—H120.9500C45—C461.457 (2)
C13—C141.376 (3)C45—C521.484 (3)
C13—C241.396 (3)C46—C511.384 (3)
C14—C151.412 (3)C46—C471.414 (2)
C14—H140.9500C47—C481.384 (3)
C15—C161.380 (3)C47—H470.9500
C15—H150.9500C48—C491.403 (3)
C16—C171.407 (2)C48—H480.9500
C16—H160.9500C49—C501.380 (2)
C17—C241.390 (2)C49—H490.9500
C17—C181.447 (3)C50—C511.401 (3)
C18—C251.487 (2)C52—C571.392 (2)
C19—C201.380 (3)C52—C531.398 (3)
C19—H190.9500C53—C541.382 (3)
C20—H200.9500C53—H530.9500
C21—C221.384 (3)C54—C551.379 (3)
C21—H210.9500C54—H540.9500
C22—C231.404 (3)C55—C561.383 (3)
C22—H220.9500C55—H550.9500
C23—H230.9500C56—C571.383 (3)
C25—C301.383 (3)C56—H560.9500
C25—C261.392 (2)C57—H570.9500
C26—C271.387 (2)C58—C591.384 (3)
C26—H260.9500C58—H580.9500
C27—C281.379 (3)C59—C601.409 (3)
C27—H270.9500C59—H590.9500
C28—C291.382 (3)C60—H600.9500
C2—N1—C3122.60 (16)C25—C30—C29121.13 (18)
C2—N1—C13129.48 (17)C25—C30—H30119.4
C3—N1—C13107.90 (15)C29—C30—H30119.4
C41—N2—C40122.53 (16)C32—C31—C43119.82 (18)
C41—N2—C50129.64 (15)C32—C31—H31120.1
C40—N2—C50107.81 (14)C43—C31—H31120.1
C2—C1—H1A109.5C31—C32—C33120.55 (18)
C2—C1—H1B109.5C31—C32—H32119.7
H1A—C1—H1B109.5C33—C32—H32119.7
C2—C1—H1C109.5C32—C33—C34119.76 (19)
H1A—C1—H1C109.5C32—C33—H33120.1
H1B—C1—H1C109.5C34—C33—H33120.1
O1—C2—N1119.8 (2)C44—C34—C33119.34 (17)
O1—C2—C1122.72 (19)C44—C34—C35120.57 (17)
N1—C2—C1117.51 (18)C33—C34—C35120.09 (17)
C23—C3—C4118.14 (19)C36—C35—C34178.7 (2)
C23—C3—N1135.25 (18)C35—C36—C37174.6 (2)
C4—C3—N1106.60 (16)C45—C37—C36121.32 (17)
C5—C4—C24123.70 (17)C45—C37—C38122.58 (16)
C5—C4—C3126.63 (17)C36—C37—C38116.03 (15)
C24—C4—C3109.67 (18)C39—C38—C58115.03 (17)
C4—C5—C21115.21 (17)C39—C38—C37114.75 (16)
C4—C5—C6114.73 (16)C58—C38—C37130.20 (16)
C21—C5—C6130.06 (19)C38—C39—C40126.57 (17)
C18—C6—C7121.34 (16)C38—C39—C51123.29 (18)
C18—C6—C5121.69 (17)C40—C39—C51110.13 (16)
C7—C6—C5116.94 (16)C60—C40—C39118.30 (17)
C8—C7—C6175.84 (19)C60—C40—N2135.14 (18)
C7—C8—C9177.2 (2)C39—C40—N2106.55 (15)
C10—C9—C19119.00 (18)O2—C41—N2119.81 (18)
C10—C9—C8120.92 (17)O2—C41—C42122.28 (18)
C19—C9—C8120.07 (18)N2—C41—C42117.89 (18)
C11—C10—C9120.27 (18)C41—C42—H42A109.5
C11—C10—H10119.9C41—C42—H42B109.5
C9—C10—H10119.9H42A—C42—H42B109.5
C10—C11—C12120.49 (19)C41—C42—H42C109.5
C10—C11—H11119.8H42A—C42—H42C109.5
C12—C11—H11119.8H42B—C42—H42C109.5
C20—C12—C11119.5 (2)C31—C43—C44120.33 (19)
C20—C12—H12120.2C31—C43—H43119.8
C11—C12—H12120.2C44—C43—H43119.8
C14—C13—C24117.72 (17)C43—C44—C34120.20 (18)
C14—C13—N1136.29 (18)C43—C44—H44119.9
C24—C13—N1105.97 (16)C34—C44—H44119.9
C13—C14—C15116.82 (18)C37—C45—C46120.36 (17)
C13—C14—H14121.6C37—C45—C52119.74 (16)
C15—C14—H14121.6C46—C45—C52119.89 (15)
C16—C15—C14124.55 (18)C51—C46—C47114.29 (16)
C16—C15—H15117.7C51—C46—C45115.42 (15)
C14—C15—H15117.7C47—C46—C45130.29 (17)
C15—C16—C17119.42 (17)C48—C47—C46119.14 (18)
C15—C16—H16120.3C48—C47—H47120.4
C17—C16—H16120.3C46—C47—H47120.4
C24—C17—C16114.54 (17)C47—C48—C49125.01 (17)
C24—C17—C18115.48 (16)C47—C48—H48117.5
C16—C17—C18129.93 (16)C49—C48—H48117.5
C6—C18—C17121.13 (16)C50—C49—C48116.75 (17)
C6—C18—C25120.12 (17)C50—C49—H49121.6
C17—C18—C25118.75 (15)C48—C49—H49121.6
C20—C19—C9119.95 (19)C49—C50—C51117.50 (17)
C20—C19—H19120.0C49—C50—N2136.11 (17)
C9—C19—H19120.0C51—C50—N2106.38 (15)
C19—C20—C12120.75 (19)C46—C51—C39123.59 (16)
C19—C20—H20119.6C46—C51—C50127.29 (16)
C12—C20—H20119.6C39—C51—C50109.12 (17)
C22—C21—C5118.5 (2)C57—C52—C53118.19 (18)
C22—C21—H21120.7C57—C52—C45120.77 (16)
C5—C21—H21120.7C53—C52—C45121.00 (16)
C21—C22—C23125.18 (18)C54—C53—C52120.64 (17)
C21—C22—H22117.4C54—C53—H53119.7
C23—C22—H22117.4C52—C53—H53119.7
C3—C23—C22116.31 (18)C55—C54—C53120.53 (17)
C3—C23—H23121.8C55—C54—H54119.7
C22—C23—H23121.8C53—C54—H54119.7
C4—C24—C17123.23 (18)C54—C55—C56119.44 (18)
C4—C24—C13109.85 (16)C54—C55—H55120.3
C17—C24—C13126.92 (17)C56—C55—H55120.3
C30—C25—C26118.41 (16)C57—C56—C55120.37 (18)
C30—C25—C18120.97 (16)C57—C56—H56119.8
C26—C25—C18120.62 (16)C55—C56—H56119.8
C27—C26—C25120.55 (18)C56—C57—C52120.80 (17)
C27—C26—H26119.7C56—C57—H57119.6
C25—C26—H26119.7C52—C57—H57119.6
C28—C27—C26120.31 (18)C59—C58—C38119.11 (17)
C28—C27—H27119.8C59—C58—H58120.4
C26—C27—H27119.8C38—C58—H58120.4
C27—C28—C29119.63 (18)C58—C59—C60124.57 (17)
C27—C28—H28120.2C58—C59—H59117.7
C29—C28—H28120.2C60—C59—H59117.7
C28—C29—C30119.96 (19)C40—C60—C59116.42 (18)
C28—C29—H29120.0C40—C60—H60121.8
C30—C29—H29120.0C59—C60—H60121.8
C3—N1—C2—O10.2 (3)C43—C31—C32—C330.7 (3)
C13—N1—C2—O1178.38 (18)C31—C32—C33—C340.5 (3)
C3—N1—C2—C1179.85 (18)C32—C33—C34—C440.3 (3)
C13—N1—C2—C11.3 (3)C32—C33—C34—C35179.92 (17)
C2—N1—C3—C231.0 (3)C45—C37—C38—C390.5 (3)
C13—N1—C3—C23179.8 (2)C36—C37—C38—C39176.31 (16)
C2—N1—C3—C4178.59 (17)C45—C37—C38—C58178.77 (18)
C13—N1—C3—C40.2 (2)C36—C37—C38—C581.9 (3)
C23—C3—C4—C51.1 (3)C58—C38—C39—C400.5 (3)
N1—C3—C4—C5178.62 (17)C37—C38—C39—C40178.01 (17)
C23—C3—C4—C24179.72 (17)C58—C38—C39—C51179.25 (17)
N1—C3—C4—C240.6 (2)C37—C38—C39—C510.7 (3)
C24—C4—C5—C21179.48 (17)C38—C39—C40—C600.9 (3)
C3—C4—C5—C211.4 (3)C51—C39—C40—C60179.79 (17)
C24—C4—C5—C60.3 (3)C38—C39—C40—N2179.81 (17)
C3—C4—C5—C6178.78 (18)C51—C39—C40—N20.9 (2)
C4—C5—C6—C182.1 (3)C41—N2—C40—C601.2 (3)
C21—C5—C6—C18177.73 (18)C50—N2—C40—C60180.0 (2)
C4—C5—C6—C7179.89 (16)C41—N2—C40—C39179.69 (16)
C21—C5—C6—C70.3 (3)C50—N2—C40—C390.82 (19)
C19—C9—C10—C110.4 (3)C40—N2—C41—O22.0 (3)
C8—C9—C10—C11178.91 (18)C50—N2—C41—O2176.59 (18)
C9—C10—C11—C120.1 (3)C40—N2—C41—C42176.92 (17)
C10—C11—C12—C200.1 (3)C50—N2—C41—C424.5 (3)
C2—N1—C13—C140.8 (4)C32—C31—C43—C440.2 (3)
C3—N1—C13—C14177.9 (2)C31—C43—C44—C340.6 (3)
C2—N1—C13—C24178.92 (18)C33—C34—C44—C430.8 (3)
C3—N1—C13—C240.21 (19)C35—C34—C44—C43179.37 (18)
C24—C13—C14—C151.0 (3)C36—C37—C45—C46176.79 (16)
N1—C13—C14—C15178.96 (19)C38—C37—C45—C460.1 (3)
C13—C14—C15—C160.1 (3)C36—C37—C45—C522.0 (3)
C14—C15—C16—C170.6 (3)C38—C37—C45—C52178.67 (16)
C15—C16—C17—C240.0 (3)C37—C45—C46—C510.6 (2)
C15—C16—C17—C18177.04 (18)C52—C45—C46—C51178.20 (16)
C7—C6—C18—C17179.69 (17)C37—C45—C46—C47179.38 (18)
C5—C6—C18—C172.3 (3)C52—C45—C46—C471.9 (3)
C7—C6—C18—C250.2 (3)C51—C46—C47—C481.7 (3)
C5—C6—C18—C25177.82 (16)C45—C46—C47—C48178.41 (18)
C24—C17—C18—C60.8 (2)C46—C47—C48—C490.8 (3)
C16—C17—C18—C6176.27 (18)C47—C48—C49—C500.7 (3)
C24—C17—C18—C25179.37 (16)C48—C49—C50—C511.1 (3)
C16—C17—C18—C253.6 (3)C48—C49—C50—N2179.7 (2)
C10—C9—C19—C200.3 (3)C41—N2—C50—C490.5 (4)
C8—C9—C19—C20178.92 (18)C40—N2—C50—C49178.3 (2)
C9—C19—C20—C120.1 (3)C41—N2—C50—C51179.20 (18)
C11—C12—C20—C190.1 (3)C40—N2—C50—C510.44 (19)
C4—C5—C21—C220.7 (3)C47—C46—C51—C39179.56 (17)
C6—C5—C21—C22179.52 (18)C45—C46—C51—C390.4 (3)
C5—C21—C22—C230.3 (3)C47—C46—C51—C501.3 (3)
C4—C3—C23—C220.0 (3)C45—C46—C51—C50178.79 (18)
N1—C3—C23—C22179.6 (2)C38—C39—C51—C460.3 (3)
C21—C22—C23—C30.6 (3)C40—C39—C51—C46178.65 (17)
C5—C4—C24—C171.2 (3)C38—C39—C51—C50179.60 (17)
C3—C4—C24—C17179.56 (17)C40—C39—C51—C500.7 (2)
C5—C4—C24—C13178.49 (17)C49—C50—C51—C460.1 (3)
C3—C4—C24—C130.8 (2)N2—C50—C51—C46179.15 (17)
C16—C17—C24—C4178.47 (17)C49—C50—C51—C39179.12 (16)
C18—C17—C24—C41.0 (3)N2—C50—C51—C390.1 (2)
C16—C17—C24—C131.2 (3)C37—C45—C52—C5750.8 (2)
C18—C17—C24—C13178.67 (17)C46—C45—C52—C57130.45 (18)
C14—C13—C24—C4177.94 (17)C37—C45—C52—C53126.75 (19)
N1—C13—C24—C40.6 (2)C46—C45—C52—C5352.0 (2)
C14—C13—C24—C171.7 (3)C57—C52—C53—C541.3 (3)
N1—C13—C24—C17179.75 (17)C45—C52—C53—C54176.27 (16)
C6—C18—C25—C3059.7 (2)C52—C53—C54—C550.1 (3)
C17—C18—C25—C30120.12 (19)C53—C54—C55—C561.2 (3)
C6—C18—C25—C26120.7 (2)C54—C55—C56—C570.9 (3)
C17—C18—C25—C2659.4 (2)C55—C56—C57—C520.6 (3)
C30—C25—C26—C270.4 (3)C53—C52—C57—C561.7 (3)
C18—C25—C26—C27179.97 (17)C45—C52—C57—C56175.93 (17)
C25—C26—C27—C280.4 (3)C39—C38—C58—C590.1 (2)
C26—C27—C28—C290.1 (3)C37—C38—C58—C59178.33 (18)
C27—C28—C29—C300.6 (3)C38—C58—C59—C600.3 (3)
C26—C25—C30—C290.1 (3)C39—C40—C60—C590.6 (3)
C18—C25—C30—C29179.48 (17)N2—C40—C60—C59179.69 (19)
C28—C29—C30—C250.6 (3)C58—C59—C60—C400.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg6 and Cg22 are the centroids of the C25–C30 and C52–C57 rings,respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···O2i0.952.483.417 (3)169
C49—H49···O1ii0.952.423.294 (2)153
C19—H19···Cg22iii0.952.943.652 (2)132
C33—H33···Cg6iii0.052.963.756 (2)142
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y+1, z+1.
 

Funding information

This work was supported financially by the Ministry of Science and Technology of Taiwan (grant No. 108-2113-M-009-020-MY3).

References

First citationAihara, H., Jaquinod, L., Nurco, D. J. & Smith, K. M. (2001). Angew. Chem. Int. Ed. 40, 3439–3441.  CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAtakan, G. & Gunbas, G. (2016). RSC Adv. 6, 25620–25623.  Web of Science CrossRef CAS Google Scholar
First citationBender, D. F., Sawicki, E. & Wilson, R. M. (1964). Anal. Chem. 36, 1011–1017.  CrossRef CAS Web of Science Google Scholar
First citationBondock, S., Alqahtani, S. & Fouda, A. M. (2019). Synth. Commun. 49, 2188–2202.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCann, J., Gelfand, B. S. & Welch, G. C. (2020). Mol. Syst. Des. Eng. 5, 1181–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationChakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681–685.  CrossRef CAS Web of Science Google Scholar
First citationChatsirisupachai, J., Nalaoh, P., Kaiyasuan, C., Chasing, P., Sudyoadsuk, T. & Promarak, V. (2021). Mater. Chem. Front. 5, 2361–2372.  Web of Science CSD CrossRef CAS Google Scholar
First citationErn, V., Guggenberger, L. J. & Sloan, G. J. (1971). J. Chem. Phys. 54, 5371–5378.  CSD CrossRef CAS Web of Science Google Scholar
First citationFavini, G., Gamba, A., Grasso, D. & Millefiori, S. (1971). Trans. Faraday Soc. 67, 3139–3148.  CrossRef CAS Web of Science Google Scholar
First citationGeng, Z., Shibasaki, K. & Kijima, M. (2016). Synth. Met. 213, 57–64.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarding, C. R., Cann, J., Laventure, A., Sadeghianlemraski, M., Abd-Ellah, M., Rao, K. R., Gelfand, B. S., Aziz, H., Kaake, L., Risko, C. & Welch, G. C. (2020). Mater. Horiz. 7, 2959–2969.  Web of Science CSD CrossRef CAS Google Scholar
First citationHendsbee, A. D., Sun, J.-P., Law, W. K., Yan, H., Hill, I. G., Spasyuk, D. M. & Welch, G. C. (2016). Chem. Mater. 28, 7098–7109.  Web of Science CSD CrossRef CAS Google Scholar
First citationHoraguchi, T., Yamazaki, R. & Abe, T. (1980). Bull. Chem. Soc. Jpn, 53, 494–497.  CrossRef CAS Web of Science Google Scholar
First citationMa, Z., Fu, H., Meng, D., Jiang, W., Sun, Y. & Wang, Z. (2018). Chem. Asian J. 13, 918–923.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMartell, M., Ocheje, M. U., Gelfand, B. S., Rondeau-Gagné, S. & Welch, G. C. (2021). New J. Chem. 45, 21001–21005.  Web of Science CSD CrossRef CAS Google Scholar
First citationMyśliwiec, D., Kondratowicz, M., Lis, T., Chmielewski, P. J. & Stępień, M. (2015). J. Am. Chem. Soc. 137, 1643–1649.  Web of Science PubMed Google Scholar
First citationNath, M., Huffman, J. C. & Zaleski, J. M. (2003). Chem. Commun. pp. 858–859.  Web of Science CSD CrossRef Google Scholar
First citationPocock, I. A., Alotaibi, A. M., Jagdev, K., Prior, C., Burgess, G. R., Male, L. & Grainger, R. S. (2021). Chem. Commun. 57, 7252–7255.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVespa, M., Cann, J. R., Dayneko, S. V., Melville, O. A., Hendsbee, A. D., Zou, Y., Lessard, B. H. & Welch, G. C. (2018). Eur. J. Org. Chem. pp. 4592–4599.  Web of Science CrossRef Google Scholar
First citationWei, H., Zhang, L., Phan, H., Huang, X., Herng, T. S., Zhou, J., Zeng, W., Ding, J., Luo, S., Wu, J. & Zeng, Z. (2017). Chem. Eur. J. 23, 9419–9424.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZander, M. & Franke, W. H. (1966). Chem. Ber. 99, 1279–1284.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds