Download citation
Download citation
link to html
Methyl β-lactoside [methyl β-D-galacto­pyranosyl-(1→4)-β-D-gluco­pyran­oside] monohydrate, C13H24O11·H2O, (I), was obtained via spontaneous transformation of methyl β-lactoside methanol solvate, (II), during air-drying. Cremer–Pople puckering parameters indicate that the β-D-Galp (β-D-galacto­pyranos­yl) and β-D-Glcp (β-D-gluco­pyranos­yl) rings in (I) adopt slightly distorted 4C1 chair conformations, with the former distorted towards a boat form (BC1,C4) and the latter towards a twist-boat form (O5SC2). Puckering parameters for (I) and (II) indicate that the conformation of the βGalp ring is slightly more affected than the βGlcp ring by the solvomorphism. Conformations of the terminal O-gly­co­sidic linkages in (I) and (II) are virtually identical, whereas those of the inter­nal O-glycosidic linkage show torsion-angle changes of 6° in both C—O bonds. The exocyclic hy­droxy­methyl group in the βGalp residue adopts a gt conformation (C4′ anti to O6′) in both (I) and (II), whereas that in the βGlcp residue adopts a gg (gauchegauche) conformation (H5 anti to O6) in (II) and a gt (gauchetrans) conformation (C4 anti to O6) in (I). The latter conformational change is critical to the solvomorphism in that it allows water to participate in three hydrogen bonds in (I) as opposed to only two hydrogen bonds in (II), potentially producing a more energetically stable structure for (I) than for (II). Visual inspection of the crystalline lattice of (II) reveals channels in which methanol solvent resides and through which solvent might exchange during solvomorphism. These channels are less apparent in the crystalline lattice of (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621009499/eq3002sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621009499/eq3002Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229621009499/eq3002sup3.pdf
Statistical analysis of bond distances, PXRD diffractograms and void space analysis/figures

CCDC reference: 2109224

Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

Methyl β-lactoside monohydrate top
Crystal data top
C13H24O11·H2OF(000) = 400
Mr = 374.34Dx = 1.517 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 4.6250 (1) ÅCell parameters from 9961 reflections
b = 24.0147 (7) Åθ = 3.7–70.6°
c = 7.6617 (2) ŵ = 1.18 mm1
β = 105.595 (1)°T = 120 K
V = 819.64 (4) Å3Tablet, colourless
Z = 20.18 × 0.17 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
3056 independent reflections
Radiation source: Ius micro-focus3031 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.025
φ and ω scansθmax = 70.6°, θmin = 3.7°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 55
Tmin = 0.581, Tmax = 0.738k = 2929
14059 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.045P)2 + 0.1553P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3056 reflectionsΔρmax = 0.31 e Å3
263 parametersΔρmin = 0.16 e Å3
2 restraintsAbsolute structure: Flack x determined using 1459 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.05 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6945 (4)0.69849 (7)1.0028 (2)0.0275 (4)
O20.8779 (4)0.59193 (7)1.1369 (2)0.0273 (3)
H2O0.965 (7)0.5620 (14)1.139 (4)0.028 (7)*
O30.5847 (4)0.50682 (7)0.8846 (2)0.0267 (3)
H3O0.621 (7)0.4792 (15)0.838 (4)0.030 (8)*
O50.5942 (4)0.66710 (6)0.7138 (2)0.0220 (3)
O60.6390 (4)0.69673 (7)0.3572 (2)0.0326 (4)
H6O0.669 (8)0.6929 (14)0.249 (5)0.042 (9)*
O1'0.6438 (3)0.53275 (6)0.5092 (2)0.0213 (3)
O2'0.2953 (4)0.50780 (7)0.1565 (2)0.0242 (3)
H2O'0.350 (10)0.5057 (19)0.072 (6)0.058 (12)*
O3'0.2417 (4)0.39315 (7)0.0577 (2)0.0237 (3)
H3O'0.382 (10)0.3860 (17)0.042 (5)0.046 (11)*
O4'0.7291 (3)0.35632 (7)0.3451 (2)0.0216 (3)
H4O'0.764 (6)0.3249 (13)0.359 (3)0.013 (6)*
O5'0.6327 (3)0.44224 (6)0.5922 (2)0.0205 (3)
O6'0.6741 (4)0.37161 (8)0.8886 (2)0.0309 (4)
H6O'0.873 (8)0.3796 (15)0.944 (5)0.040 (8)*
C10.7704 (5)0.65762 (9)0.8945 (3)0.0224 (4)
H10.9891030.6595800.9012840.027*
C20.6930 (5)0.60125 (9)0.9609 (3)0.0212 (4)
H20.4803660.6028110.9679170.025*
C30.7160 (5)0.55488 (9)0.8288 (3)0.0207 (4)
H30.9328360.5471900.8404800.025*
C40.5624 (5)0.57059 (9)0.6322 (3)0.0193 (4)
H40.3396760.5702350.6120760.023*
C50.6628 (5)0.62815 (9)0.5886 (3)0.0207 (4)
H50.8843660.6278420.6037190.025*
C60.5041 (5)0.64700 (9)0.3986 (3)0.0241 (4)
H6A0.5174980.6175250.3107370.029*
H6B0.2892880.6537660.3890900.029*
C70.8300 (9)0.75158 (11)0.9912 (4)0.0445 (7)
HA0.8047410.7611260.8635630.067*
HC1.0444190.7498641.0539920.067*
HB0.7333550.7800401.0479150.067*
C1'0.4761 (5)0.48398 (9)0.4699 (3)0.0190 (4)
H1'0.2709490.4898270.4862520.023*
C2'0.4547 (5)0.46614 (9)0.2760 (3)0.0191 (4)
H2'0.6606670.4617380.2594420.023*
C3'0.2871 (4)0.41071 (9)0.2399 (3)0.0192 (4)
H3'0.0842050.4168730.2594370.023*
C4'0.4446 (5)0.36713 (8)0.3764 (3)0.0194 (4)
H4'0.3228790.3321450.3581220.023*
C5'0.4756 (5)0.38959 (9)0.5674 (3)0.0194 (4)
H5'0.2712750.3949690.5855970.023*
C6'0.6551 (5)0.35079 (10)0.7124 (3)0.0234 (4)
H6B'0.5586610.3136570.6982740.028*
H6A'0.8598550.3464370.6972570.028*
O1W0.8826 (4)0.24832 (8)0.3889 (3)0.0390 (4)
H1WA0.738 (9)0.2209 (19)0.366 (7)0.078 (14)*
H1WB1.050 (8)0.2317 (16)0.471 (5)0.054 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0444 (10)0.0198 (8)0.0198 (8)0.0016 (7)0.0108 (7)0.0025 (6)
O20.0329 (8)0.0269 (8)0.0197 (7)0.0076 (7)0.0026 (6)0.0022 (6)
O30.0421 (9)0.0189 (7)0.0216 (7)0.0016 (7)0.0130 (7)0.0021 (6)
O50.0288 (8)0.0198 (7)0.0172 (7)0.0032 (6)0.0057 (6)0.0007 (6)
O60.0498 (11)0.0259 (9)0.0227 (8)0.0039 (8)0.0107 (8)0.0009 (7)
O1'0.0233 (7)0.0201 (7)0.0216 (7)0.0016 (6)0.0084 (6)0.0038 (6)
O2'0.0267 (8)0.0250 (7)0.0202 (7)0.0069 (6)0.0053 (6)0.0029 (6)
O3'0.0204 (8)0.0322 (8)0.0180 (7)0.0005 (6)0.0044 (6)0.0056 (6)
O4'0.0205 (7)0.0195 (8)0.0272 (8)0.0016 (6)0.0104 (6)0.0009 (6)
O5'0.0218 (7)0.0196 (7)0.0184 (7)0.0022 (5)0.0024 (6)0.0008 (5)
O6'0.0220 (8)0.0529 (11)0.0177 (7)0.0008 (7)0.0051 (6)0.0018 (7)
C10.0252 (10)0.0226 (10)0.0187 (10)0.0012 (8)0.0046 (8)0.0023 (8)
C20.0216 (10)0.0229 (11)0.0186 (10)0.0007 (8)0.0049 (8)0.0013 (8)
C30.0227 (10)0.0195 (10)0.0198 (10)0.0008 (7)0.0055 (8)0.0001 (7)
C40.0213 (10)0.0200 (9)0.0171 (10)0.0007 (8)0.0059 (8)0.0023 (8)
C50.0233 (10)0.0202 (10)0.0190 (10)0.0011 (8)0.0062 (8)0.0029 (8)
C60.0295 (11)0.0234 (11)0.0190 (10)0.0004 (8)0.0059 (8)0.0011 (8)
C70.083 (2)0.0225 (12)0.0317 (13)0.0111 (13)0.0212 (14)0.0059 (10)
C1'0.0189 (9)0.0184 (9)0.0197 (10)0.0005 (8)0.0051 (8)0.0017 (7)
C2'0.0174 (9)0.0211 (9)0.0183 (9)0.0012 (8)0.0037 (7)0.0005 (8)
C3'0.0152 (9)0.0245 (10)0.0182 (10)0.0014 (7)0.0050 (8)0.0032 (8)
C4'0.0169 (9)0.0204 (10)0.0222 (10)0.0023 (7)0.0074 (8)0.0024 (8)
C5'0.0196 (9)0.0195 (9)0.0200 (9)0.0027 (7)0.0068 (8)0.0013 (8)
C6'0.0246 (10)0.0263 (10)0.0195 (9)0.0019 (8)0.0062 (8)0.0012 (8)
O1W0.0337 (9)0.0249 (8)0.0568 (12)0.0012 (7)0.0094 (9)0.0071 (8)
Geometric parameters (Å, º) top
O1—C11.390 (3)C3—C41.530 (3)
O1—C71.434 (3)C3—H31.0000
O2—C21.407 (3)C4—C51.524 (3)
O2—H2O0.82 (3)C4—H41.0000
O3—C31.422 (3)C5—C61.512 (3)
O3—H3O0.79 (4)C5—H51.0000
O5—C11.423 (3)C6—H6A0.9900
O5—C51.435 (2)C6—H6B0.9900
O6—C61.422 (3)C7—HA0.9800
O6—H6O0.88 (4)C7—HC0.9800
O1'—C1'1.392 (3)C7—HB0.9800
O1'—C41.430 (2)C1'—C2'1.523 (3)
O2'—C2'1.421 (3)C1'—H1'1.0000
O2'—H2O'0.76 (5)C2'—C3'1.528 (3)
O3'—C3'1.419 (3)C2'—H2'1.0000
O3'—H3O'0.71 (4)C3'—C4'1.520 (3)
O4'—C4'1.424 (3)C3'—H3'1.0000
O4'—H4O'0.77 (3)C4'—C5'1.530 (3)
O5'—C1'1.429 (3)C4'—H4'1.0000
O5'—C5'1.445 (3)C5'—C6'1.515 (3)
O6'—C6'1.420 (3)C5'—H5'1.0000
O6'—H6O'0.93 (4)C6'—H6B'0.9900
C1—C21.522 (3)C6'—H6A'0.9900
C1—H11.0000O1W—H1WA0.92 (4)
C2—C31.527 (3)O1W—H1WB0.95 (3)
C2—H21.0000
C1—O1—C7113.95 (19)C5—C6—H6B109.7
C2—O2—H2O109 (2)H6A—C6—H6B108.2
C3—O3—H3O113 (2)O1—C7—HA109.5
C1—O5—C5111.99 (16)O1—C7—HC109.5
C6—O6—H6O108 (2)HA—C7—HC109.5
C1'—O1'—C4116.57 (16)O1—C7—HB109.5
C2'—O2'—H2O'106 (3)HA—C7—HB109.5
C3'—O3'—H3O'110 (3)HC—C7—HB109.5
C4'—O4'—H4O'108.7 (19)O1'—C1'—O5'107.07 (16)
C1'—O5'—C5'112.29 (15)O1'—C1'—C2'109.53 (16)
C6'—O6'—H6O'108 (2)O5'—C1'—C2'109.31 (16)
O1—C1—O5107.31 (17)O1'—C1'—H1'110.3
O1—C1—C2107.97 (17)O5'—C1'—H1'110.3
O5—C1—C2110.05 (17)C2'—C1'—H1'110.3
O1—C1—H1110.5O2'—C2'—C1'108.48 (16)
O5—C1—H1110.5O2'—C2'—C3'110.28 (16)
C2—C1—H1110.5C1'—C2'—C3'108.58 (16)
O2—C2—C1108.96 (18)O2'—C2'—H2'109.8
O2—C2—C3112.73 (18)C1'—C2'—H2'109.8
C1—C2—C3111.25 (18)C3'—C2'—H2'109.8
O2—C2—H2107.9O3'—C3'—C4'112.89 (18)
C1—C2—H2107.9O3'—C3'—C2'111.77 (17)
C3—C2—H2107.9C4'—C3'—C2'110.44 (16)
O3—C3—C2106.35 (17)O3'—C3'—H3'107.1
O3—C3—C4111.91 (18)C4'—C3'—H3'107.1
C2—C3—C4112.09 (17)C2'—C3'—H3'107.1
O3—C3—H3108.8O4'—C4'—C3'107.68 (17)
C2—C3—H3108.8O4'—C4'—C5'111.86 (17)
C4—C3—H3108.8C3'—C4'—C5'108.64 (17)
O1'—C4—C5106.40 (16)O4'—C4'—H4'109.5
O1'—C4—C3110.95 (17)C3'—C4'—H4'109.5
C5—C4—C3110.59 (17)C5'—C4'—H4'109.5
O1'—C4—H4109.6O5'—C5'—C6'106.55 (16)
C5—C4—H4109.6O5'—C5'—C4'110.39 (16)
C3—C4—H4109.6C6'—C5'—C4'112.11 (17)
O5—C5—C6108.13 (17)O5'—C5'—H5'109.2
O5—C5—C4108.03 (16)C6'—C5'—H5'109.2
C6—C5—C4112.65 (17)C4'—C5'—H5'109.2
O5—C5—H5109.3O6'—C6'—C5'111.23 (18)
C6—C5—H5109.3O6'—C6'—H6B'109.4
C4—C5—H5109.3C5'—C6'—H6B'109.4
O6—C6—C5109.72 (18)O6'—C6'—H6A'109.4
O6—C6—H6A109.7C5'—C6'—H6A'109.4
C5—C6—H6A109.7H6B'—C6'—H6A'108.0
O6—C6—H6B109.7H1WA—O1W—H1WB104 (4)
C7—O1—C1—O578.2 (2)C4—C5—C6—O6171.25 (17)
C7—O1—C1—C2163.2 (2)C4—O1'—C1'—O5'93.96 (19)
C5—O5—C1—O1177.92 (16)C4—O1'—C1'—C2'147.62 (17)
C5—O5—C1—C264.8 (2)C5'—O5'—C1'—O1'178.56 (15)
O1—C1—C2—O265.4 (2)C5'—O5'—C1'—C2'62.9 (2)
O5—C1—C2—O2177.76 (18)O1'—C1'—C2'—O2'63.7 (2)
O1—C1—C2—C3169.71 (17)O5'—C1'—C2'—O2'179.31 (15)
O5—C1—C2—C352.9 (2)O1'—C1'—C2'—C3'176.47 (16)
O2—C2—C3—O368.3 (2)O5'—C1'—C2'—C3'59.5 (2)
C1—C2—C3—O3168.95 (17)O2'—C2'—C3'—O3'57.6 (2)
O2—C2—C3—C4169.09 (18)C1'—C2'—C3'—O3'176.29 (16)
C1—C2—C3—C446.3 (2)O2'—C2'—C3'—C4'175.87 (16)
C1'—O1'—C4—C5154.47 (17)C1'—C2'—C3'—C4'57.1 (2)
C1'—O1'—C4—C385.2 (2)O3'—C3'—C4'—O4'60.0 (2)
O3—C3—C4—O1'73.8 (2)C2'—C3'—C4'—O4'66.0 (2)
C2—C3—C4—O1'166.84 (17)O3'—C3'—C4'—C5'178.70 (16)
O3—C3—C4—C5168.41 (16)C2'—C3'—C4'—C5'55.4 (2)
C2—C3—C4—C549.0 (2)C1'—O5'—C5'—C6'176.46 (16)
C1—O5—C5—C6170.91 (17)C1'—O5'—C5'—C4'61.6 (2)
C1—O5—C5—C466.9 (2)O4'—C4'—C5'—O5'62.4 (2)
O1'—C4—C5—O5178.01 (15)C3'—C4'—C5'—O5'56.3 (2)
C3—C4—C5—O557.4 (2)O4'—C4'—C5'—C6'56.2 (2)
O1'—C4—C5—C662.6 (2)C3'—C4'—C5'—C6'174.95 (17)
C3—C4—C5—C6176.81 (18)O5'—C5'—C6'—O6'60.8 (2)
O5—C5—C6—O669.4 (2)C4'—C5'—C6'—O6'178.35 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O3i0.76 (5)2.02 (5)2.763 (2)167 (5)
O2—H2O···O2ii0.82 (3)1.98 (3)2.770 (2)160 (3)
O3—H3O···O6i0.71 (4)2.04 (4)2.709 (2)156 (4)
O3—H3O···O50.79 (4)2.10 (4)2.782 (2)145 (3)
O3—H3O···O60.79 (4)2.61 (4)3.272 (3)142 (3)
O4—H4O···O1W0.77 (3)1.92 (3)2.686 (3)175 (3)
O6—H6O···O3ii0.93 (4)1.72 (4)2.647 (2)177 (3)
O6—H6O···O1i0.88 (4)1.92 (4)2.795 (2)169 (3)
O1W—H1WA···O5iii0.92 (4)1.97 (4)2.890 (2)172 (5)
O1W—H1WB···O6iv0.95 (3)1.87 (3)2.811 (3)176 (4)
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x+1, y1/2, z+1; (iv) x+2, y1/2, z+1.
Cremer–Pople structural parameters for the βGlcp and βGalp rings in (I) and (II) top
Compound/Residueφ (°)θ (°)Q (Å)q2q3
(I)/βGalp70.1681.9120.5940.0200.594
(I)/βGlcp340.0629.9470.5690.0980.560
(II)/βGalp28.1714.6750.5950.0490.593
(II)/βGlcp341.47311.9930.5580.1160.546
Select structural parameters (Å, °) in (I) and (II) top
(I)(II)
C—C bond lengthsa
1C1'—C2'1.524 (3)1.527 (3)
2C2'—C3'1.528 (3)1.531 (3)
3C3'—C4'1.520 (3)1.521 (3)
4C4'—-C5'1.530 (3)1.521 (3)
5C5'–C6'1.515 (3)1.511 (3)
6C1—C21.522 (3)1.516 (4)
7C2—C31.528 (3)1.519 (3)
8C3—C41.530 (3)1.531 (3)
9C4—C51.524 (3)1.530 (3)
10C5—C61.512 (3)1.508 (3)
C—O bond lengths
1C1'—O1'1.392 (3)1.387 (3)
2C1'—O5'1.429 (2)1.425 (3)
3C2'—O2'1.421 (3)1.414 (3)
4C3'—O3'1.419 (3)1.422 (3)
5C4'—O4'1.423 (3)1.423 (3)
6C5'—O5'1.445 (3)1.432 (3)
7C6'—O6'1.420 (3)1.426 (3)
8C1—O11.390 (3)1.384 (3)
9C1—O51.423 (2)1.413 (3)
10C2—O21.407 (2)1.418 (3)
11C3—O31.422 (3)1.421 (3)
12O1'—C41.431 (3)1.437 (3)
13C5—O51.435 (3)1.428 (3)
14C6—O61.422 (3)1.424 (3)
Internuclear distances
O3d···O5'2.782 (2)2.764 (2)
O3d···O6'ii3.272 (3)2.935 (3)
H2O···O5ai2.890 (2)
H2O···O6aiv2.811 (3)
O4'd···H2O2.686 (3)
CH3OH···O6a2.727 (3)
O4'd···CH3OH2.686 (11)
Bond angles
C5—O5—C1112.0 (2)112.0 (2)
C5'—O5'—C1'112.3 (2)112.3 (2)
C1'—O1'—C4116.5 (2)116.2 (2)
C1—O1—CH3114.0 (2)113.7 (2)
Torsion angles
C1—C2—C3—C4-46.4 (2)-44.2 (3)
C1—O5—C5—C466.9 (2)67.6 (2)
C1'—C2'—C3'—C4'-7.1 (2)-54.8 (2)
C1'—O5'—C5'—C4'61.6 (2)65.0 (2)
O5—C1—O1—CH3 (φ)-78.2 (2)-77.3 (3)
C2—C1—O1—CH3 (φ)163.2 (2)164.2 (2)
H1—C1—O1—CH3 (φ)42.244.1 (4)
O5'—C1'—O1'—C4 (φ')-94.0 (2)-88.4 (2)
C2'—C1'—O1'—C4 (φ')147.6 (2)153.8 (2)
H1'—C1'—O1'—C4 (φ')26.131.9 (3)
C1'—O1'—C4—C3 (ψ')85.2 (2)78.4 (2)
C1'—O1'—C4—C5 (ψ')-154.5 (2)-161.3 (2)
C1'—O1'—C4—H4 (ψ')-36.0-43.7 (3)
O5—C5—C6—O6 (ω)69.4 (2) [gt]-54.6 (2) [gg]
C4—C5—C6—O6 (ω)-171.3 (2) [gt]66.4 (3) [gg]
O5'—C5'—C6'—O6' (ω)60.8 (2) [gt]57.3 (2) [gt]
C4'—C5'—C6'—O6' (ω')-178.4 (2) [gt]177.8 (2) [gt]
C1—C2—O2—H-125.6-123.4
C2—C3—O3—H-166.6-159.0
C5—C6—O6—H133.0-123.1
C1'—C2'—O2'—H153.5143.4
C2'–C3'–O3'—H68.144.9
C3'—C4'—O4'—H-142.2-112.3
C5'—C6'—O6'—H-115.3-132.5
Notes: (a) C—C and C—O bond length numbers shown in the left-most column were used to plot the data in Fig. S1 (in the supporting information). Subscript `a' denotes an acceptor site and subscript `d' the donor atom in the hydrogen bond. [Symmetry codes: (i) -x+1, y-1/2, -z+1; (ii) x+1, y, z+1; (iv) x, y, z+1.]
Hydrogen-bond geometry (Å, °) of (I) and (II) top
CompoundD—H···AD—HH···A (Å)D···AD—H···A
(I)Sugar–solvent interactions
O1W—H1WA···O5i0.92 (4)1.97 (4)2.890 (3)172 (5)
O1W—H1WB···O6iv0.95 (3)1.87 (4)2.811 (3)176 (4)
O4'—H4O'···O1W0.77 (3)1.92 (3)2.686 (3)175 (3)
Sugar–sugar interactions
O2—H2O···O2'iii0.83 (3)1.98 (3)2.771 (2)160 (3)
O3—H3O···O5'0.79 (4)2.10 (4)2.782 (2)145 (3)
O6—H6O···O1ii0.88 (4)1.92 (4)2.795 (2)169 (3)
O2'—H2O'···O3ii0.76 (5)2.02 (5)2.763 (2)167 (5)
O3'—H3O'···O6'ii0.71 (4)2.04 (4)2.709 (2)156 (4)
O6'—H6O'···O3'iii0.93 (4)1.72 (4)2.647 (2)177 (3)
(II)Sugar–solvent interactions
O4'—H4'O···O11i0.82 (1)1.872.686 (3)171
O11—H11O···O60.82 (1)1.932.727 (3)164
Sugar–sugar interactions
O2—H2O···O2'iii0.82 (2)1.962.757 (3)163
O3—H3O···O5'0.82 (2)2.082.764 (2)141
O6—H6O···O2ii0.82 (2)1.942.748 (2)169
O2'—H2'O···O3iv0.82 (2)1.962.775 (3)175
O3'—H3'O···O6'iv0.82 (2)1.962.740 (2)160
O6'—H6'O···O3'iii0.820 (7)1.842.662 (2)175
Weak hydrogen bond O3—H3O···O6' was not shown as D···A > 3.0 Å.

Symmetry codes for (I): (i) -x+1, y-1/2, -z+1; (ii) x, y, z-1; (iii) x+1, y, z+1; (iv) -x+2, y-1/2, -z+1. Symmetry codes for (II): (i) -x+2, y-1/2, -z+2; (ii) x+1, y, z+1; (iii) x-1, y, z-1; (iv) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds