Download citation
Download citation
link to html
2,5-Bis[4-methyl-3-(pyridin-3-yl)phen­yl]-1,3,4-oxa­diazole (L), C26H20N4O, forms one-dimensional chains via two types of inter­molecular π–π inter­actions. In catena-poly[[di­chlorido­zinc(II)]-μ-2,5-bis­[4-methyl-3-(pyridin-3-yl)phen­yl]-1,3,4-oxa­diazole], [ZnCl2(C26H20N4O)]n, synthesized by the com­bination of L with ZnCl2, the ZnII centres are coordinated by two Cl atoms and two N atoms from two L ligands. [ZnCl2L]n forms one-dimensional P (plus) and M (minus) helical chains, where the L ligand has different directions of twist. The helical chains stack together via inter­chain π–π and C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113022105/em3058sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113022105/em3058Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113022105/em3058IIsup3.hkl
Contains datablock II

CCDC references: 969451; 969452

Introduction top

Numerous coordination polymers designed and constructed through crystal engineering have attracted significant attention because of their fascinating structural topologies (Chakrabary et al., 2011) and functional applications (Amouri et al., 2012; Das et al., 2012). It is well known that the selection of appropriate ligands as building blocks is a key point in the design and synthesis of functional coordination polymers. Over the past decade, the design and construction of rigid and flexible organic ligands bridged by 1,3,4-oxa­diazole have been pursued due to the diversity of these ligands in coordination chemistry and their applications in functional materials (Jabbour et al., 2002; Hughes & Bryce, 2005; Du et al., 2010). It is well known that ππ and C—H···π inter­actions play an important role in determining the arrangement of coordination polymers incorporation these ligands (Das et al., 2010; Gathergood et al., 2003). In order to investigate how organic ligands bridged by 1,3,4-oxa­diazole affect the arrangement of molecular complexes in self-assembled aggregates, we synthesized a new 1,3,4-oxa­diazole bridging ligand, namely 2,5-bis­[4-methyl-3-(pyridin-3-yl)phenyl]-1,3,4-oxa­diazole (L), (I). The combination of L with ZnCl2 afforded [ZnCl2L]n, (II), which forms a coordination polymer with one-dimensional chains linked by ππ and C—H···π inter­actions.

Experimental top

Synthesis and crystallization top

For the preparation of (I), a mixture of 2,5-bis­[4-bromo-5-methyl­phenyl]-1,3,4-oxa­diazole (4.08 g, 10.00 mmol), p-pyridine benzene boric acid (2.71 g, 22.0 mmol), K2CO3 (4.15 g, 30.0 mmol), Pd(PPh3)4 (1.16 g, 1.00 mmol) in an EtOH-H2O (2:1 v/v) system ware stirred at 373 K under N2 for 36 h. After removal of the solvent under vacuum, the residue was purified by silica-gel column chromatography using tetra­hydro­furan (THF) and di­chloro­methane (DCM) (3:1 v/v) as eluent to afford (L) (yield 3.23 g, 80.3%). A solution of (I) (8.1 mg, 0.010 mmol) in CH2Cl2 (10 ml) was left for about 2 d at room temperature, after which time colourless crystals were obtained (yield 5.3 mg, 65.1%). IR (KBr pellet cm-1): 3041 (w), 1616 (ms), 1589 (s), 1499 (s), 1385 (vs), 1238 (s), 1073 (ms), 898 (ms), 810 (s), 734 (vs), 719 (s). 1H NMR (300 MHz, CDCl3, 298 K, TMS): δ 8.64–8.65 (t, 2H, –C5H4N), 8.08–8.210 (d, 1H, –benzeneH3), 7.98 (s, 1H, –benzeneH3), 7.72–7.74 (d, 1H, –benzeneH3), 7.46–7.49 (d, 1H, –C5H4N), 7.42–7.45 (t, 1H, –benzeneH3), 2.36 (s, 3H, –CH3). Elemental analysis (%) calculated for C26H20N4O: C 77.21, H 4.98, N 13.85; found: C 77.42, H 4.82, N 13.85.

For the preparation of (II), a solution of ZnCl2 (1.4 mg, 0.01 mmol) in MeOH (1 ml) was layered onto a solution of L (4.0 mg, 0.01 mmol) in tetra­hydro­furan (2 ml). The solutions were left for about 6 d at room temperature and colourless crystals of (II) were obtained (yield 3.4 mg, 63%). IR (KBr pellet cm-1): 2974 (w), 1616 (ms), 1550 (s), 1495 (vs), 1417 (vs), 1195 (s), 1036 (ms), 900 (s), 815 (s), 735 (s), 712(vs). Elemental analysis (%) calculated for C26H20Cl2N4OZn: C 57.75, H 3.73, N 10.36; found: C 57.83, H 3.74, N 10.37.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms attached to anisotropically refined atoms were placed in geometrically idealized positions and included as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for H methyl.

Results and discussion top

Within the free ligand, (I) (Fig. 1), the dihedral angles between the planes of the pyridine and triazole rings are 60.661 (6) and 58.169 (6)° for the N1- and N4-containing pyridine rings, respectively, and the dihedral angles between the pyridine and adjacent benzene rings are 60.973 (5) and 51.894 (4)°. The two benzene rings of (I) are almost coplanar, with a dihedral angle of 8.977 (4)° between the planes.

Molecules of (I) are arranged in chains via two kinds of ππ inter­actions (Fig. 2). One type is between the oxa­diazole ring on one molecule and a benzene ring on an adjacent molecule [centroid–centroid distance = 3.592 (1) Å], while the other is between the benzene ring of one molecule and the N4-containing pyridine ring of a neighbouring molecule [centroid–centroid distance = 3.858 (3) Å].

Compound (II) crystallizes with one ZnII centre in a distorted tetra­hedral (ZnCl2N2) environment involving two Cl atoms (Cl1 and Cl2) and two N atoms from two L ligands [N1ii and N4; symmetry code: (i) -x+1/2, y+1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2] (Fig. 3). The coordination behaviour of the ZnII atom is similar to that of the HgII atom in Hg{2,5-bis­(pyridin-3-yl)-1,3,4-oxa­diazole}I2 (Dong et al., 2003), which consists of two N-atom donors from two oxa­diazole bridging ligands and two coordinated iodide counter-ions.

Compared with the dihedral angles given above for (I), those in (II) between the pyridine rings and the adjacent benzene rings change to 53.464 (1) and 56.966 (1)° for the N1- and N4-containing pyridine rings, respectively. Additionally, the dihedral angle formed by the two benzene rings changes from 8.977 (4)° in the free ligand to 11.887 (9)° in (II). In the extended structure of (II), the complexes are joined to form a one-dimensional chain along the b axis (Fig. 4). It is inter­esting that L has different directions of twist when coordinated to the ZnII centre. It is also the origin of the presence of P- and M-type helices in (II). To our knowledge, reports of such an arrangement of helical chains are rare in ZnII frameworks (Yashima et al., 2008; Bishop, 2008). It is similar to that found in [Zn(mspda)(C2H7N)]n [mspda2- is (E)-2,6-di­methyl-4-styryl­pyridine-3,5-di­carboxyl­ate; Zhang et al., 2012], which has two S- and R-type chiral units from the axially prochiral mspda2-. These chiral units combined with ZnII ions to assemble right-handed (P) and left-handed (M) Zn–mspda helical chains. Finally, the P- and M-type helical chains are inter­linked by carboxyl­ate O atoms to form a one-dimensional ladder.

The helical chains in (II) are arranged side-by-side along the b axis (Fig. 5), where they inter­act via two kinds of ππ inter­actions [centroid–centroid distances = 3.823 (1) and 3.556 (1) Å]. The result is that a novel two-dimensional sheet is generated in the bc plane. It is similar to that observed in a previous report (Yang et al., 2011), which forms a helical chain, and the helical chains stack together via inter­chain ππ inter­actions to extend the dimensionality of the structure from one- to two-dimensional. The two-dimensional sheets then inter­act via C—H···π inter­actions [H···centroid distance = 2.755 (6) Å] along the a axis to form a novel coordination polymer. The distance is similar to that observed in morphine bis­(1-naphtho­ate) (Gathergood et al., 2003), where the H···centroid distances are in the range 2.80–3.07 Å.

In summary, a new compound with P- and M-type helical chains has been successfully obtained based on the new 1,3,4-oxa­diazole bridging bent organic L ligand and ZnCl2. The helices assemble through inter­chain ππ and C—H···π inter­actions to form a novel coordination polymer. This study demonstrates that ππ and C—H···π inter­actions play an important role in constructing coordination polymers.

Related literature top

For related literature, see: Amouri et al. (2012); Bishop (2008); Chakrabary et al. (2011); Das et al. (2010, 2012); Dong et al. (2003); Du et al. (2010); Gathergood et al. (2003); Hughes & Bryce (2005); Jabbour et al. (2002); Yang et al. (2011); Yashima et al. (2008); Zhang et al. (2012).

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The one-dimensional chain of (I), constructed by two kinds of ππ interactions (red and green dashed lines in the electronic version of the paper). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability lever. [Symmetry code: (i) -x+1/2, y+1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2]
[Figure 4] Fig. 4. View of the one-dimensional P- and M-type helices of (II), which are assembled by different twisted ligands and ZnII ions. H atoms have been omitted for clarity.
[Figure 5] Fig. 5. A packing view of (II), constructed by interchain ππ interactions (red and green dashed lines in the electronic version of the paper) and C—H···π interactions (purple dashed lines between H and the electronic version of the paper). Some H atoms have been omitted.
(I) 2,5-Bis[4-methyl-3-(pyridin-3-yl)phenyl]-1,3,4-oxadiazole top
Crystal data top
C26H20N4OF(000) = 848
Mr = 404.46Dx = 1.336 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 4084 reflections
a = 12.786 (3) Åθ = 2.6–27.8°
b = 7.8720 (18) ŵ = 0.08 mm1
c = 20.732 (5) ÅT = 298 K
β = 105.573 (3)°Block, colourless
V = 2010.2 (8) Å30.50 × 0.50 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3790 independent reflections
Radiation source: fine-focus sealed tube3079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 25.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 915
Tmin = 0.959, Tmax = 0.989k = 99
10264 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.4318P]
where P = (Fo2 + 2Fc2)/3
3790 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C26H20N4OV = 2010.2 (8) Å3
Mr = 404.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.786 (3) ŵ = 0.08 mm1
b = 7.8720 (18) ÅT = 298 K
c = 20.732 (5) Å0.50 × 0.50 × 0.13 mm
β = 105.573 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3790 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3079 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.989Rint = 0.023
10264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
3790 reflectionsΔρmin = 0.23 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12513 (15)0.2667 (3)0.29172 (9)0.0602 (5)
H10.14290.27090.33230.072*
C20.03144 (16)0.1856 (3)0.28994 (8)0.0598 (5)
H20.01450.13980.32860.072*
C30.00664 (14)0.1734 (2)0.22925 (8)0.0508 (4)
H30.05620.11790.22650.061*
C40.07560 (12)0.2439 (2)0.17264 (7)0.0403 (4)
C50.16687 (13)0.3273 (2)0.18080 (8)0.0484 (4)
H50.21320.37740.14320.058*
C60.05221 (12)0.23559 (19)0.10603 (7)0.0384 (3)
C70.12393 (12)0.1567 (2)0.05105 (8)0.0417 (4)
C80.22349 (15)0.0623 (2)0.05632 (9)0.0575 (5)
H8A0.28460.13800.04630.086*
H8B0.21210.01880.10090.086*
H8C0.23740.03030.02500.086*
C90.09938 (13)0.1609 (2)0.01032 (8)0.0448 (4)
H90.14670.11010.04730.054*
C100.00730 (13)0.2381 (2)0.01780 (7)0.0436 (4)
H100.00660.24040.05960.052*
C110.06540 (12)0.31288 (18)0.03691 (7)0.0373 (3)
C120.04249 (12)0.31020 (19)0.09854 (7)0.0383 (3)
H120.09110.35900.13550.046*
C130.16280 (11)0.39487 (19)0.02775 (7)0.0373 (3)
C140.31299 (12)0.52824 (19)0.05390 (7)0.0381 (3)
C150.40979 (12)0.60686 (19)0.09681 (7)0.0390 (3)
C160.49126 (13)0.6629 (2)0.06909 (8)0.0484 (4)
H160.48190.65670.02310.058*
C170.58554 (14)0.7274 (2)0.10996 (8)0.0518 (4)
H170.63880.76630.09060.062*
C180.60463 (12)0.7369 (2)0.17899 (8)0.0446 (4)
C190.70939 (14)0.8139 (3)0.21953 (9)0.0619 (5)
H19A0.76800.73650.22100.093*
H19B0.70460.83570.26420.093*
H19C0.72240.91860.19920.093*
C200.52395 (12)0.67559 (19)0.20748 (7)0.0387 (4)
C210.42699 (12)0.61574 (19)0.16563 (7)0.0381 (3)
H210.37210.58070.18440.046*
C220.53833 (12)0.66639 (19)0.28099 (7)0.0392 (4)
C230.46033 (12)0.7284 (2)0.30991 (8)0.0441 (4)
H230.39860.78190.28370.053*
C240.47466 (14)0.7104 (2)0.37778 (8)0.0525 (4)
H240.42290.75110.39800.063*
C250.56682 (16)0.6311 (2)0.41499 (9)0.0572 (5)
H250.57610.62020.46080.069*
C260.62796 (13)0.5867 (2)0.32332 (8)0.0493 (4)
H260.68040.54280.30440.059*
N10.19268 (12)0.3404 (2)0.23861 (7)0.0577 (4)
N20.19136 (11)0.41233 (18)0.02684 (6)0.0460 (3)
N30.29032 (11)0.50044 (18)0.00966 (6)0.0464 (3)
N40.64377 (12)0.5689 (2)0.38922 (7)0.0582 (4)
O10.23554 (8)0.46532 (13)0.08148 (5)0.0388 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0610 (11)0.0840 (14)0.0404 (9)0.0090 (10)0.0216 (8)0.0022 (9)
C20.0670 (12)0.0720 (13)0.0387 (9)0.0045 (10)0.0114 (8)0.0102 (8)
C30.0478 (9)0.0608 (11)0.0433 (9)0.0059 (8)0.0116 (7)0.0043 (8)
C40.0383 (8)0.0452 (9)0.0375 (8)0.0086 (7)0.0102 (6)0.0018 (6)
C50.0382 (8)0.0658 (11)0.0400 (8)0.0018 (8)0.0087 (7)0.0026 (8)
C60.0377 (8)0.0412 (8)0.0356 (8)0.0008 (6)0.0089 (6)0.0001 (6)
C70.0401 (8)0.0406 (8)0.0433 (8)0.0038 (7)0.0093 (7)0.0019 (7)
C80.0539 (10)0.0656 (12)0.0533 (10)0.0209 (9)0.0149 (8)0.0101 (9)
C90.0455 (9)0.0482 (9)0.0369 (8)0.0063 (7)0.0044 (7)0.0062 (7)
C100.0476 (9)0.0504 (9)0.0321 (8)0.0021 (7)0.0095 (7)0.0013 (7)
C110.0373 (8)0.0391 (8)0.0354 (8)0.0023 (6)0.0095 (6)0.0009 (6)
C120.0351 (7)0.0445 (8)0.0330 (7)0.0010 (6)0.0053 (6)0.0035 (6)
C130.0373 (8)0.0414 (8)0.0321 (7)0.0020 (6)0.0073 (6)0.0018 (6)
C140.0372 (8)0.0431 (8)0.0365 (8)0.0021 (6)0.0142 (6)0.0040 (6)
C150.0383 (8)0.0409 (8)0.0388 (8)0.0016 (7)0.0117 (6)0.0044 (6)
C160.0501 (9)0.0582 (10)0.0403 (8)0.0061 (8)0.0177 (7)0.0018 (7)
C170.0458 (9)0.0631 (11)0.0525 (10)0.0113 (8)0.0236 (8)0.0003 (8)
C180.0375 (8)0.0478 (9)0.0499 (9)0.0015 (7)0.0139 (7)0.0012 (7)
C190.0436 (10)0.0804 (14)0.0624 (11)0.0131 (9)0.0154 (8)0.0065 (10)
C200.0367 (8)0.0392 (8)0.0404 (8)0.0026 (6)0.0105 (6)0.0015 (6)
C210.0343 (7)0.0426 (8)0.0388 (8)0.0004 (6)0.0124 (6)0.0034 (6)
C220.0377 (8)0.0388 (8)0.0398 (8)0.0038 (6)0.0080 (6)0.0015 (6)
C230.0378 (8)0.0481 (9)0.0451 (9)0.0019 (7)0.0087 (7)0.0016 (7)
C240.0512 (10)0.0627 (11)0.0468 (9)0.0048 (8)0.0186 (8)0.0038 (8)
C250.0628 (11)0.0675 (12)0.0387 (9)0.0038 (10)0.0090 (8)0.0021 (8)
C260.0447 (9)0.0556 (10)0.0450 (9)0.0055 (8)0.0075 (7)0.0022 (8)
N10.0441 (8)0.0849 (11)0.0468 (8)0.0035 (8)0.0167 (7)0.0084 (8)
N20.0450 (7)0.0596 (8)0.0350 (7)0.0059 (7)0.0131 (6)0.0037 (6)
N30.0428 (7)0.0618 (9)0.0364 (7)0.0051 (6)0.0141 (6)0.0022 (6)
N40.0580 (9)0.0657 (10)0.0440 (8)0.0060 (8)0.0019 (7)0.0035 (7)
O10.0376 (5)0.0476 (6)0.0317 (5)0.0034 (5)0.0101 (4)0.0001 (4)
Geometric parameters (Å, º) top
C1—N11.336 (2)C14—O11.3627 (17)
C1—C21.367 (3)C14—C151.454 (2)
C1—H10.9300C15—C211.386 (2)
C2—C31.381 (2)C15—C161.390 (2)
C2—H20.9300C16—C171.371 (2)
C3—C41.381 (2)C16—H160.9300
C3—H30.9300C17—C181.388 (2)
C4—C51.388 (2)C17—H170.9300
C4—C61.491 (2)C18—C201.405 (2)
C5—N11.330 (2)C18—C191.504 (2)
C5—H50.9300C19—H19A0.9600
C6—C121.391 (2)C19—H19B0.9600
C6—C71.402 (2)C19—H19C0.9600
C7—C91.390 (2)C20—C211.391 (2)
C7—C81.503 (2)C20—C221.487 (2)
C8—H8A0.9600C21—H210.9300
C8—H8B0.9600C22—C231.383 (2)
C8—H8C0.9600C22—C261.392 (2)
C9—C101.370 (2)C23—C241.377 (2)
C9—H90.9300C23—H230.9300
C10—C111.390 (2)C24—C251.373 (3)
C10—H100.9300C24—H240.9300
C11—C121.385 (2)C25—N41.332 (2)
C11—C131.460 (2)C25—H250.9300
C12—H120.9300C26—N41.334 (2)
C13—N21.2867 (19)C26—H260.9300
C13—O11.3627 (17)N2—N31.4025 (19)
C14—N31.2896 (19)
N1—C1—C2123.92 (16)C21—C15—C16118.70 (14)
N1—C1—H1118.0C21—C15—C14121.67 (13)
C2—C1—H1118.0C16—C15—C14119.44 (14)
C1—C2—C3118.33 (16)C17—C16—C15119.62 (15)
C1—C2—H2120.8C17—C16—H16120.2
C3—C2—H2120.8C15—C16—H16120.2
C4—C3—C2119.71 (16)C16—C17—C18122.63 (15)
C4—C3—H3120.1C16—C17—H17118.7
C2—C3—H3120.1C18—C17—H17118.7
C3—C4—C5116.90 (14)C17—C18—C20117.99 (14)
C3—C4—C6121.90 (14)C17—C18—C19118.80 (14)
C5—C4—C6121.19 (14)C20—C18—C19123.21 (15)
N1—C5—C4124.52 (16)C18—C19—H19A109.5
N1—C5—H5117.7C18—C19—H19B109.5
C4—C5—H5117.7H19A—C19—H19B109.5
C12—C6—C7119.68 (13)C18—C19—H19C109.5
C12—C6—C4118.81 (13)H19A—C19—H19C109.5
C7—C6—C4121.51 (13)H19B—C19—H19C109.5
C9—C7—C6118.33 (14)C21—C20—C18119.10 (14)
C9—C7—C8118.81 (14)C21—C20—C22117.85 (13)
C6—C7—C8122.82 (14)C18—C20—C22123.02 (13)
C7—C8—H8A109.5C15—C21—C20121.87 (14)
C7—C8—H8B109.5C15—C21—H21119.1
H8A—C8—H8B109.5C20—C21—H21119.1
C7—C8—H8C109.5C23—C22—C26116.95 (14)
H8A—C8—H8C109.5C23—C22—C20121.45 (13)
H8B—C8—H8C109.5C26—C22—C20121.50 (14)
C10—C9—C7121.76 (14)C24—C23—C22119.54 (15)
C10—C9—H9119.1C24—C23—H23120.2
C7—C9—H9119.1C22—C23—H23120.2
C9—C10—C11120.14 (14)C25—C24—C23118.67 (16)
C9—C10—H10119.9C25—C24—H24120.7
C11—C10—H10119.9C23—C24—H24120.7
C12—C11—C10119.05 (14)N4—C25—C24123.82 (16)
C12—C11—C13121.72 (13)N4—C25—H25118.1
C10—C11—C13119.23 (13)C24—C25—H25118.1
C11—C12—C6121.01 (13)N4—C26—C22124.47 (16)
C11—C12—H12119.5N4—C26—H26117.8
C6—C12—H12119.5C22—C26—H26117.8
N2—C13—O1112.51 (13)C5—N1—C1116.57 (15)
N2—C13—C11127.97 (13)C13—N2—N3106.21 (12)
O1—C13—C11119.51 (12)C14—N3—N2106.47 (12)
N3—C14—O1112.19 (13)C25—N4—C26116.55 (15)
N3—C14—C15128.18 (13)C14—O1—C13102.62 (11)
O1—C14—C15119.54 (12)
(II) catena-Poly[[dichloridozinc(II)]-µ-2,5-bis[4-methyl-3-(pyridin-3-yl)phenyl]-1,3,4-oxadiazole] top
Crystal data top
ZnCl2(C26H20N4O)]F(000) = 1104
Mr = 540.73Dx = 1.491 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 2427 reflections
a = 17.779 (3) Åθ = 2.4–24.2°
b = 7.3406 (14) ŵ = 1.27 mm1
c = 18.944 (4) ÅT = 173 K
β = 102.942 (2)°Plan, colourless
V = 2409.6 (8) Å30.40 × 0.25 × 0.02 mm
Z = 4
Data collection top
CCD area detector
diffractometer
4524 independent reflections
Radiation source: fine-focus sealed tube3375 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
phi and ω scansθmax = 25.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2021
Tmin = 0.596, Tmax = 0.975k = 87
12117 measured reflectionsl = 1823
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.1756P]
where P = (Fo2 + 2Fc2)/3
4522 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
ZnCl2(C26H20N4O)]V = 2409.6 (8) Å3
Mr = 540.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.779 (3) ŵ = 1.27 mm1
b = 7.3406 (14) ÅT = 173 K
c = 18.944 (4) Å0.40 × 0.25 × 0.02 mm
β = 102.942 (2)°
Data collection top
CCD area detector
diffractometer
4524 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3375 reflections with I > 2σ(I)
Tmin = 0.596, Tmax = 0.975Rint = 0.047
12117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.01Δρmax = 0.45 e Å3
4522 reflectionsΔρmin = 0.36 e Å3
309 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16126 (18)0.6976 (5)0.26063 (18)0.0328 (8)
H10.12090.68330.21870.039*
C20.2280 (2)0.7857 (6)0.25466 (19)0.0431 (10)
H20.23470.82650.20890.052*
C30.2849 (2)0.8137 (5)0.31622 (19)0.0390 (9)
H30.33130.87360.31290.047*
C40.27476 (16)0.7550 (4)0.38297 (16)0.0247 (7)
C50.20737 (16)0.6597 (4)0.38309 (16)0.0246 (7)
H50.20050.61180.42780.030*
C60.33366 (17)0.7906 (4)0.45015 (16)0.0223 (7)
C70.31546 (17)0.8769 (4)0.51069 (17)0.0246 (7)
C80.23458 (18)0.9378 (5)0.51220 (19)0.0354 (9)
H8A0.20460.83290.52230.053*
H8B0.20990.99010.46510.053*
H8C0.23691.02980.55010.053*
C90.37515 (18)0.9106 (5)0.57054 (17)0.0274 (8)
H90.36360.96890.61160.033*
C100.45045 (17)0.8624 (4)0.57237 (16)0.0250 (7)
H100.48990.88780.61400.030*
C110.46819 (17)0.7764 (4)0.51290 (16)0.0223 (7)
C120.41013 (16)0.7427 (4)0.45214 (16)0.0224 (7)
H120.42250.68600.41110.027*
C130.54849 (17)0.7289 (4)0.51408 (16)0.0220 (7)
C140.64252 (16)0.6395 (4)0.47064 (16)0.0214 (7)
C150.68035 (17)0.5769 (4)0.41447 (16)0.0224 (7)
C160.76060 (17)0.5720 (4)0.42672 (17)0.0249 (7)
H160.79140.60530.47260.030*
C170.79496 (18)0.5185 (4)0.37161 (18)0.0274 (7)
H170.84970.51360.38080.033*
C180.75261 (18)0.4716 (4)0.30340 (17)0.0249 (7)
C190.79327 (18)0.4310 (5)0.24346 (18)0.0312 (8)
H19A0.79840.54350.21710.047*
H19B0.76320.34200.21010.047*
H19C0.84460.38110.26420.047*
C200.67094 (17)0.4712 (4)0.29199 (16)0.0217 (7)
C210.63684 (17)0.5235 (4)0.34775 (16)0.0229 (7)
H210.58220.52270.34000.027*
C220.61998 (17)0.4131 (4)0.22197 (16)0.0234 (7)
C230.6204 (2)0.4928 (5)0.15529 (18)0.0316 (8)
H230.65430.59120.15250.038*
C240.57161 (19)0.4284 (5)0.09361 (18)0.0337 (8)
H240.57170.48110.04780.040*
C250.52253 (18)0.2863 (5)0.09907 (17)0.0309 (8)
H250.48950.24080.05620.037*
C260.56744 (16)0.2750 (4)0.22232 (16)0.0226 (7)
H260.56490.22280.26760.027*
Cl10.43174 (5)0.15244 (14)0.06523 (5)0.0459 (3)
Cl20.49046 (5)0.14652 (13)0.27360 (4)0.0363 (2)
N10.15169 (13)0.6314 (4)0.32396 (14)0.0257 (6)
N20.60893 (14)0.7419 (4)0.56605 (13)0.0275 (6)
N30.67166 (14)0.6846 (4)0.53745 (14)0.0268 (6)
N40.51988 (13)0.2103 (4)0.16266 (13)0.0251 (6)
O10.56427 (11)0.6635 (3)0.45198 (10)0.0220 (5)
Zn10.44697 (2)0.00636 (5)0.169115 (19)0.02624 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0243 (17)0.045 (2)0.0259 (18)0.0039 (16)0.0009 (14)0.0018 (16)
C20.038 (2)0.061 (3)0.029 (2)0.0107 (19)0.0046 (17)0.0120 (18)
C30.0313 (19)0.050 (3)0.034 (2)0.0132 (18)0.0043 (16)0.0080 (18)
C40.0213 (16)0.0289 (19)0.0244 (17)0.0017 (14)0.0058 (13)0.0024 (14)
C50.0236 (16)0.0288 (19)0.0217 (17)0.0021 (14)0.0056 (14)0.0013 (14)
C60.0232 (16)0.0222 (18)0.0221 (17)0.0058 (13)0.0062 (13)0.0031 (13)
C70.0261 (16)0.0207 (18)0.0295 (18)0.0020 (14)0.0116 (14)0.0044 (14)
C80.0284 (18)0.040 (2)0.042 (2)0.0009 (16)0.0151 (17)0.0053 (17)
C90.0341 (19)0.0291 (19)0.0232 (18)0.0057 (16)0.0156 (15)0.0050 (14)
C100.0275 (17)0.0269 (19)0.0203 (17)0.0041 (14)0.0048 (14)0.0015 (14)
C110.0243 (16)0.0219 (17)0.0216 (17)0.0041 (13)0.0067 (14)0.0024 (13)
C120.0238 (16)0.0232 (18)0.0210 (16)0.0025 (13)0.0064 (13)0.0014 (13)
C130.0265 (17)0.0223 (18)0.0175 (16)0.0027 (14)0.0058 (14)0.0012 (13)
C140.0181 (15)0.0218 (17)0.0229 (17)0.0015 (13)0.0011 (13)0.0027 (13)
C150.0220 (16)0.0205 (17)0.0242 (17)0.0012 (14)0.0040 (13)0.0041 (13)
C160.0215 (16)0.0231 (18)0.0267 (18)0.0029 (14)0.0017 (14)0.0055 (14)
C170.0194 (16)0.0277 (19)0.0350 (19)0.0014 (14)0.0061 (14)0.0001 (15)
C180.0232 (16)0.0200 (18)0.0326 (19)0.0003 (13)0.0085 (14)0.0014 (14)
C190.0256 (17)0.0270 (19)0.043 (2)0.0021 (15)0.0125 (16)0.0061 (16)
C200.0221 (16)0.0178 (17)0.0251 (17)0.0001 (13)0.0051 (13)0.0026 (13)
C210.0176 (15)0.0211 (18)0.0293 (18)0.0001 (13)0.0040 (13)0.0041 (14)
C220.0204 (16)0.0261 (18)0.0261 (18)0.0043 (14)0.0102 (13)0.0003 (14)
C230.0331 (19)0.031 (2)0.032 (2)0.0017 (16)0.0101 (16)0.0019 (16)
C240.0354 (19)0.044 (2)0.0216 (18)0.0021 (17)0.0070 (15)0.0052 (16)
C250.0260 (17)0.043 (2)0.0217 (18)0.0004 (16)0.0015 (14)0.0003 (15)
C260.0167 (15)0.0308 (19)0.0204 (17)0.0026 (14)0.0044 (13)0.0002 (14)
Cl10.0396 (5)0.0636 (7)0.0312 (5)0.0066 (5)0.0008 (4)0.0189 (5)
Cl20.0360 (5)0.0419 (6)0.0283 (5)0.0047 (4)0.0015 (4)0.0037 (4)
N10.0177 (13)0.0319 (17)0.0269 (15)0.0001 (12)0.0037 (11)0.0035 (12)
N20.0255 (14)0.0376 (18)0.0190 (14)0.0001 (13)0.0046 (12)0.0013 (12)
N30.0226 (14)0.0332 (17)0.0237 (15)0.0003 (12)0.0032 (12)0.0009 (12)
N40.0187 (13)0.0341 (17)0.0223 (15)0.0012 (12)0.0045 (11)0.0012 (12)
O10.0183 (10)0.0271 (13)0.0196 (11)0.0010 (9)0.0020 (9)0.0011 (9)
Zn10.0189 (2)0.0357 (3)0.0227 (2)0.00116 (17)0.00174 (15)0.00337 (17)
Geometric parameters (Å, º) top
C1—N11.340 (4)C15—C211.383 (4)
C1—C21.378 (5)C15—C161.394 (4)
C1—H10.9500C16—C171.380 (4)
C2—C31.377 (5)C16—H160.9500
C2—H20.9500C17—C181.385 (4)
C3—C41.385 (4)C17—H170.9500
C3—H30.9500C18—C201.419 (4)
C4—C51.388 (4)C18—C191.506 (4)
C4—C61.479 (4)C19—H19A0.9800
C5—N11.335 (4)C19—H19B0.9800
C5—H50.9500C19—H19C0.9800
C6—C121.397 (4)C20—C211.385 (4)
C6—C71.410 (4)C20—C221.491 (4)
C7—C91.391 (4)C21—H210.9500
C7—C81.512 (4)C22—C261.379 (4)
C8—H8A0.9800C22—C231.393 (4)
C8—H8B0.9800C23—C241.374 (5)
C8—H8C0.9800C23—H230.9500
C9—C101.377 (4)C24—C251.379 (5)
C9—H90.9500C24—H240.9500
C10—C111.388 (4)C25—N41.338 (4)
C10—H100.9500C25—H250.9500
C11—C121.386 (4)C26—N41.338 (4)
C11—C131.465 (4)C26—H260.9500
C12—H120.9500Cl1—Zn12.2040 (10)
C13—N21.288 (4)Cl2—Zn12.2111 (10)
C13—O11.357 (3)N1—Zn1i2.054 (2)
C14—N31.298 (4)N2—N31.409 (3)
C14—O11.368 (3)N4—Zn12.073 (3)
C14—C151.455 (4)Zn1—N1ii2.054 (2)
N1—C1—C2121.9 (3)C15—C16—H16120.3
N1—C1—H1119.1C16—C17—C18122.4 (3)
C2—C1—H1119.1C16—C17—H17118.8
C3—C2—C1118.9 (3)C18—C17—H17118.8
C3—C2—H2120.6C17—C18—C20117.8 (3)
C1—C2—H2120.6C17—C18—C19120.0 (3)
C2—C3—C4120.4 (3)C20—C18—C19122.1 (3)
C2—C3—H3119.8C18—C19—H19A109.5
C4—C3—H3119.8C18—C19—H19B109.5
C3—C4—C5116.6 (3)H19A—C19—H19B109.5
C3—C4—C6121.2 (3)C18—C19—H19C109.5
C5—C4—C6122.2 (3)H19A—C19—H19C109.5
N1—C5—C4123.7 (3)H19B—C19—H19C109.5
N1—C5—H5118.1C21—C20—C18119.4 (3)
C4—C5—H5118.1C21—C20—C22118.4 (3)
C12—C6—C7119.4 (3)C18—C20—C22122.2 (3)
C12—C6—C4118.4 (3)C15—C21—C20121.7 (3)
C7—C6—C4122.2 (3)C15—C21—H21119.2
C9—C7—C6118.1 (3)C20—C21—H21119.2
C9—C7—C8119.2 (3)C26—C22—C23117.0 (3)
C6—C7—C8122.7 (3)C26—C22—C20118.9 (3)
C7—C8—H8A109.5C23—C22—C20124.1 (3)
C7—C8—H8B109.5C24—C23—C22119.8 (3)
H8A—C8—H8B109.5C24—C23—H23120.1
C7—C8—H8C109.5C22—C23—H23120.1
H8A—C8—H8C109.5C23—C24—C25119.1 (3)
H8B—C8—H8C109.5C23—C24—H24120.5
C10—C9—C7122.3 (3)C25—C24—H24120.5
C10—C9—H9118.8N4—C25—C24122.2 (3)
C7—C9—H9118.8N4—C25—H25118.9
C9—C10—C11119.5 (3)C24—C25—H25118.9
C9—C10—H10120.2N4—C26—C22123.9 (3)
C11—C10—H10120.2N4—C26—H26118.1
C12—C11—C10119.5 (3)C22—C26—H26118.1
C12—C11—C13120.8 (3)C5—N1—C1118.4 (3)
C10—C11—C13119.6 (3)C5—N1—Zn1i120.4 (2)
C11—C12—C6121.1 (3)C1—N1—Zn1i121.1 (2)
C11—C12—H12119.4C13—N2—N3106.3 (2)
C6—C12—H12119.4C14—N3—N2105.9 (2)
N2—C13—O1113.0 (3)C26—N4—C25118.0 (3)
N2—C13—C11129.6 (3)C26—N4—Zn1120.5 (2)
O1—C13—C11117.4 (3)C25—N4—Zn1121.4 (2)
N3—C14—O1112.3 (3)C13—O1—C14102.5 (2)
N3—C14—C15130.1 (3)N1ii—Zn1—N4100.39 (10)
O1—C14—C15117.5 (3)N1ii—Zn1—Cl1111.14 (8)
C21—C15—C16119.2 (3)N4—Zn1—Cl1105.91 (7)
C21—C15—C14120.2 (3)N1ii—Zn1—Cl2107.72 (8)
C16—C15—C14120.7 (3)N4—Zn1—Cl2108.18 (7)
C17—C16—C15119.5 (3)Cl1—Zn1—Cl2121.42 (4)
C17—C16—H16120.3
N1—C1—C2—C33.0 (6)C19—C18—C20—C226.0 (5)
C1—C2—C3—C40.4 (6)C16—C15—C21—C202.2 (5)
C2—C3—C4—C53.5 (5)C14—C15—C21—C20177.0 (3)
C2—C3—C4—C6177.4 (3)C18—C20—C21—C150.2 (5)
C3—C4—C5—N13.6 (5)C22—C20—C21—C15179.2 (3)
C6—C4—C5—N1177.2 (3)C21—C20—C22—C2655.0 (4)
C3—C4—C6—C1251.4 (4)C18—C20—C22—C26124.0 (3)
C5—C4—C6—C12127.7 (3)C21—C20—C22—C23123.3 (3)
C3—C4—C6—C7126.2 (4)C18—C20—C22—C2357.6 (4)
C5—C4—C6—C754.7 (4)C26—C22—C23—C242.2 (5)
C12—C6—C7—C90.1 (5)C20—C22—C23—C24179.4 (3)
C4—C6—C7—C9177.7 (3)C22—C23—C24—C250.5 (5)
C12—C6—C7—C8178.3 (3)C23—C24—C25—N41.0 (5)
C4—C6—C7—C80.7 (5)C23—C22—C26—N42.7 (5)
C6—C7—C9—C100.1 (5)C20—C22—C26—N4178.9 (3)
C8—C7—C9—C10178.6 (3)C4—C5—N1—C10.4 (5)
C7—C9—C10—C110.3 (5)C4—C5—N1—Zn1i178.5 (2)
C9—C10—C11—C121.0 (5)C2—C1—N1—C53.0 (5)
C9—C10—C11—C13178.6 (3)C2—C1—N1—Zn1i178.1 (3)
C10—C11—C12—C61.2 (5)O1—C13—N2—N31.2 (3)
C13—C11—C12—C6178.8 (3)C11—C13—N2—N3177.7 (3)
C7—C6—C12—C110.8 (5)O1—C14—N3—N20.4 (3)
C4—C6—C12—C11178.5 (3)C15—C14—N3—N2177.6 (3)
C12—C11—C13—N2176.4 (3)C13—N2—N3—C141.0 (3)
C10—C11—C13—N26.0 (5)C22—C26—N4—C251.2 (4)
C12—C11—C13—O14.7 (4)C22—C26—N4—Zn1177.0 (2)
C10—C11—C13—O1172.9 (3)C24—C25—N4—C260.7 (5)
N3—C14—C15—C21175.3 (3)C24—C25—N4—Zn1178.9 (3)
O1—C14—C15—C217.6 (4)N2—C13—O1—C141.0 (3)
N3—C14—C15—C165.5 (5)C11—C13—O1—C14178.1 (3)
O1—C14—C15—C16171.6 (3)N3—C14—O1—C130.3 (3)
C21—C15—C16—C171.6 (5)C15—C14—O1—C13177.3 (3)
C14—C15—C16—C17177.6 (3)C26—N4—Zn1—N1ii94.5 (2)
C15—C16—C17—C181.1 (5)C25—N4—Zn1—N1ii87.3 (2)
C16—C17—C18—C203.1 (5)C26—N4—Zn1—Cl1149.8 (2)
C16—C17—C18—C19174.4 (3)C25—N4—Zn1—Cl128.4 (3)
C17—C18—C20—C212.4 (4)C26—N4—Zn1—Cl218.2 (2)
C19—C18—C20—C21175.0 (3)C25—N4—Zn1—Cl2160.0 (2)
C17—C18—C20—C22176.6 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC26H20N4OZnCl2(C26H20N4O)]
Mr404.46540.73
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)298173
a, b, c (Å)12.786 (3), 7.8720 (18), 20.732 (5)17.779 (3), 7.3406 (14), 18.944 (4)
β (°) 105.573 (3) 102.942 (2)
V3)2010.2 (8)2409.6 (8)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.081.27
Crystal size (mm)0.50 × 0.50 × 0.130.40 × 0.25 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.959, 0.9890.596, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
10264, 3790, 3079 12117, 4524, 3375
Rint0.0230.047
(sin θ/λ)max1)0.6080.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.03 0.043, 0.111, 1.01
No. of reflections37904522
No. of parameters282309
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.230.45, 0.36

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds