research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­nuclear copper(II) complex of 2-hy­droxy-N,N′-bis­­[1-(2-hy­dr­oxy­phen­yl)ethyl­­idene]­propane-1,3-di­amine

crossmark logo

aDépartement de Chimie, UFR SATIC, Université Alioune Diop, Bambey, Senegal, bDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, and cUK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
*Correspondence e-mail: mlgayeastou@yahoo.fr

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 10 January 2022; accepted 24 February 2022; online 1 March 2022)

The title mol­ecular structure, namely, (μ3-acetato)(μ2-acetato)­bis­(μ3-1,3-bis­{[1-(2-oxidophen­yl)ethyl­idene]amino}­propan-2-olato)tetra­copper(II) monohydrate, [Cu4(C19H19N2O3)2(CH3CO2)2]·H2O, corresponds to a non-symmetric tetra­nuclear copper complex. The complex exhibits one ligand mol­ecule that connects two copper CuII metal centres via its ethano­lato oxygen anion acting in a μ2-mode and one ligand mol­ecule that connects three copper CuII metal centres via its ethano­lato oxygen anion acting in a μ3-mode. One bridging acetate group acting in an η1:η1-μ2-mode connects two copper(II) ions while another bridging acetate group connects three copper(II) ions in an η1:-η2-μ3-mode. A chair-like Cu3O3 structure is generated in which the two CuO4N units are connected by one μ2-O ethano­late oxygen atom. These two units are connected respectively to the CuO3N unit via one μ3-O ethano­late oxygen atom and one μ2-O atom from an acetate group. The μ3-O atom also connects one of the CuO4N units and the CuO3N unit to another CuO3N unit, which is out of the chair-like structure. Each of the two penta­coordinated CuII cations has a distorted NO4 square-pyramidal environment. The geometry of each of the two CuNO3 units is best described as a slightly square-planar environment. A series of intra­molecular O—H⋯O hydrogen bonds is observed. In the crystal, the units are connected by inter­molecular C—H⋯O and O—H⋯O hydrogen bonds, thus forming sheets parallel to the ac plane

1. Chemical context

The controlled design of new coordination complexes of transition metals from polydentate ligands is of great inter­est for research, because of the potential applications that these functional materials can have and for their inter­esting structural diversity (Popov et al., 2012[Popov, L. D., Levchenkov, S. I., Shcherbakov, I. N., Lukov, V. V., Suponitsky, K. Y. & Kogan, V. A. (2012). Inorg. Chem. Commun. 17, 1-4.]; Mitra et al., 2014[Mitra, M., Maji, A. K., Ghosh, B. K., Raghavaiah, P., Ribas, J. & Ghosh, R. (2014). Polyhedron, 67, 19-26.]). In this context, important research is being devoted to the chemistry of transition-metal complexes with different oxidation states incorporating polydentate ligands with N and O donor sites (Xie et al., 2012[Xie, Q.-W., Chen, X., Hu, K.-Q., Wang, Y.-T., Cui, A.-L. & Kou, H.-Z. (2012). Polyhedron, 38, 213-217.]; Banerjee & Chattopadhyay, 2019[Banerjee, A. & Chattopadhyay, S. (2019). Polyhedron, 159, 1-11.]; Ferguson et al., 2006[Ferguson, A., Parkin, A. & Murrie, M. (2006). Dalton Trans. pp. 3627-3628.]). These ligands can act in a versatile manner and generate compounds with very different structures, depending on the metal–ligand ratio and the nature of the metal cation (Fernandes et al., 2000[Fernandes, C., Neves, A., Vencato, I., Bortoluzzi, A. J., Drago, V., Weyhermüller, T. & Rentschler, E. (2000). Chem. Lett. 29, 540-541.]). In this context, penta­dentate Schiff bases have made it possible to synthesize several complexes with various transition-metal cations, resulting in an unusual coordination environment with inter­esting stereochemistry (Banerjee et al., 2011[Banerjee, S., Nandy, M., Sen, S., Mandal, S., Rosair, G. M., Slawin, A. M. Z., Gómez García, C. J., Clemente-Juan, J. M., Zangrando, E., Guidolin, N. & Mitra, S. (2011). Dalton Trans. 40, 1652-1661.]). Depending on the size of the cation and its external electronic configuration and the flexibility of the ligand, novel structures with high nuclearity have been obtained (Aly, 1999[Aly, M. M. (1999). J. Coord. Chem. 47, 505-521.]). These compounds are very attractive for the above reasons, and they have been widely used in several studies. Many multinuclear transition-metal complexes with various structures have been generated, depending on the disposition of the metal ions and donor sites (N or O). Tetra­nuclear (Asadi et al., 2018[Asadi, Z., Golchin, M., Eigner, V., Dusek, M. & Amirghofran, Z. (2018). J. Photochem. Photobiol. Chem. 361, 93-104.]; Manna et al., 2019[Manna, S., Zangrando, E., Puschmann, H. & Manna, S. C. (2019). Polyhedron, 162, 285-292.]), penta­nuclear (Hari et al., 2019[Hari, N., Ghosh, S. & Mohanta, S. (2019). Inorg. Chim. Acta, 491, 34-41.]; Ghosh, Clérac et al., 2013[Ghosh, A. K., Clérac, R., Mathonière, C. & Ray, D. (2013). Polyhedron, 54, 196-200.]) hexa­nuclear (Shit et al., 2013[Shit, S., Nandy, M., Rosair, G., Fallah, M. S. E., Ribas, J., Garribba, E. & Mitra, S. (2013). Polyhedron, 52, 963-969.]; Kébé et al., 2021[Kébé, M., Thiam, I. E., Sow, M. M., Diouf, O., Barry, A. H., Sall, A. S., Retailleau, P. & Gaye, M. (2021). Acta Cryst. E77, 708-713.]) and hepta­nuclear (Gheorghe et al., 2019[Gheorghe, R., Ionita, G. A., Maxim, C., Caneschi, A., Sorace, L. & Andruh, M. (2019). Polyhedron, 171, 269-278.]; Ghosh, Bauzá et al., 2013[Ghosh, A. K., Bauzá, A., Bertolasi, V., Frontera, A. & Ray, D. (2013). Polyhedron, 53, 32-39.]) forms have reported with potential applications in the fields of magnetism (Gheorghe et al., 2019[Gheorghe, R., Ionita, G. A., Maxim, C., Caneschi, A., Sorace, L. & Andruh, M. (2019). Polyhedron, 171, 269-278.]), catalysis (Nesterova et al., 2020[Nesterova, O. V., Bondarenko, O. E., Pombeiro, A. J. L. & Nesterov, D. S. (2020). Dalton Trans. 49, 4710-4724.]; Das et al., 2018[Das, A., Goswami, S. & Ghosh, A. (2018). New J. Chem. 42, 19377-19389.]) or biomimetic synthesis (Nesterova et al., 2020[Nesterova, O. V., Bondarenko, O. E., Pombeiro, A. J. L. & Nesterov, D. S. (2020). Dalton Trans. 49, 4710-4724.]; Sanyal et al., 2017[Sanyal, R., Ketkov, S., Purkait, S., Mautner, F. A., Zhigulin, G. & Das, D. (2017). New J. Chem. 41, 8586-8597.]). Our research group has already enabled us to prepare several multidentate Schiff base complexes (Mamour et al., 2018[Mamour, S., Mayoro, D., Elhadj Ibrahima, T., Mohamed, G., Aliou Hamady, B. & Ellena, J. (2018). Acta Cryst. E74, 642-645.]; Sarr et al., 2018a[Sarr, M., Diop, M., Thiam, I. E., Gaye, M., Barry, A. H., Alvarez, N. & Ellena, J. (2018a). Eur. J. Chem. 9, 67-73.],b[Sarr, M., Diop, M., Thiam, E. I., Gaye, M., Barry, A. H., Orton, J. B. & Coles, S. J. (2018b). Acta Cryst. E74, 1862-1866.]; Sall et al., 2019[Sall, O., Tamboura, F. B., Sy, A., Barry, A. H., Thiam, E. I., Gaye, M. & Ellena, J. (2019). Acta Cryst. E75, 1069-1075.]). We then explored the possibility of preparing complexes with several metal cations from a penta­dentate Schiff base obtained by condensation of 1,3-di­amino­propan-2-ol and 1-(2-hy­droxy­phen­yl)ethanone, which is rich in hydroxyl groups. From this Schiff base we prepared a hexa­nuclear complex with an open-cube structure (Kébé et al., 2021[Kébé, M., Thiam, I. E., Sow, M. M., Diouf, O., Barry, A. H., Sall, A. S., Retailleau, P. & Gaye, M. (2021). Acta Cryst. E77, 708-713.]). In a continuation of our work with this Schiff base, we obtained the title tetra­nuclear copper complex (Fig. 1[link]) whose structure is presented herein.

[Scheme 1]
[Figure 1]
Figure 1
A view of the title compound, showing the atom-numbering scheme.

2. Structural commentary

N,N′-Bis­{[1-(2-hy­droxy­phen­yl)ethyl­idene)]}-2-hy­droxy­pro­pane-1, 3-di­amine (H3L was synthesized via a condensation reaction between 1,3-di­amino­propan-2-ol and 1-(2-hy­droxy­phen­yl)ethanone in a 1:2 ratio in ethanol. Mixing H3L and hydrated copper acetate yielded a tetra­nuclear complex formulated as [Cu4L2(CH3CO2)2]·H2O in which the ligand acts in its tri-deprotonated L−3 form. In the tetra­nuclear complex, one of the L−3 anions acts in μ2-mode, connecting the two penta­coordinated CuII cations. The second L−3 anion acts in μ3 mode, connecting the two tetra­coordinated CuII cations and one of the penta­coordinated CuII cations. The second penta­coordinated CuII cation is connected to the two tetra­coordinated CuII cations via an acetate group acting in η1:η2-μ3 mode. Additionally, the two penta­coordinated CuII cations are connected by an acetate group acting in η1:η1-μ2 mode. For each ligand, the azomethine nitro­gen atom and the phenolate oxygen atom of one arm are both linked to one CuII cation while the corresponding atoms of the other arm are bonded to another CuII cation. No phenolate oxygen atom acts in bridging mode. In one ligand the ethano­late oxygen atom bridges the two penta­coordinated CuII cations, and in the second ligand the ethano­late oxygen atom bridges the two tetra­coordinated CuII cations and one penta­coordinated CuII cation. The two L−3 ligands are coordinated differently in hexa­dentate (-η1-Ophenolate, -η1-Nimino, -μ2-Oenolato, -η1-Nimino, -η1-Ophenolato) and hepta­dentate (-η1-Ophenolate, -η1-Nimino, -μ3-Oenolato, -η1-Nimino, -η1-Ophenolato) fashions. Four five-membered CuOCCN rings and four six-membered CuOCCCN rings are formed upon the coordination of the ligand mol­ecules. In the tetra­nuclear complex, two discrete CuO4N and CuO3N units are observed.

Atoms Cu1 and Cu2 are penta­coordinated and their environments can be best described as slightly distorted square-pyramidal. The Addison τ parameter (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) calculated from the largest angles (Table 1[link]; τ = 0 for perfect square-pyramidal and τ = 1 for perfect trigonal–bipyramidal geometries, respectively) around the metal ion are τ = 0.1103 for Cu1 and τ = 0.1887 for Cu2. For Cu1 and Cu2, the basal planes are occupied by one phenolate oxygen anion, one azomethine nitro­gen atom, one ethano­late oxygen atom and one oxygen atom from the η1:η1-μ2 acetate group, the apical position being occupied by an ethano­late oxygen atom from a second ligand mol­ecule for Cu1 and an oxygen atom from the η1:η2-μ3 acetate group for Cu2. The atoms forming the basal plane for Cu1 (N1, O1, O2, O10) are almost coplanar (r.m.s. deviation = 0.1088 Å) and the Cu1 atom is displaced toward the O5 atom, which occupies the apical position, by 0.0545 (2) Å. The Cu1—O5 distance of 2.749 (3) Å is longer than the distances between Cu1 and the atoms in the basal plane [Cu1—Nligand = 1.966 (4) Å, Cu1—Oligand = 1.878 (3) and 1.916 (3) Å and Cu1—Oacetate = 1.982 (3) Å)], as expected for a Jahn–Teller distortion (Monfared et al., 2009[Monfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791-3795.]), typical of a CuII d9 configuration (Monfared et al., 2009[Monfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791-3795.]). These values are in accordance with those in similar copper(II) complexes (Haldar et al., 2016[Haldar, S., Patra, A., Vijaykumar, G., Carrella, L. & Bera, M. (2016). Polyhedron, 117, 542-551.]; Siluvai & Murthy, 2009[Siluvai, G. S. & Murthy, N. N. (2009). Polyhedron, 28, 2149-2156.]). The cisoid and transoid angles are in the ranges 85.01 (14)–95.10 (14)° and 169.71 (16)–176.33 (14)°, respectively. The atoms forming the basal plane for Cu2 (N2, O2, O11, O3) are less coplanar than those around Cu1 (r.m.s. deviation = 0.2086 Å) and the Cu2 atom is displaced toward the O8 atom, which occupies the apical position, by 0.0808 (1) Å. The from Cu2—O8 distance of 2.703 (4) Å is longer than those to atoms in the equatorial plane [Cu2—Nligand = 1.961 (4) Å, Cu2—Oligand = 1.877 (3) and 1.920 (3) Å and Cu2—Oacetate = 1.940 (3) Å]. As observed for Cu1, Jahn–Teller distortion (Monfared et al., 2009[Monfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791-3795.]) is responsible of the elongation of the distance between Cu2 and the apical atom O8. The cisoid and transoid angles are in the ranges 85.74 (15)–96.89 (14)° and 161.66 (15)–173.00 (15)°, respectively. The bond lengths involving the μ2-bridging ethano­lato oxygen atom and the copper cations are asymmetrical: Cu1—O2 = 1.916 (3) Å and Cu2—O2 = 1.920 (3) Å. The distances between the μ3-bridging ethano­lato oxygen atom and the copper cations are very different: Cu1—O5 = 2.749 (3) Å, Cu3—O5 = 1.907 (3) Å and Cu4—O5 = 1.921 (3) Å. The copper cations Cu3 and Cu4 are coordinated by one ethano­lato oxygen anion, one phenoxo oxygen anion, one azomethine nitro­gen atom of the ligand and one oxygen atom of a η1:η2-μ3 acetate group (O8 for Cu3 and O7 for Cu4). The Cu3—O4 [1.873 (3) Å], Cu3—O5 [1.907 (3) Å], Cu3—N3 [1.947 (4) Å], Cu3—O8 [1.957 (3) Å], Cu4—O6 [1.869 (3) Å], Cu4—O5 [1.921 (3) Å], Cu4—N4 [1.962 (4) Å] and Cu4—O7 [1.955 (3) Å] distances are in close proximity to values reported for copper(II) complexes with analogous Schiff base ligands (Patra et al., 2015[Patra, A., Haldar, S., Kumar, G. V., Carrella, L., Ghosh, A. K. & Bera, M. (2015). Inorg. Chim. Acta, 436, 195-204.]; Lukov et al., 2017[Lukov, V. V., Shcherbakov, I. N., Levchenkov, S. I., Popov, L. D. & Pankov, I. V. (2017). Russ. J. Coord. Chem. 43, 1-20.]). For the Cu3 and Cu4 centres, the coordination environment can be best described as distorted square planar with r.m.s. deviations of 0.7870 Å for N3/O4/O8/O5/Cu3 and 0.7921 Å for O5/O7/O6/N4/Cu4. These planes, which share one vertex (O5), form a dihedral angle of 65.67 (1)°. The tetra­gonality parameter (Singh et al., 2017[Singh, Y. P., Patel, R. N., Singh, Y., Choquesillo-Lazarte, D. & Butcher, R. J. (2017). Dalton Trans. 46, 2803-2820.]) τ4 values of 0.0993 (Cu3) and 0.1801 (Cu4) suggested distorted square-planar geometries. For the two copper cations the cisoid angles are in the ranges 86.17 (14)–93.29 (15)° for Cu3 and 84.04 (14)–96.93 (14)° for Cu4 and the transoid angles are O4—Cu3—O5 = 177.07 (15)°, O8—Cu3—N3 = 173.28 (15)°, O6—Cu4—O5 = 170.48 (14)° and O7—Cu3—N4 = 164.11 (15)°. The C—N bonds are in the range 1.291 (6)–1.300 (6) Å, indicative of double-bond character and the presence of the imino groups in the two ligands.

Table 1
Selected geometric parameters (Å, °)

Cu2—O2 1.920 (3) Cu1—N1 1.966 (4)
Cu2—O3 1.877 (3) Cu3—O5 1.907 (3)
Cu2—O11 1.940 (3) Cu3—O4 1.873 (3)
Cu2—O8 2.703 (4) Cu3—O8 1.957 (3)
Cu2—N2 1.961 (4) Cu3—N3 1.947 (4)
Cu1—O5 2.749 (3) Cu4—O5 1.921 (3)
Cu1—O2 1.916 (3) Cu4—O7 1.955 (3)
Cu1—O10 1.982 (3) Cu4—O6 1.869 (3)
Cu1—O1 1.878 (3) Cu4—N4 1.962 (4)
       
O3—Cu2—O2 173.00 (15) O4—Cu3—O5 177.07 (15)
O11—Cu2—N2 161.66 (15) N3—Cu3—O8 173.28 (15)
O1—Cu1—O2 176.33 (14) O7—Cu4—N4 164.11 (15)
N1—Cu1—O10 169.71 (16)    

3. Supra­molecular features

Intra­molecular O—H⋯O hydrogen bonds involving the uncoordinated water mol­ecule, a phenoxo oxygen atom and an oxygen atom of acetate group and C—H⋯Ophenoxo are observed (Fig. 2[link], Table 2[link]). The uncoordinated water mol­ecule is situated into the void of the tetra­nuclear complex and has O⋯O contacts of 2.894 (5) and 3.158 (5) Å suggesting medium-strength hydrogen bonds. In the crystal, the complex mol­ecules are arranged in sheets parallel to the ac plane (Fig. 3[link]). The sheets are connected by C—H⋯O bonds (C—H⋯Ophenoxo, C—H⋯Owater, C—H⋯Oacetate; Table 2[link]). The series of inter­molecular and intra­molecular hydrogen bonds stabilize and link the components into two-dimensional sheets parallel to the ac plane (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9C⋯O4 0.85 2.08 2.894 (5) 159
O9—H9C⋯O8 0.85 2.56 3.158 (5) 128
O9—H9D⋯O3 0.85 2.08 2.928 (5) 175
C28—H28A⋯O1 0.97 2.58 3.427 (6) 146
C29—H29⋯O1i 0.98 2.60 3.424 (5) 142
C10—H10⋯O6ii 0.98 2.51 3.351 (6) 144
C8—H8A⋯O9iii 0.96 2.44 3.372 (6) 163
C9—H9B⋯O6 0.97 2.65 3.521 (6) 150
C32—H32A⋯O9iii 0.96 2.38 3.304 (6) 162
C42—H42A⋯O11i 0.96 2.66 3.256 (7) 121
Symmetry codes: (i) x+1, y, z; (ii) [x-1, y, z]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Detail of the structure of the complex showing the O—H⋯O and C—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
Sheets parallel to the ac plane.
[Figure 4]
Figure 4
View of the two-dimensional sheets parallel to the ac plane.

4. Database survey

N,N′–Bis[(1-(2-hy­droxy­phen­yl)ethyl­idene)]-2-hy­droxy­pro­pane-1,3-di­amine is widely used in coordination chemistry. The current release of the CSD (Version 5.42, November 2021 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave eleven hits. Three are complexes of the ligand with NiII cations [KARPOK and KARPUQ (Liu et al., 2012[Liu, S., Wang, S., Cao, F., Fu, H., Li, D. & Dou, J. (2012). RSC Adv. 2, 1310-1313.]); OMOFUS (Banerjee et al., 2011[Banerjee, S., Nandy, M., Sen, S., Mandal, S., Rosair, G. M., Slawin, A. M. Z., Gómez García, C. J., Clemente-Juan, J. M., Zangrando, E., Guidolin, N. & Mitra, S. (2011). Dalton Trans. 40, 1652-1661.])]. Four entries are complexes of CuII cations [KUKTAM (Basak et al., 2009[Basak, S., Sen, S., Rosair, G., Desplanches, C., Garribba, E. & Mitra, S. (2009). Aust. J. Chem. 62, 366-375.]), NADDIJ and NADDOP (Osypiuk et al., 2020[Osypiuk, D., Cristóvão, B. & Bartyzel, A. (2020). Crystals, 10, 1004.]), OVOWAA (Kébé et al., 2021[Kébé, M., Thiam, I. E., Sow, M. M., Diouf, O., Barry, A. H., Sall, A. S., Retailleau, P. & Gaye, M. (2021). Acta Cryst. E77, 708-713.])]. In addition, two CoII complexes (OMOFOM and OMOGAZ; Banerjee et al., 2011[Banerjee, S., Nandy, M., Sen, S., Mandal, S., Rosair, G. M., Slawin, A. M. Z., Gómez García, C. J., Clemente-Juan, J. M., Zangrando, E., Guidolin, N. & Mitra, S. (2011). Dalton Trans. 40, 1652-1661.]), one FeII (RIDHUJ; Biswas et al., 2013[Biswas, R., Diaz, C., Bauzá, A., Frontera, A. & Ghosh, A. (2013). Dalton Trans. 42, 12274-12283.]) and one VV complex (KEWGUQ; Maurya et al., 2013[Maurya, M. R., Bisht, M., Chaudhary, N., Avecilla, F., Kumar, U. & Hsu, H.-F. (2013). Polyhedron, 54, 180-188.]) have been reported. In all eleven cases, the ligand acts in a penta­dentate mode through the two soft azomethine nitro­gen atoms, the two hard phenolate oxygen anions and the one hard enolate oxygen anion. In seven cases (KARPOK, KARPUQ, OMOFUS, KUKTAM, NADDIJ, NADDOP and OMOGAZ), the complexes are tetra­nuclear while two dinuclear (OMOFOM and RIDHUJ), one mononuclear (KEWGUQ) and one hexa­nuclear (OVOWAA) complex have been reported.

5. Synthesis and crystallization

The ligand N,N'-bis­[(1-(2-hy­droxy­phen­yl)ethyl­idene)]-2-hy­droxy­propane-1,3-di­amine (HL3) was prepared from 1-(2-hy­droxy­phen­yl)ethanone and 2-hy­droxy­propane-1,3-di­amine in a 2:1 ratio in ethanol according to a slight modification of a literature method (Song et al., 2003[Song, Y., Gamez, P., Roubeau, O., Lutz, M., Spek, A. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 2924-2928.]). To a solution of 1,3-di­amino­propane-2-ol (0.900 g, 10 mmol) in 25 mL of ethanol was added dropwise (2-hy­droxy­phen­yl)ethanone (2.720 g, 20 mmol). The resulting orange mixture was refluxed for 3 h, affording the organic ligand H3L. On cooling, the yellow precipitate that appeared was recovered by filtration and dried in air. Yield 75%. m.p. 479–480 K. FT–IR (KBr, ν, cm−1): 3538 (OH), 3268 (OH), 1605 (C=N), 1538 (C=C), 1528 (C=C), 1455 (C=C), 1247 (C—O), 1043, 760. Analysis calculated for C19H22N2O3: C, 69.92; H, 6.79; N, 8.58. Found: C, 69.90; H, 6.76; N, 8.56%.

A solution of Cu(CH3CO2)2·(H2O) (0.1996 g, 1 mmol) in 5 mL of ethanol was added to a solution of H3L (0.163 g, 0.5 mmol) in 10 mL of ethanol at room temperature. The initial yellow solution immediately turned deep green and was stirred for 30 min before being filtered. The filtrate was kept at 298 K. After one week, light-green crystals suitable for X-ray diffraction were collected and formulated as [Cu4L2(CH3CO2)2]·H2O. FT–IR (KBr, ν, cm−1): 3404, 1601, 1532, 1332, 1299, 895, 760. Analysis calculated for C42H46Cu4N4O11: C, 48.64; H, 4.47; N, 5.40. Found: C, 48.60; H, 4.49; N, 5.44%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to the hydroxyl group and water mol­ecules were located in a difference-Fourier map and freely refined. Other H atoms (CH, CH2, CH3 groups and hydroxyl of ethanol mol­ecules) were geometrically optimized (O—H = 0.85 Å, C—H = 0.93–0.97 Å) and refined using a riding model (AFIX instructions) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for CH3 and OH groups.

Table 3
Experimental details

Crystal data
Chemical formula [Cu4(C19H19N2O3)2(C2H3O2)2]·H2O
Mr 1037.02
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 6.9688 (1), 25.8066 (4), 22.8290 (4)
β (°) 95.418 (2)
V3) 4087.25 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.12
Crystal size (mm) 0.25 × 0.2 × 0.1
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.967, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12039, 12039, 10024
Rint 0.008
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.131, 1.13
No. of reflections 12039
No. of parameters 560
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.69, −0.88
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3-Acetato)(µ2-acetato)bis(µ3-1,3-bis{[1-(2-oxidophenyl)ethylidene]amino}propan-2-olato)tetracopper(II) monohydrate top
Crystal data top
[Cu4(C19H19N2O3)2(C2H3O2)2]·H2OF(000) = 2120
Mr = 1037.02Dx = 1.685 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 6.9688 (1) ÅCell parameters from 5800 reflections
b = 25.8066 (4) Åθ = 2.4–28.7°
c = 22.8290 (4) ŵ = 2.12 mm1
β = 95.418 (2)°T = 293 K
V = 4087.25 (11) Å3Prismatic, light-green
Z = 40.25 × 0.2 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
10024 reflections with I > 2σ(I)
CCD scansRint = 0.008
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.6°, θmin = 1.8°
Tmin = 0.967, Tmax = 1.000h = 99
12039 measured reflectionsk = 3333
12039 independent reflectionsl = 2928
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.038P)2 + 21.6332P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
12039 reflectionsΔρmax = 1.69 e Å3
560 parametersΔρmin = 0.88 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu20.60863 (8)0.28366 (2)0.32611 (2)0.01219 (13)
Cu10.52144 (8)0.38573 (2)0.22819 (2)0.01203 (13)
Cu30.84495 (8)0.29191 (2)0.17735 (2)0.01246 (13)
Cu41.01850 (8)0.39019 (2)0.27079 (2)0.01232 (13)
O50.8865 (4)0.36243 (12)0.20000 (13)0.0132 (6)
O20.6231 (5)0.35435 (12)0.30062 (14)0.0140 (6)
O100.4526 (5)0.31935 (13)0.18788 (15)0.0222 (8)
O71.1025 (5)0.32394 (12)0.30599 (15)0.0181 (7)
O30.6275 (5)0.21453 (12)0.35156 (15)0.0185 (7)
O40.7906 (5)0.22334 (12)0.15452 (14)0.0181 (7)
O10.4344 (5)0.41970 (12)0.15789 (14)0.0152 (7)
O61.1072 (5)0.42189 (12)0.34184 (15)0.0180 (7)
O110.4548 (5)0.25787 (13)0.25696 (15)0.0202 (7)
O80.9004 (5)0.26730 (13)0.25825 (15)0.0208 (7)
N10.5427 (5)0.45103 (14)0.27266 (17)0.0126 (8)
C411.0334 (7)0.27956 (17)0.2974 (2)0.0137 (9)
N30.8224 (5)0.31721 (14)0.09664 (16)0.0111 (7)
O90.7291 (6)0.15395 (13)0.25055 (17)0.0264 (8)
H9C0.7707320.1771140.2284910.040*
H9D0.7030800.1702490.2811680.040*
N20.6827 (5)0.31062 (14)0.40532 (16)0.0114 (7)
N41.0044 (5)0.45572 (14)0.22705 (16)0.0121 (7)
C390.4116 (6)0.27589 (17)0.2067 (2)0.0143 (9)
C190.6706 (6)0.19719 (18)0.4053 (2)0.0135 (9)
C260.7822 (6)0.29142 (17)0.04858 (19)0.0110 (8)
C160.7556 (7)0.15045 (19)0.5168 (2)0.0180 (10)
H160.7819480.1352430.5535910.022*
C200.7860 (6)0.20455 (18)0.1007 (2)0.0145 (9)
C130.7848 (7)0.31399 (18)0.5103 (2)0.0156 (9)
H13A0.8231940.3486210.5014830.023*
H13B0.8906480.2963140.5316950.023*
H13C0.6776610.3152380.5338330.023*
C270.7355 (6)0.31943 (17)0.00920 (19)0.0138 (9)
H27A0.6882730.3535260.0017800.021*
H27B0.6387220.3004700.0330700.021*
H27C0.8497570.3220770.0294280.021*
C140.7197 (6)0.22864 (17)0.45570 (19)0.0113 (8)
C250.7812 (6)0.23439 (17)0.0480 (2)0.0117 (8)
C170.7117 (7)0.12003 (18)0.4666 (2)0.0174 (10)
H170.7106670.0841110.4697780.021*
C280.8313 (6)0.37427 (16)0.09623 (19)0.0121 (9)
H28A0.7029330.3888820.0957590.014*
H28B0.8892130.3864130.0617390.014*
C290.9539 (6)0.39016 (17)0.1520 (2)0.0122 (9)
H291.0886260.3808700.1484070.015*
C110.6906 (6)0.36775 (17)0.40348 (19)0.0126 (9)
H11A0.8228060.3792690.4025340.015*
H11B0.6403200.3822560.4381170.015*
C100.5701 (6)0.38526 (17)0.3486 (2)0.0129 (9)
H100.4332770.3800430.3535540.015*
C60.4719 (6)0.50930 (18)0.1912 (2)0.0149 (9)
C70.5306 (6)0.49832 (17)0.2530 (2)0.0123 (9)
C10.4262 (6)0.47000 (17)0.1482 (2)0.0149 (9)
C120.7266 (6)0.28539 (17)0.45387 (19)0.0113 (8)
C150.7586 (7)0.20325 (18)0.5103 (2)0.0150 (9)
H150.7878880.2234300.5437260.018*
C300.9411 (7)0.44745 (17)0.1646 (2)0.0132 (9)
H30A1.0228160.4666980.1402560.016*
H30B0.8094360.4593670.1559770.016*
C80.5798 (7)0.54254 (18)0.2947 (2)0.0182 (10)
H8A0.6332160.5705760.2738960.027*
H8B0.6724340.5311220.3258630.027*
H8C0.4652880.5541000.3110600.027*
C311.0235 (6)0.50243 (18)0.2480 (2)0.0150 (9)
C220.7727 (7)0.12579 (18)0.0412 (2)0.0197 (10)
H220.7691010.0898080.0391180.024*
C230.7695 (7)0.15510 (19)0.0106 (2)0.0190 (10)
H230.7644240.1389740.0471930.023*
C240.7741 (7)0.20798 (18)0.0062 (2)0.0158 (9)
H240.7723480.2274020.0405600.019*
C90.6056 (7)0.44167 (17)0.33513 (19)0.0136 (9)
H9A0.5338940.4636770.3597350.016*
H9B0.7416100.4496630.3430640.016*
C381.1219 (7)0.47204 (18)0.3522 (2)0.0171 (10)
C331.0824 (6)0.51236 (18)0.3101 (2)0.0156 (9)
C50.4589 (7)0.56179 (18)0.1719 (2)0.0189 (10)
H50.4902770.5879740.1991750.023*
C400.2961 (8)0.23976 (18)0.1642 (2)0.0206 (10)
H40A0.2089400.2597220.1380550.031*
H40B0.2241710.2159680.1859050.031*
H40C0.3823320.2207860.1417220.031*
C320.9831 (7)0.54776 (18)0.2068 (2)0.0202 (10)
H32A0.9303390.5758650.2276860.030*
H32B0.8923380.5374900.1746260.030*
H32C1.1007920.5587150.1919000.030*
C341.1021 (7)0.56421 (19)0.3302 (2)0.0227 (11)
H341.0743250.5908810.3033130.027*
C40.4018 (8)0.57527 (19)0.1147 (2)0.0243 (11)
H40.3924350.6099700.1038280.029*
C180.6705 (7)0.14284 (19)0.4130 (2)0.0196 (10)
H180.6413270.1218330.3802320.023*
C20.3711 (7)0.48541 (19)0.0895 (2)0.0211 (10)
H20.3425700.4600760.0610620.025*
C30.3585 (8)0.5367 (2)0.0733 (2)0.0236 (11)
H30.3206820.5456000.0344660.028*
C210.7810 (7)0.14995 (18)0.0949 (2)0.0194 (10)
H210.7834170.1297380.1287400.023*
C421.1047 (8)0.2371 (2)0.3389 (2)0.0256 (11)
H42A1.2426300.2387010.3454970.038*
H42B1.0670720.2040780.3220690.038*
H42C1.0498270.2412440.3756370.038*
C351.1599 (9)0.5768 (2)0.3872 (3)0.0300 (13)
H351.1732620.6112780.3985640.036*
C361.1985 (9)0.5374 (2)0.4282 (3)0.0339 (14)
H361.2364330.5456090.4672530.041*
C371.1808 (8)0.4863 (2)0.4112 (2)0.0249 (11)
H371.2082070.4604760.4390690.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu20.0193 (3)0.0094 (3)0.0074 (3)0.0025 (2)0.0014 (2)0.0003 (2)
Cu10.0176 (3)0.0091 (3)0.0087 (3)0.0023 (2)0.0022 (2)0.0013 (2)
Cu30.0198 (3)0.0098 (3)0.0073 (3)0.0045 (2)0.0008 (2)0.0007 (2)
Cu40.0161 (3)0.0101 (3)0.0100 (3)0.0023 (2)0.0029 (2)0.0027 (2)
O50.0194 (16)0.0129 (16)0.0070 (15)0.0049 (13)0.0006 (12)0.0013 (12)
O20.0222 (17)0.0105 (15)0.0091 (15)0.0017 (12)0.0001 (12)0.0017 (12)
O100.040 (2)0.0114 (17)0.0146 (17)0.0102 (15)0.0000 (15)0.0005 (13)
O70.0219 (17)0.0133 (17)0.0176 (18)0.0033 (13)0.0062 (13)0.0013 (13)
O30.0324 (19)0.0102 (16)0.0123 (16)0.0036 (14)0.0016 (14)0.0016 (13)
O40.0315 (19)0.0108 (16)0.0113 (16)0.0033 (13)0.0014 (14)0.0001 (13)
O10.0227 (17)0.0093 (15)0.0125 (17)0.0023 (12)0.0040 (13)0.0029 (12)
O60.0260 (18)0.0109 (16)0.0158 (18)0.0015 (13)0.0054 (14)0.0052 (13)
O110.0298 (19)0.0160 (17)0.0137 (17)0.0020 (14)0.0034 (14)0.0002 (13)
O80.0314 (19)0.0184 (18)0.0114 (17)0.0083 (14)0.0038 (14)0.0047 (13)
N10.0165 (18)0.0117 (19)0.0093 (19)0.0018 (14)0.0001 (15)0.0004 (14)
C410.020 (2)0.012 (2)0.008 (2)0.0020 (17)0.0000 (17)0.0008 (17)
N30.0141 (18)0.0114 (18)0.0076 (18)0.0008 (14)0.0005 (14)0.0007 (14)
O90.053 (2)0.0092 (16)0.0194 (19)0.0017 (16)0.0144 (17)0.0007 (14)
N20.0147 (18)0.0110 (18)0.0086 (18)0.0016 (14)0.0015 (14)0.0024 (14)
N40.0136 (18)0.0144 (19)0.0080 (18)0.0009 (14)0.0006 (14)0.0019 (14)
C390.017 (2)0.014 (2)0.012 (2)0.0041 (17)0.0022 (17)0.0051 (18)
C190.016 (2)0.015 (2)0.009 (2)0.0034 (17)0.0010 (17)0.0008 (17)
C260.0094 (19)0.014 (2)0.009 (2)0.0010 (16)0.0019 (16)0.0022 (17)
C160.023 (2)0.018 (2)0.013 (2)0.0036 (19)0.0018 (19)0.0033 (18)
C200.016 (2)0.014 (2)0.013 (2)0.0024 (17)0.0026 (17)0.0024 (17)
C130.021 (2)0.015 (2)0.010 (2)0.0007 (18)0.0033 (18)0.0007 (17)
C270.019 (2)0.012 (2)0.010 (2)0.0004 (17)0.0016 (17)0.0010 (17)
C140.013 (2)0.011 (2)0.010 (2)0.0027 (16)0.0008 (16)0.0011 (16)
C250.011 (2)0.010 (2)0.013 (2)0.0013 (16)0.0007 (16)0.0006 (17)
C170.026 (2)0.011 (2)0.016 (2)0.0021 (18)0.0032 (19)0.0027 (18)
C280.018 (2)0.009 (2)0.009 (2)0.0009 (16)0.0009 (17)0.0005 (16)
C290.013 (2)0.010 (2)0.013 (2)0.0006 (16)0.0026 (17)0.0008 (17)
C110.019 (2)0.012 (2)0.006 (2)0.0015 (17)0.0012 (17)0.0015 (16)
C100.015 (2)0.011 (2)0.013 (2)0.0004 (16)0.0002 (17)0.0010 (17)
C60.016 (2)0.013 (2)0.015 (2)0.0029 (17)0.0019 (18)0.0025 (18)
C70.011 (2)0.011 (2)0.015 (2)0.0008 (16)0.0027 (17)0.0006 (17)
C10.015 (2)0.011 (2)0.019 (2)0.0008 (17)0.0009 (18)0.0035 (18)
C120.0106 (19)0.012 (2)0.011 (2)0.0005 (16)0.0024 (16)0.0007 (17)
C150.018 (2)0.017 (2)0.009 (2)0.0005 (17)0.0011 (17)0.0002 (18)
C300.018 (2)0.013 (2)0.009 (2)0.0024 (17)0.0006 (17)0.0027 (17)
C80.024 (2)0.012 (2)0.017 (2)0.0014 (18)0.0004 (19)0.0027 (19)
C310.011 (2)0.013 (2)0.021 (3)0.0017 (17)0.0033 (17)0.0001 (18)
C220.027 (3)0.010 (2)0.022 (3)0.0043 (18)0.004 (2)0.0017 (19)
C230.024 (2)0.018 (2)0.016 (2)0.0026 (19)0.0020 (19)0.0049 (19)
C240.018 (2)0.018 (2)0.011 (2)0.0009 (18)0.0012 (17)0.0015 (18)
C90.018 (2)0.014 (2)0.009 (2)0.0018 (17)0.0029 (17)0.0004 (17)
C380.016 (2)0.016 (2)0.019 (2)0.0026 (17)0.0010 (18)0.0039 (19)
C330.016 (2)0.013 (2)0.018 (2)0.0001 (17)0.0012 (18)0.0063 (18)
C50.024 (2)0.012 (2)0.021 (3)0.0036 (18)0.004 (2)0.0026 (19)
C400.032 (3)0.013 (2)0.016 (2)0.003 (2)0.002 (2)0.0004 (19)
C320.026 (3)0.013 (2)0.021 (3)0.0004 (19)0.001 (2)0.0007 (19)
C340.025 (3)0.016 (2)0.026 (3)0.003 (2)0.002 (2)0.005 (2)
C40.036 (3)0.012 (2)0.024 (3)0.001 (2)0.004 (2)0.008 (2)
C180.027 (3)0.016 (2)0.015 (2)0.0018 (19)0.0003 (19)0.0048 (19)
C20.029 (3)0.015 (2)0.019 (3)0.004 (2)0.004 (2)0.0023 (19)
C30.029 (3)0.021 (3)0.019 (3)0.001 (2)0.005 (2)0.011 (2)
C210.028 (3)0.013 (2)0.016 (2)0.0007 (19)0.003 (2)0.0024 (18)
C420.033 (3)0.021 (3)0.021 (3)0.002 (2)0.008 (2)0.008 (2)
C350.044 (3)0.017 (3)0.028 (3)0.003 (2)0.003 (2)0.013 (2)
C360.052 (4)0.028 (3)0.019 (3)0.002 (3)0.007 (3)0.015 (2)
C370.035 (3)0.020 (3)0.018 (3)0.003 (2)0.004 (2)0.006 (2)
Geometric parameters (Å, º) top
Cu2—O21.920 (3)C17—C181.364 (7)
Cu2—O31.877 (3)C28—H28A0.9700
Cu2—O111.940 (3)C28—H28B0.9700
Cu2—O82.703 (4)C28—C291.522 (6)
Cu2—N21.961 (4)C29—H290.9800
Cu1—O52.749 (3)C29—C301.510 (6)
Cu1—O21.916 (3)C11—H11A0.9700
Cu1—O101.982 (3)C11—H11B0.9700
Cu1—O11.878 (3)C11—C101.509 (6)
Cu1—N11.966 (4)C10—H100.9800
Cu3—O51.907 (3)C10—C91.513 (6)
Cu3—O41.873 (3)C6—C71.458 (6)
Cu3—O81.957 (3)C6—C11.427 (7)
Cu3—N31.947 (4)C6—C51.424 (6)
Cu4—O51.921 (3)C7—C81.506 (6)
Cu4—O71.955 (3)C1—C21.415 (7)
Cu4—O61.869 (3)C15—H150.9300
Cu4—N41.962 (4)C30—H30A0.9700
O5—C291.424 (5)C30—H30B0.9700
O2—C101.432 (5)C8—H8A0.9600
O10—C391.244 (6)C8—H8B0.9600
O7—C411.251 (5)C8—H8C0.9600
O3—C191.313 (5)C31—C331.461 (7)
O4—C201.319 (5)C31—C321.511 (7)
O1—C11.317 (5)C22—H220.9300
O6—C381.318 (6)C22—C231.403 (7)
O11—C391.248 (6)C22—C211.373 (7)
O8—C411.266 (6)C23—H230.9300
N1—C71.300 (6)C23—C241.369 (7)
N1—C91.472 (6)C24—H240.9300
C41—C421.503 (6)C9—H9A0.9700
N3—C261.291 (6)C9—H9B0.9700
N3—C281.474 (5)C38—C331.426 (7)
O9—H9C0.8499C38—C371.418 (7)
O9—H9D0.8500C33—C341.417 (6)
N2—C111.476 (6)C5—H50.9300
N2—C121.297 (6)C5—C41.374 (7)
N4—C301.467 (5)C40—H40A0.9600
N4—C311.299 (6)C40—H40B0.9600
C39—C401.520 (6)C40—H40C0.9600
C19—C141.424 (6)C32—H32A0.9600
C19—C181.414 (7)C32—H32B0.9600
C26—C271.512 (6)C32—H32C0.9600
C26—C251.472 (6)C34—H340.9300
C16—H160.9300C34—C351.366 (7)
C16—C171.399 (7)C4—H40.9300
C16—C151.371 (7)C4—C31.385 (8)
C20—C251.427 (6)C18—H180.9300
C20—C211.415 (6)C2—H20.9300
C13—H13A0.9600C2—C31.376 (7)
C13—H13B0.9600C3—H30.9300
C13—H13C0.9600C21—H210.9300
C13—C121.508 (6)C42—H42A0.9600
C27—H27A0.9600C42—H42B0.9600
C27—H27B0.9600C42—H42C0.9600
C27—H27C0.9600C35—H350.9300
C14—C121.466 (6)C35—C361.389 (8)
C14—C151.412 (6)C36—H360.9300
C25—C241.409 (6)C36—C371.377 (7)
C17—H170.9300C37—H370.9300
O2—Cu2—O1196.89 (14)C30—C29—C28112.6 (4)
O2—Cu2—O884.89 (12)C30—C29—H29109.3
O2—Cu2—N285.74 (14)N2—C11—H11A110.2
O3—Cu2—O2173.00 (15)N2—C11—H11B110.2
O3—Cu2—O1186.73 (14)N2—C11—C10107.7 (3)
O3—Cu2—O889.68 (13)H11A—C11—H11B108.5
O3—Cu2—N292.70 (15)C10—C11—H11A110.2
O11—Cu2—O882.40 (13)C10—C11—H11B110.2
O11—Cu2—N2161.66 (15)O2—C10—C11107.7 (4)
N2—Cu2—O8115.93 (13)O2—C10—H10109.6
O2—Cu1—O580.48 (12)O2—C10—C9108.7 (4)
O2—Cu1—O1095.10 (14)C11—C10—H10109.6
O2—Cu1—N185.01 (14)C11—C10—C9111.6 (4)
O10—Cu1—O583.75 (13)C9—C10—H10109.6
O1—Cu1—O597.68 (12)C1—C6—C7123.5 (4)
O1—Cu1—O2176.33 (14)C5—C6—C7119.2 (4)
O1—Cu1—O1087.83 (14)C5—C6—C1117.4 (4)
O1—Cu1—N192.51 (15)N1—C7—C6121.3 (4)
N1—Cu1—O5106.38 (13)N1—C7—C8119.3 (4)
N1—Cu1—O10169.71 (16)C6—C7—C8119.4 (4)
O5—Cu3—O892.44 (14)O1—C1—C6125.6 (4)
O5—Cu3—N386.17 (14)O1—C1—C2116.1 (4)
O4—Cu3—O5177.07 (15)C2—C1—C6118.3 (4)
O4—Cu3—O888.43 (14)N2—C12—C13120.5 (4)
O4—Cu3—N393.29 (15)N2—C12—C14121.3 (4)
N3—Cu3—O8173.28 (15)C14—C12—C13118.1 (4)
O5—Cu4—O796.93 (14)C16—C15—C14123.5 (4)
O5—Cu4—N484.04 (14)C16—C15—H15118.2
O7—Cu4—N4164.11 (15)C14—C15—H15118.2
O6—Cu4—O5170.48 (14)N4—C30—C29108.0 (4)
O6—Cu4—O787.96 (14)N4—C30—H30A110.1
O6—Cu4—N493.50 (15)N4—C30—H30B110.1
Cu3—O5—Cu198.74 (12)C29—C30—H30A110.1
Cu3—O5—Cu4129.24 (17)C29—C30—H30B110.1
Cu4—O5—Cu195.83 (12)H30A—C30—H30B108.4
C29—O5—Cu1116.7 (2)C7—C8—H8A109.5
C29—O5—Cu3108.9 (3)C7—C8—H8B109.5
C29—O5—Cu4107.0 (2)C7—C8—H8C109.5
Cu1—O2—Cu2129.60 (17)H8A—C8—H8B109.5
C10—O2—Cu2105.8 (3)H8A—C8—H8C109.5
C10—O2—Cu1108.9 (3)H8B—C8—H8C109.5
C39—O10—Cu1132.3 (3)N4—C31—C33122.0 (4)
C41—O7—Cu4129.8 (3)N4—C31—C32118.8 (4)
C19—O3—Cu2128.0 (3)C33—C31—C32119.2 (4)
C20—O4—Cu3126.4 (3)C23—C22—H22119.8
C1—O1—Cu1127.5 (3)C21—C22—H22119.8
C38—O6—Cu4126.8 (3)C21—C22—C23120.3 (4)
C39—O11—Cu2133.4 (3)C22—C23—H23120.8
Cu3—O8—Cu2113.47 (15)C24—C23—C22118.5 (5)
C41—O8—Cu295.5 (3)C24—C23—H23120.8
C41—O8—Cu3130.7 (3)C25—C24—H24118.4
C7—N1—Cu1128.8 (3)C23—C24—C25123.1 (4)
C7—N1—C9119.5 (4)C23—C24—H24118.4
C9—N1—Cu1111.1 (3)N1—C9—C10108.4 (4)
O7—C41—O8125.8 (4)N1—C9—H9A110.0
O7—C41—C42118.0 (4)N1—C9—H9B110.0
O8—C41—C42116.1 (4)C10—C9—H9A110.0
C26—N3—Cu3128.5 (3)C10—C9—H9B110.0
C26—N3—C28121.0 (4)H9A—C9—H9B108.4
C28—N3—Cu3110.0 (3)O6—C38—C33126.0 (4)
H9C—O9—H9D104.5O6—C38—C37115.9 (4)
C11—N2—Cu2109.6 (3)C37—C38—C33118.1 (4)
C12—N2—Cu2129.1 (3)C38—C33—C31123.0 (4)
C12—N2—C11121.3 (4)C34—C33—C31119.3 (4)
C30—N4—Cu4111.4 (3)C34—C33—C38117.6 (5)
C31—N4—Cu4127.9 (3)C6—C5—H5118.7
C31—N4—C30120.3 (4)C4—C5—C6122.6 (5)
O10—C39—O11127.6 (4)C4—C5—H5118.7
O10—C39—C40117.2 (4)C39—C40—H40A109.5
O11—C39—C40115.2 (4)C39—C40—H40B109.5
O3—C19—C14125.2 (4)C39—C40—H40C109.5
O3—C19—C18116.8 (4)H40A—C40—H40B109.5
C18—C19—C14117.9 (4)H40A—C40—H40C109.5
N3—C26—C27120.4 (4)H40B—C40—H40C109.5
N3—C26—C25121.6 (4)C31—C32—H32A109.5
C25—C26—C27118.0 (4)C31—C32—H32B109.5
C17—C16—H16120.8C31—C32—H32C109.5
C15—C16—H16120.8H32A—C32—H32B109.5
C15—C16—C17118.3 (4)H32A—C32—H32C109.5
O4—C20—C25125.8 (4)H32B—C32—H32C109.5
O4—C20—C21116.8 (4)C33—C34—H34118.5
C21—C20—C25117.4 (4)C35—C34—C33122.9 (5)
H13A—C13—H13B109.5C35—C34—H34118.5
H13A—C13—H13C109.5C5—C4—H4120.3
H13B—C13—H13C109.5C5—C4—C3119.5 (5)
C12—C13—H13A109.5C3—C4—H4120.3
C12—C13—H13B109.5C19—C18—H18118.8
C12—C13—H13C109.5C17—C18—C19122.5 (4)
C26—C27—H27A109.5C17—C18—H18118.8
C26—C27—H27B109.5C1—C2—H2119.0
C26—C27—H27C109.5C3—C2—C1122.0 (5)
H27A—C27—H27B109.5C3—C2—H2119.0
H27A—C27—H27C109.5C4—C3—H3119.9
H27B—C27—H27C109.5C2—C3—C4120.2 (5)
C19—C14—C12123.5 (4)C2—C3—H3119.9
C15—C14—C19117.5 (4)C20—C21—H21118.9
C15—C14—C12119.0 (4)C22—C21—C20122.2 (5)
C20—C25—C26122.2 (4)C22—C21—H21118.9
C24—C25—C26119.4 (4)C41—C42—H42A109.5
C24—C25—C20118.4 (4)C41—C42—H42B109.5
C16—C17—H17119.9C41—C42—H42C109.5
C18—C17—C16120.3 (4)H42A—C42—H42B109.5
C18—C17—H17119.9H42A—C42—H42C109.5
N3—C28—H28A110.4H42B—C42—H42C109.5
N3—C28—H28B110.4C34—C35—H35120.3
N3—C28—C29106.5 (3)C34—C35—C36119.3 (5)
H28A—C28—H28B108.6C36—C35—H35120.3
C29—C28—H28A110.4C35—C36—H36119.9
C29—C28—H28B110.4C37—C36—C35120.2 (5)
O5—C29—C28108.0 (3)C37—C36—H36119.9
O5—C29—H29109.3C38—C37—H37119.1
O5—C29—C30108.4 (4)C36—C37—C38121.8 (5)
C28—C29—H29109.3C36—C37—H37119.1
Cu2—O2—C10—C1150.9 (4)N2—C11—C10—O247.4 (5)
Cu2—O2—C10—C9172.0 (3)N2—C11—C10—C9166.7 (4)
Cu2—O3—C19—C142.5 (7)N4—Cu4—O6—C387.3 (4)
Cu2—O3—C19—C18178.5 (3)N4—C31—C33—C380.5 (7)
Cu2—O11—C39—O104.0 (8)N4—C31—C33—C34179.5 (4)
Cu2—O11—C39—C40175.8 (3)C19—C14—C12—N21.8 (7)
Cu2—O8—C41—O790.7 (5)C19—C14—C12—C13178.8 (4)
Cu2—O8—C41—C4285.7 (4)C19—C14—C15—C161.5 (7)
Cu2—N2—C11—C1021.0 (4)C26—N3—C28—C29158.3 (4)
Cu2—N2—C12—C13178.5 (3)C26—C25—C24—C23178.9 (4)
Cu2—N2—C12—C142.0 (6)C16—C17—C18—C190.2 (8)
Cu1—O5—C29—C2866.2 (4)C20—C25—C24—C230.7 (7)
Cu1—O5—C29—C3056.0 (4)C27—C26—C25—C20167.5 (4)
Cu1—O2—C10—C11166.2 (3)C27—C26—C25—C2412.0 (6)
Cu1—O2—C10—C945.1 (4)C14—C19—C18—C171.3 (7)
Cu1—O10—C39—O1122.5 (8)C25—C20—C21—C220.3 (7)
Cu1—O10—C39—C40157.7 (4)C17—C16—C15—C140.1 (7)
Cu1—O1—C1—C64.2 (7)C28—N3—C26—C272.4 (6)
Cu1—O1—C1—C2174.4 (3)C28—N3—C26—C25177.3 (4)
Cu1—N1—C7—C68.2 (6)C28—C29—C30—N4160.4 (4)
Cu1—N1—C7—C8171.3 (3)C11—N2—C12—C130.8 (6)
Cu1—N1—C9—C1018.5 (4)C11—N2—C12—C14179.7 (4)
Cu3—O5—C29—C2844.4 (4)C11—C10—C9—N1159.8 (4)
Cu3—O5—C29—C30166.7 (3)C6—C1—C2—C30.8 (7)
Cu3—O4—C20—C2514.1 (7)C6—C5—C4—C31.3 (8)
Cu3—O4—C20—C21167.4 (3)C7—N1—C9—C10169.2 (4)
Cu3—O8—C41—O736.9 (7)C7—C6—C1—O11.4 (7)
Cu3—O8—C41—C42146.7 (4)C7—C6—C1—C2179.9 (4)
Cu3—N3—C26—C27168.8 (3)C7—C6—C5—C4179.0 (5)
Cu3—N3—C26—C2511.5 (6)C1—C6—C7—N10.8 (7)
Cu3—N3—C28—C2929.0 (4)C1—C6—C7—C8178.7 (4)
Cu4—O5—C29—C28172.1 (3)C1—C6—C5—C41.1 (7)
Cu4—O5—C29—C3049.8 (4)C1—C2—C3—C40.6 (8)
Cu4—O7—C41—O87.7 (7)C12—N2—C11—C10160.9 (4)
Cu4—O7—C41—C42168.7 (3)C12—C14—C15—C16179.9 (4)
Cu4—O6—C38—C333.7 (7)C15—C16—C17—C181.0 (7)
Cu4—O6—C38—C37175.7 (3)C15—C14—C12—N2176.6 (4)
Cu4—N4—C30—C2913.5 (4)C15—C14—C12—C132.9 (6)
Cu4—N4—C31—C337.3 (6)C30—N4—C31—C33178.8 (4)
Cu4—N4—C31—C32172.6 (3)C30—N4—C31—C321.1 (6)
O5—Cu1—O1—C198.9 (4)C31—N4—C30—C29173.8 (4)
O5—C29—C30—N441.0 (5)C31—C33—C34—C35178.8 (5)
O2—C10—C9—N141.1 (5)C22—C23—C24—C250.2 (7)
O10—Cu1—O1—C1177.7 (4)C23—C22—C21—C200.2 (8)
O7—Cu4—O6—C38171.5 (4)C9—N1—C7—C6179.0 (4)
O3—C19—C14—C120.6 (7)C9—N1—C7—C80.5 (6)
O3—C19—C14—C15178.9 (4)C38—C33—C34—C351.3 (8)
O3—C19—C18—C17179.6 (4)C33—C38—C37—C360.6 (8)
O4—C20—C25—C260.4 (7)C33—C34—C35—C361.2 (9)
O4—C20—C25—C24179.2 (4)C5—C6—C7—N1179.4 (4)
O4—C20—C21—C22178.9 (4)C5—C6—C7—C81.2 (6)
O1—C1—C2—C3179.4 (5)C5—C6—C1—O1178.5 (4)
O6—C38—C33—C311.5 (7)C5—C6—C1—C20.0 (7)
O6—C38—C33—C34178.4 (4)C5—C4—C3—C20.5 (8)
O6—C38—C37—C36178.8 (5)C32—C31—C33—C38179.4 (4)
O11—Cu2—O3—C19159.8 (4)C32—C31—C33—C340.5 (7)
O8—Cu2—O3—C19117.8 (4)C34—C35—C36—C370.8 (9)
O8—Cu3—O4—C20161.1 (4)C18—C19—C14—C12179.6 (4)
N1—Cu1—O1—C18.0 (4)C18—C19—C14—C152.1 (6)
N3—Cu3—O4—C2012.3 (4)C21—C20—C25—C26178.9 (4)
N3—C26—C25—C2012.8 (6)C21—C20—C25—C240.7 (6)
N3—C26—C25—C24167.7 (4)C21—C22—C23—C240.3 (7)
N3—C28—C29—O547.9 (4)C35—C36—C37—C380.5 (9)
N3—C28—C29—C30167.5 (4)C37—C38—C33—C31179.1 (4)
N2—Cu2—O3—C191.9 (4)C37—C38—C33—C340.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9C···O40.852.082.894 (5)159
O9—H9C···O80.852.563.158 (5)128
O9—H9D···O30.852.082.928 (5)175
C28—H28A···O10.972.583.427 (6)146
C29—H29···O1i0.982.603.424 (5)142
C10—H10···O6ii0.982.513.351 (6)144
C8—H8A···O9iii0.962.443.372 (6)163
C9—H9B···O60.972.653.521 (6)150
C32—H32A···O9iii0.962.383.304 (6)162
C42—H42A···O11i0.962.663.256 (7)121
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

Authors' contributions are as follows: Conceptualization, MD, MG, MGN, ASD and IET; investigation, ASD and IET; writing (original draft), MG; writing (review and editing of the manuscript), MG, IET, MNG and MD; formal analysis, IET, JO and SC; resources, MG and MD; supervision, MG and IET.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAly, M. M. (1999). J. Coord. Chem. 47, 505–521.  Web of Science CrossRef CAS Google Scholar
First citationAsadi, Z., Golchin, M., Eigner, V., Dusek, M. & Amirghofran, Z. (2018). J. Photochem. Photobiol. Chem. 361, 93–104.  Web of Science CSD CrossRef CAS Google Scholar
First citationBanerjee, A. & Chattopadhyay, S. (2019). Polyhedron, 159, 1–11.  Web of Science CrossRef CAS Google Scholar
First citationBanerjee, S., Nandy, M., Sen, S., Mandal, S., Rosair, G. M., Slawin, A. M. Z., Gómez García, C. J., Clemente-Juan, J. M., Zangrando, E., Guidolin, N. & Mitra, S. (2011). Dalton Trans. 40, 1652–1661.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBasak, S., Sen, S., Rosair, G., Desplanches, C., Garribba, E. & Mitra, S. (2009). Aust. J. Chem. 62, 366–375.  Web of Science CSD CrossRef CAS Google Scholar
First citationBiswas, R., Diaz, C., Bauzá, A., Frontera, A. & Ghosh, A. (2013). Dalton Trans. 42, 12274–12283.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, A., Goswami, S. & Ghosh, A. (2018). New J. Chem. 42, 19377–19389.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, A., Parkin, A. & Murrie, M. (2006). Dalton Trans. pp. 3627–3628.  Web of Science CSD CrossRef Google Scholar
First citationFernandes, C., Neves, A., Vencato, I., Bortoluzzi, A. J., Drago, V., Weyhermüller, T. & Rentschler, E. (2000). Chem. Lett. 29, 540–541.  Web of Science CSD CrossRef Google Scholar
First citationGheorghe, R., Ionita, G. A., Maxim, C., Caneschi, A., Sorace, L. & Andruh, M. (2019). Polyhedron, 171, 269–278.  Web of Science CSD CrossRef CAS Google Scholar
First citationGhosh, A. K., Bauzá, A., Bertolasi, V., Frontera, A. & Ray, D. (2013). Polyhedron, 53, 32–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationGhosh, A. K., Clérac, R., Mathonière, C. & Ray, D. (2013). Polyhedron, 54, 196–200.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaldar, S., Patra, A., Vijaykumar, G., Carrella, L. & Bera, M. (2016). Polyhedron, 117, 542–551.  Web of Science CSD CrossRef CAS Google Scholar
First citationHari, N., Ghosh, S. & Mohanta, S. (2019). Inorg. Chim. Acta, 491, 34–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationKébé, M., Thiam, I. E., Sow, M. M., Diouf, O., Barry, A. H., Sall, A. S., Retailleau, P. & Gaye, M. (2021). Acta Cryst. E77, 708–713.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, S., Wang, S., Cao, F., Fu, H., Li, D. & Dou, J. (2012). RSC Adv. 2, 1310–1313.  Web of Science CSD CrossRef CAS Google Scholar
First citationLukov, V. V., Shcherbakov, I. N., Levchenkov, S. I., Popov, L. D. & Pankov, I. V. (2017). Russ. J. Coord. Chem. 43, 1–20.  Web of Science CrossRef CAS Google Scholar
First citationMamour, S., Mayoro, D., Elhadj Ibrahima, T., Mohamed, G., Aliou Hamady, B. & Ellena, J. (2018). Acta Cryst. E74, 642–645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManna, S., Zangrando, E., Puschmann, H. & Manna, S. C. (2019). Polyhedron, 162, 285–292.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaurya, M. R., Bisht, M., Chaudhary, N., Avecilla, F., Kumar, U. & Hsu, H.-F. (2013). Polyhedron, 54, 180–188.  Web of Science CSD CrossRef CAS Google Scholar
First citationMitra, M., Maji, A. K., Ghosh, B. K., Raghavaiah, P., Ribas, J. & Ghosh, R. (2014). Polyhedron, 67, 19–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationMonfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791–3795.  Web of Science CSD CrossRef CAS Google Scholar
First citationNesterova, O. V., Bondarenko, O. E., Pombeiro, A. J. L. & Nesterov, D. S. (2020). Dalton Trans. 49, 4710–4724.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOsypiuk, D., Cristóvão, B. & Bartyzel, A. (2020). Crystals, 10, 1004.  Web of Science CSD CrossRef Google Scholar
First citationPatra, A., Haldar, S., Kumar, G. V., Carrella, L., Ghosh, A. K. & Bera, M. (2015). Inorg. Chim. Acta, 436, 195–204.  Web of Science CSD CrossRef CAS Google Scholar
First citationPopov, L. D., Levchenkov, S. I., Shcherbakov, I. N., Lukov, V. V., Suponitsky, K. Y. & Kogan, V. A. (2012). Inorg. Chem. Commun. 17, 1–4.  Web of Science CSD CrossRef CAS Google Scholar
First citationSall, O., Tamboura, F. B., Sy, A., Barry, A. H., Thiam, E. I., Gaye, M. & Ellena, J. (2019). Acta Cryst. E75, 1069–1075.  Web of Science CSD CrossRef ICSD IUCr Journals Google Scholar
First citationSanyal, R., Ketkov, S., Purkait, S., Mautner, F. A., Zhigulin, G. & Das, D. (2017). New J. Chem. 41, 8586–8597.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarr, M., Diop, M., Thiam, I. E., Gaye, M., Barry, A. H., Alvarez, N. & Ellena, J. (2018a). Eur. J. Chem. 9, 67–73.  CSD CrossRef CAS Google Scholar
First citationSarr, M., Diop, M., Thiam, E. I., Gaye, M., Barry, A. H., Orton, J. B. & Coles, S. J. (2018b). Acta Cryst. E74, 1862–1866.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShit, S., Nandy, M., Rosair, G., Fallah, M. S. E., Ribas, J., Garribba, E. & Mitra, S. (2013). Polyhedron, 52, 963–969.  Web of Science CSD CrossRef CAS Google Scholar
First citationSiluvai, G. S. & Murthy, N. N. (2009). Polyhedron, 28, 2149–2156.  Web of Science CSD CrossRef CAS Google Scholar
First citationSingh, Y. P., Patel, R. N., Singh, Y., Choquesillo-Lazarte, D. & Butcher, R. J. (2017). Dalton Trans. 46, 2803–2820.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSong, Y., Gamez, P., Roubeau, O., Lutz, M., Spek, A. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 2924–2928.  Web of Science CSD CrossRef Google Scholar
First citationXie, Q.-W., Chen, X., Hu, K.-Q., Wang, Y.-T., Cui, A.-L. & Kou, H.-Z. (2012). Polyhedron, 38, 213–217.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds