Download citation
Download citation
link to html
The title compund, [Fe(C5H6N)(C7H7O2)], features one strong inter­molecular hydrogen bond of the type N—H...O=C [N...O = 3.028 (2) Å] between the amine group and the carbonyl group of a neighbouring mol­ecule, and vice versa, to form a centrosymmetric dimer. Furthermore, the carbonyl group acts as a double H-atom acceptor in the formation of a second, weaker, hydrogen bond of the type C—H...O=C [C...O = 3.283 (2) Å] with the methyl group of the ester group of a second neighbouring mol­ecule at (x, −y − {1\over 2}, z − {1\over 2}). The methyl group also acts as a weak hydrogen-bond donor, symmetry-related to the latter described C—H...O=C inter­action, to a third mol­ecule at (x, −y − {1\over 2}, z + {1\over 2}) to form a two-dimensional network. The cyclo­penta­dienyl rings of the ferrocene unit are parallel to each other within 0.33 (3)° and show an almost eclipsed 1,1′-conformation, with a relative twist angle of 9.32 (12)°. The ester group is twisted slightly [11.33 (8)°] relative to the cylopenta­dienyl plane due to the above-mentioned inter­molecular hydrogen bonds of the carbonyl group. The N atom shows pyramidal coordination geometry, with the sum of the X—N—Y angles being 340 (3)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110025746/em3033sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110025746/em3033Isup2.hkl
Contains datablock I

CCDC reference: 796057

Comment top

The artificial amino acid 1-aminoferrocene-1'-carboxylic acid (Fca) (Heinze & Schlenker, 2004; Barišić et al., 2002; Butler & Quayle, 1998) plays an important role in the fields of organometallic oligomers (Khan et al., 2006; Heinze & Siebler, 2007) and bioorganometallic chemistry as a building block for artificial peptides, and therefore as an organometallic β-turn mimetic in ferrocene conjugates of amino acids and peptides (van Staveren & Metzler-Nolte, 2004; Kirin et al., 2006). The latter application is based on the favourable inter-ring distance of ferrocene of about 3.3 Å, close to the N···O distance in β-sheets of peptides. Thus, many Fca derivatives and related compounds have been investigated on the basis of their ability to form hydrogen bonds and in order to study the respective bonding patterns (Okamura et al., 1998; Pavlović et al., 2002, 2003; Heinze & Schlenker, 2004; Chowdhury et al., 2006; Barišić et al., 2006; Heinze & Siebler, 2007).

The synthetic procedure and spectroscopic data of the title compound, (I), were described previously by Butler & Quayle (1998) and Barišić et al. (2002), but any attempts at structural characterization were without success due to twinning problems. It was proposed that (I) crystallizes as a hydrogen-bonded dimer (Butler & Quayle, 1998), which is now confirmed by the crystal structure analysis in this work (Fig. 1). In contrast with previous attempts, no twinning problem was observed for the crystal analysed here.

The asymmetric unit of (I) consists of one independent molecule. The mean Fe—C bond distance is 2.0509 (15) Å. The mean C—C bond distance for the cyclopentadienyl ring Cp1 (C1–C5) is 1.4216 (9) Å and that for Cp2 (C6–C10) is 1.4284 (9) Å. The Cp rings are parallel to each other, as indicated by the angle between the centroids of the Cp rings, Cg1 (Cp1) and Cg2 (Cp2), and atom Fe1 of 0.33 (3)°. The orientation of the Cp rings deviates from the eclipsed 1,1'-conformation by a maximum of 9.32°, as defined by the torsion angles C(any C atom in Cp1)—Cg1—Cg2—C(any C atom in Cp2), where 0° describes the fully eclipsed and 36° the fully staggered conformation. The dihedral angle between the mean plane of C6—COOMe and the Cp2 mean plane is 11.33 (8)°, defined with non-H atoms. This is likely due to the intermolecular hydrogen bonds (see below). Atoms H1 and H2 of the amine group could be localized and refined with restrained N—H bond lengths (Table 1). The sum of the X—N—Y angles (340.5°) quantifies the pyramidal geometry of the amine group. The bond between atoms C6 and C11 shows some π character [1.469 (2) Å], due to extension of the Cp π system to the CO group. The same characteristics can be found for the N1—C1 bond, where the distance of 1.396 (2) Å is between a single and a double bond (Standard reference?). Similar geometric parameters for partial double bonds were also found for related compounds: Fc-NH2 (Heinze & Schlenker, 2004), Fc-COOMe (Beck et al., 2001) and MeOOC-NH-Fc-COOMe (Pavlović et al., 2002).

As mentioned above and proposed by Butler & Quayle (1998), (I) forms a centrosymmetric dimer with a neighbouring molecule at (-x, -y, -z + 1), connected via a pair of N—H···OC hydrogen bonds between the amine and carbonyl groups (Table 2). The O atom of the ester group of (I) acts as a double H-atom acceptor in the formation of another hydrogen bond of the type C12— H12A···O2C11 with a second at neighbour (x, -y - 1/2, z - 1/2). Furthermore, the methyl group interacts with a third molecule (x, -y - 1/2, z + 1/2) in the latter described fashion. In conclusion, each dimer is connected to four other dimers, which leads to the formation of a two-dimensional network parallel to the bc plane along the 21 screw axis (b axis) and the c-glide plane (Table 2, Fig. 2).

Related literature top

For related literature, see: Barišić et al. (2002, 2006); Beck et al. (2001); Butler & Quayle (1998); Chowdhury et al. (2006); Heinze & Schlenker (2004); Heinze & Siebler (2007); Khan et al. (2006); Kirin et al. (2006); Okamura et al. (1998); Pavlović et al. (2002, 2003); Staveren & Metzler-Nolte (2004).

Experimental top

Boc-NH-Fc-COOMe (2.19 g, 6.1 mmol) was dissolved in dichloromethane (20 ml) and trifluoroacetic acid (20 ml) was added at 273 K. The resulting red solution was warmed to room temperature and stirred for 2 h. The solvent was removed in vacuo and the residue was dissolved in water (200 ml) and washed with diethyl ether (3 × 50 ml). The water layer was made alkaline (pH 8) by the addition of 5% aqueous NaOH solution and extracted with ethyl acetate (3 × 100 ml) until the water layer was nearly colourless. The organic layer was dried over MgSO4 and the solvent removed in vacuo (yield 89%, 1.40 g, 5.4 mmol). The product, (I), H2N-Fc-COOMe (20 mg), was dissolved in ethyl acetate (3 ml) and hexane (1 ml) was added. Crystallization at 277 K yielded the title compound, (I), as orange plates.

Refinement top

The positions of all H atoms, except those of the amine group (H1 and H2), were generated with appropriate geometric constraints and allowed to ride on their respective parent C atoms, with C—H = 1.00 Å (0.98 Å for methyl C—H) and Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl H atoms]. The H atoms of the amine group were found in a difference Fourier map and refined with bond lengths restrained to 0.87 (2) Å [N1—H1 = 0.831 (16) Å and Uiso(H) = 0.069 (8) Å2; N1—H2 = 0.869 (16) Å and Uiso(H) = 0.058 (8) Å2].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Version 2.3; Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the dimer of (I), connected via pairs of intermolecular N—H···OC hydrogen bonds (dashed lines), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed arrows indicate C—H···OC hydrogen bonds to neighbouring molecules. [Symmetry codes: (i) -x, -y, -z + 1; (ii) x, -y - 1/2, z + 1/2.]
[Figure 2] Fig. 2. A partial packing diagram of the dimers of (I), viewed parallel to the a axis. Hydrogen bonds are indicated by dashed lines. Most H atoms have been omitted for clarity.
Methyl 1'-aminoferrocene-1-carboxylate top
Crystal data top
[Fe(C5H6N)(C7H7O2)]F(000) = 536
Mr = 259.08Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9950 reflections
a = 13.72031 (18) Åθ = 3.1–28.4°
b = 7.34436 (10) ŵ = 1.39 mm1
c = 11.04962 (14) ÅT = 173 K
β = 106.1201 (7)°Plate, orange
V = 1069.66 (3) Å30.30 × 0.20 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2763 independent reflections
Radiation source: fine-focus sealed tube2425 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ω and ϕ scansθmax = 28.9°, θmin = 3.1°
Absorption correction: multi-scan
(MULABS; Spek, 2003)
h = 1818
Tmin = 0.680, Tmax = 0.897k = 99
25686 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.0934P]
where P = (Fo2 + 2Fc2)/3
2763 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Fe(C5H6N)(C7H7O2)]V = 1069.66 (3) Å3
Mr = 259.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.72031 (18) ŵ = 1.39 mm1
b = 7.34436 (10) ÅT = 173 K
c = 11.04962 (14) Å0.30 × 0.20 × 0.08 mm
β = 106.1201 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2763 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2003)
2425 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.897Rint = 0.077
25686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0272 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.33 e Å3
2763 reflectionsΔρmin = 0.34 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.318458 (14)0.01441 (2)0.576038 (17)0.01770 (8)
C10.25803 (11)0.1302 (2)0.71354 (14)0.0259 (3)
C20.26476 (12)0.2588 (2)0.62054 (15)0.0293 (3)
H2A0.20690.32950.56560.035*
C30.36877 (12)0.2724 (2)0.62021 (16)0.0309 (3)
H3A0.39680.35590.56670.037*
C40.42497 (12)0.1483 (2)0.71119 (15)0.0299 (3)
H4A0.49990.12810.73270.036*
C50.35674 (12)0.0584 (2)0.76753 (14)0.0270 (3)
H5A0.37520.03750.83420.032*
C60.21889 (11)0.17557 (19)0.47933 (13)0.0219 (3)
C70.24208 (12)0.0472 (2)0.39320 (13)0.0244 (3)
H7A0.19240.03310.33320.029*
C80.34813 (12)0.0548 (2)0.40876 (14)0.0275 (3)
H8A0.38650.02110.36240.033*
C90.39128 (11)0.1850 (2)0.50437 (14)0.0269 (3)
H9A0.46490.21660.53580.032*
C100.31205 (11)0.25978 (19)0.54913 (14)0.0238 (3)
H10A0.31970.35490.61590.029*
C110.11676 (11)0.20298 (19)0.49409 (13)0.0228 (3)
O10.11666 (8)0.30407 (15)0.59491 (10)0.0294 (2)
O20.03996 (8)0.14231 (18)0.42246 (10)0.0368 (3)
C120.01896 (12)0.3250 (2)0.61994 (16)0.0350 (4)
H12A0.02660.40100.69490.053*
H12B0.02870.38310.54750.053*
H12C0.00700.20510.63440.053*
N10.17156 (11)0.0860 (2)0.75051 (16)0.0377 (4)
H10.1183 (14)0.108 (3)0.694 (2)0.069 (8)*
H20.1724 (18)0.021 (2)0.784 (2)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01891 (12)0.01568 (11)0.01822 (12)0.00004 (7)0.00467 (8)0.00151 (7)
C10.0234 (7)0.0276 (7)0.0276 (7)0.0006 (6)0.0085 (6)0.0113 (6)
C20.0310 (8)0.0196 (7)0.0356 (8)0.0060 (6)0.0064 (7)0.0049 (6)
C30.0346 (9)0.0206 (7)0.0397 (9)0.0073 (6)0.0140 (7)0.0087 (6)
C40.0217 (7)0.0335 (8)0.0333 (8)0.0035 (6)0.0059 (6)0.0149 (6)
C50.0281 (8)0.0306 (7)0.0200 (7)0.0015 (6)0.0026 (6)0.0066 (6)
C60.0246 (7)0.0200 (6)0.0205 (6)0.0030 (5)0.0053 (5)0.0031 (5)
C70.0273 (7)0.0283 (7)0.0166 (6)0.0052 (6)0.0042 (6)0.0016 (6)
C80.0310 (8)0.0312 (7)0.0232 (7)0.0069 (6)0.0123 (6)0.0067 (6)
C90.0247 (7)0.0246 (7)0.0326 (8)0.0000 (6)0.0099 (6)0.0102 (6)
C100.0273 (7)0.0159 (6)0.0278 (7)0.0002 (5)0.0068 (6)0.0034 (5)
C110.0251 (7)0.0227 (7)0.0205 (6)0.0034 (5)0.0063 (6)0.0028 (5)
O10.0243 (5)0.0365 (6)0.0279 (5)0.0044 (5)0.0081 (4)0.0084 (5)
O20.0249 (6)0.0528 (8)0.0310 (6)0.0027 (5)0.0047 (5)0.0106 (5)
C120.0295 (8)0.0440 (9)0.0350 (8)0.0062 (7)0.0148 (7)0.0057 (7)
N10.0276 (8)0.0502 (10)0.0389 (8)0.0051 (7)0.0153 (7)0.0138 (7)
Geometric parameters (Å, º) top
Fe1—C12.1021 (14)C5—H51.0000
Fe1—C22.0513 (14)C6—C101.437 (2)
Fe1—C32.0293 (15)C6—C71.437 (2)
Fe1—C42.0300 (15)C6—C111.469 (2)
Fe1—C52.0591 (14)C7—C81.418 (2)
Fe1—C62.0358 (14)C7—H71.0000
Fe1—C72.0515 (14)C8—C91.426 (2)
Fe1—C82.0637 (14)C8—H81.0000
Fe1—C92.0517 (14)C9—C101.424 (2)
Fe1—C102.0340 (14)C9—H91.0000
C1—N11.396 (2)C10—H101.0000
C1—C21.418 (2)C11—O21.2133 (17)
C1—C51.421 (2)C11—O11.3390 (17)
C2—C31.432 (2)O1—C121.4501 (18)
C2—H2A1.0000C12—H12A0.9800
C3—C41.416 (2)C12—H12B0.9800
C3—H31.0000C12—H12C0.9800
C4—C51.423 (2)N1—H10.831 (16)
C4—H41.0000N1—H20.869 (16)
C3—Fe1—C440.84 (7)C2—C3—Fe170.29 (8)
C3—Fe1—C10163.27 (6)C4—C3—H3126.3
C4—Fe1—C10125.46 (6)C2—C3—H3126.3
C3—Fe1—C6154.17 (6)Fe1—C3—H3126.3
C4—Fe1—C6163.59 (6)C3—C4—C5108.35 (14)
C10—Fe1—C641.34 (6)C3—C4—Fe169.56 (9)
C3—Fe1—C241.07 (6)C5—C4—Fe170.75 (8)
C4—Fe1—C268.46 (6)C3—C4—H4125.8
C10—Fe1—C2153.85 (6)C5—C4—H4125.8
C6—Fe1—C2119.49 (6)Fe1—C4—H4125.8
C3—Fe1—C7119.30 (7)C1—C5—C4108.07 (14)
C4—Fe1—C7153.87 (6)C1—C5—Fe171.67 (8)
C10—Fe1—C769.40 (6)C4—C5—Fe168.54 (8)
C6—Fe1—C741.16 (6)C1—C5—H5126.0
C2—Fe1—C7108.05 (6)C4—C5—H5126.0
C3—Fe1—C9126.14 (6)Fe1—C5—H5126.0
C4—Fe1—C9107.55 (6)C10—C6—C7108.09 (13)
C10—Fe1—C940.78 (6)C10—C6—C11127.98 (13)
C6—Fe1—C968.65 (6)C7—C6—C11123.85 (13)
C2—Fe1—C9164.35 (7)C10—C6—Fe169.26 (8)
C7—Fe1—C968.46 (6)C7—C6—Fe170.01 (8)
C3—Fe1—C568.52 (7)C11—C6—Fe1123.88 (10)
C4—Fe1—C540.71 (6)C8—C7—C6107.60 (13)
C10—Fe1—C5107.08 (6)C8—C7—Fe170.31 (8)
C6—Fe1—C5126.11 (6)C6—C7—Fe168.84 (8)
C2—Fe1—C567.83 (6)C8—C7—H7126.2
C7—Fe1—C5164.01 (6)C6—C7—H7126.2
C9—Fe1—C5119.73 (6)Fe1—C7—H7126.2
C3—Fe1—C8107.87 (7)C7—C8—C9108.49 (13)
C4—Fe1—C8119.83 (6)C7—C8—Fe169.38 (8)
C10—Fe1—C868.68 (6)C9—C8—Fe169.28 (8)
C6—Fe1—C868.38 (6)C7—C8—H8125.7
C2—Fe1—C8127.13 (7)C9—C8—H8125.7
C7—Fe1—C840.31 (6)Fe1—C8—H8125.7
C9—Fe1—C840.55 (6)C10—C9—C8108.43 (13)
C5—Fe1—C8154.36 (7)C10—C9—Fe168.94 (8)
C3—Fe1—C167.94 (6)C8—C9—Fe170.18 (8)
C4—Fe1—C167.67 (6)C10—C9—H9125.8
C10—Fe1—C1119.77 (6)C8—C9—H9125.8
C6—Fe1—C1108.35 (6)Fe1—C9—H9125.8
C2—Fe1—C139.89 (6)C9—C10—C6107.38 (13)
C7—Fe1—C1127.22 (6)C9—C10—Fe170.28 (8)
C9—Fe1—C1154.14 (6)C6—C10—Fe169.40 (8)
C5—Fe1—C139.93 (6)C9—C10—H10126.3
C8—Fe1—C1164.27 (6)C6—C10—H10126.3
N1—C1—C2126.78 (15)Fe1—C10—H10126.3
N1—C1—C5125.39 (16)O2—C11—O1123.03 (13)
C2—C1—C5107.78 (14)O2—C11—C6124.03 (13)
N1—C1—Fe1130.94 (11)O1—C11—C6112.94 (12)
C2—C1—Fe168.12 (8)C11—O1—C12115.59 (12)
C5—C1—Fe168.41 (8)O1—C12—H12A109.5
C1—C2—C3108.30 (14)O1—C12—H12B109.5
C1—C2—Fe171.99 (8)H12A—C12—H12B109.5
C3—C2—Fe168.64 (8)O1—C12—H12C109.5
C1—C2—H2A125.8H12A—C12—H12C109.5
C3—C2—H2A125.8H12B—C12—H12C109.5
Fe1—C2—H2A125.8C1—N1—H1112.4 (17)
C4—C3—C2107.45 (14)C1—N1—H2115.1 (16)
C4—C3—Fe169.61 (9)H1—N1—H2113 (2)
C3—Fe1—C1—N1158.79 (18)C9—Fe1—C6—C1038.14 (9)
C4—Fe1—C1—N1156.94 (18)C5—Fe1—C6—C1073.82 (10)
C10—Fe1—C1—N137.75 (18)C8—Fe1—C6—C1081.86 (9)
C6—Fe1—C1—N16.06 (18)C1—Fe1—C6—C10114.52 (9)
C2—Fe1—C1—N1120.4 (2)C3—Fe1—C6—C748.95 (17)
C7—Fe1—C1—N147.97 (19)C4—Fe1—C6—C7160.81 (19)
C9—Fe1—C1—N172.7 (2)C10—Fe1—C6—C7119.41 (12)
C5—Fe1—C1—N1118.8 (2)C2—Fe1—C6—C783.90 (10)
C8—Fe1—C1—N181.3 (3)C9—Fe1—C6—C781.27 (10)
C3—Fe1—C1—C238.40 (9)C5—Fe1—C6—C7166.78 (9)
C4—Fe1—C1—C282.67 (10)C8—Fe1—C6—C737.54 (9)
C10—Fe1—C1—C2158.14 (9)C1—Fe1—C6—C7126.08 (9)
C6—Fe1—C1—C2114.32 (9)C3—Fe1—C6—C1169.06 (19)
C7—Fe1—C1—C272.41 (11)C4—Fe1—C6—C1181.2 (2)
C9—Fe1—C1—C2166.94 (12)C10—Fe1—C6—C11122.57 (15)
C5—Fe1—C1—C2120.85 (13)C2—Fe1—C6—C1134.11 (14)
C8—Fe1—C1—C239.1 (2)C7—Fe1—C6—C11118.02 (16)
C3—Fe1—C1—C582.44 (10)C9—Fe1—C6—C11160.71 (14)
C4—Fe1—C1—C538.17 (10)C5—Fe1—C6—C1148.76 (14)
C10—Fe1—C1—C581.01 (10)C8—Fe1—C6—C11155.56 (14)
C6—Fe1—C1—C5124.83 (9)C1—Fe1—C6—C118.06 (14)
C2—Fe1—C1—C5120.85 (13)C10—C6—C7—C80.88 (16)
C7—Fe1—C1—C5166.74 (9)C11—C6—C7—C8177.92 (13)
C9—Fe1—C1—C546.09 (17)Fe1—C6—C7—C859.87 (10)
C8—Fe1—C1—C5159.9 (2)C10—C6—C7—Fe158.99 (9)
N1—C1—C2—C3175.17 (14)C11—C6—C7—Fe1118.05 (13)
C5—C1—C2—C32.31 (16)C3—Fe1—C7—C883.25 (11)
Fe1—C1—C2—C359.28 (10)C4—Fe1—C7—C848.94 (18)
N1—C1—C2—Fe1125.56 (15)C10—Fe1—C7—C880.95 (10)
C5—C1—C2—Fe156.96 (10)C6—Fe1—C7—C8118.88 (13)
C3—Fe1—C2—C1118.79 (13)C2—Fe1—C7—C8126.67 (10)
C4—Fe1—C2—C180.53 (10)C9—Fe1—C7—C837.11 (9)
C10—Fe1—C2—C147.16 (18)C5—Fe1—C7—C8161.0 (2)
C6—Fe1—C2—C183.53 (10)C1—Fe1—C7—C8166.68 (9)
C7—Fe1—C2—C1127.03 (9)C3—Fe1—C7—C6157.87 (9)
C9—Fe1—C2—C1158.6 (2)C4—Fe1—C7—C6167.82 (12)
C5—Fe1—C2—C136.51 (9)C10—Fe1—C7—C637.93 (8)
C8—Fe1—C2—C1167.63 (9)C2—Fe1—C7—C6114.45 (9)
C4—Fe1—C2—C338.27 (10)C9—Fe1—C7—C681.77 (9)
C10—Fe1—C2—C3165.96 (13)C5—Fe1—C7—C642.1 (3)
C6—Fe1—C2—C3157.67 (9)C8—Fe1—C7—C6118.88 (13)
C7—Fe1—C2—C3114.18 (10)C1—Fe1—C7—C674.44 (11)
C9—Fe1—C2—C339.8 (3)C6—C7—C8—C90.58 (16)
C5—Fe1—C2—C382.28 (10)Fe1—C7—C8—C958.37 (10)
C8—Fe1—C2—C373.57 (11)C6—C7—C8—Fe158.94 (10)
C1—Fe1—C2—C3118.79 (13)C3—Fe1—C8—C7114.50 (10)
C1—C2—C3—C41.42 (17)C4—Fe1—C8—C7157.50 (9)
Fe1—C2—C3—C459.95 (10)C10—Fe1—C8—C782.89 (10)
C1—C2—C3—Fe161.38 (10)C6—Fe1—C8—C738.31 (9)
C10—Fe1—C3—C440.0 (3)C2—Fe1—C8—C773.04 (11)
C6—Fe1—C3—C4167.62 (12)C9—Fe1—C8—C7120.31 (13)
C2—Fe1—C3—C4118.24 (13)C5—Fe1—C8—C7168.05 (13)
C7—Fe1—C3—C4157.69 (9)C1—Fe1—C8—C742.6 (3)
C9—Fe1—C3—C474.10 (11)C3—Fe1—C8—C9125.19 (9)
C5—Fe1—C3—C437.77 (9)C4—Fe1—C8—C982.20 (10)
C8—Fe1—C3—C4115.23 (10)C10—Fe1—C8—C937.42 (8)
C1—Fe1—C3—C480.91 (10)C6—Fe1—C8—C982.00 (9)
C4—Fe1—C3—C2118.24 (13)C2—Fe1—C8—C9166.65 (9)
C10—Fe1—C3—C2158.2 (2)C7—Fe1—C8—C9120.31 (13)
C6—Fe1—C3—C249.38 (18)C5—Fe1—C8—C947.75 (18)
C7—Fe1—C3—C284.07 (10)C1—Fe1—C8—C9162.90 (19)
C9—Fe1—C3—C2167.67 (9)C7—C8—C9—C100.05 (16)
C5—Fe1—C3—C280.46 (10)Fe1—C8—C9—C1058.48 (10)
C8—Fe1—C3—C2126.53 (10)C7—C8—C9—Fe158.43 (10)
C1—Fe1—C3—C237.33 (9)C3—Fe1—C9—C10165.68 (9)
C2—C3—C4—C50.02 (16)C4—Fe1—C9—C10124.41 (9)
Fe1—C3—C4—C560.37 (10)C6—Fe1—C9—C1038.65 (8)
C2—C3—C4—Fe160.39 (10)C2—Fe1—C9—C10163.0 (2)
C10—Fe1—C4—C3166.88 (9)C7—Fe1—C9—C1083.03 (9)
C6—Fe1—C4—C3160.69 (18)C5—Fe1—C9—C1081.71 (10)
C2—Fe1—C4—C338.48 (9)C8—Fe1—C9—C10119.93 (12)
C7—Fe1—C4—C348.74 (18)C1—Fe1—C9—C1049.54 (17)
C9—Fe1—C4—C3125.46 (9)C3—Fe1—C9—C874.39 (11)
C5—Fe1—C4—C3119.08 (13)C4—Fe1—C9—C8115.66 (9)
C8—Fe1—C4—C382.96 (11)C10—Fe1—C9—C8119.93 (12)
C1—Fe1—C4—C381.62 (10)C6—Fe1—C9—C881.28 (9)
C3—Fe1—C4—C5119.08 (13)C2—Fe1—C9—C843.0 (3)
C10—Fe1—C4—C574.04 (11)C7—Fe1—C9—C836.91 (9)
C6—Fe1—C4—C541.6 (2)C5—Fe1—C9—C8158.36 (9)
C2—Fe1—C4—C580.60 (10)C1—Fe1—C9—C8169.47 (12)
C7—Fe1—C4—C5167.82 (13)C8—C9—C10—C60.50 (16)
C9—Fe1—C4—C5115.46 (9)Fe1—C9—C10—C659.74 (9)
C8—Fe1—C4—C5157.96 (9)C8—C9—C10—Fe159.24 (10)
C1—Fe1—C4—C537.46 (9)C7—C6—C10—C90.85 (15)
N1—C1—C5—C4175.20 (14)C11—C6—C10—C9177.73 (13)
C2—C1—C5—C42.32 (16)Fe1—C6—C10—C960.30 (9)
Fe1—C1—C5—C459.11 (10)C7—C6—C10—Fe159.45 (10)
N1—C1—C5—Fe1125.69 (15)C11—C6—C10—Fe1117.43 (14)
C2—C1—C5—Fe156.79 (10)C3—Fe1—C10—C943.9 (3)
C3—C4—C5—C11.45 (16)C4—Fe1—C10—C974.98 (11)
Fe1—C4—C5—C161.07 (10)C6—Fe1—C10—C9118.28 (12)
C3—C4—C5—Fe159.63 (10)C2—Fe1—C10—C9169.68 (13)
C3—Fe1—C5—C180.88 (10)C7—Fe1—C10—C980.51 (9)
C4—Fe1—C5—C1118.77 (13)C5—Fe1—C10—C9115.98 (9)
C10—Fe1—C5—C1116.24 (9)C8—Fe1—C10—C937.21 (9)
C6—Fe1—C5—C174.66 (11)C1—Fe1—C10—C9157.52 (9)
C2—Fe1—C5—C136.48 (9)C3—Fe1—C10—C6162.2 (2)
C7—Fe1—C5—C141.5 (3)C4—Fe1—C10—C6166.74 (8)
C9—Fe1—C5—C1158.78 (9)C2—Fe1—C10—C651.40 (17)
C8—Fe1—C5—C1167.57 (13)C7—Fe1—C10—C637.77 (8)
C3—Fe1—C5—C437.89 (9)C9—Fe1—C10—C6118.28 (12)
C10—Fe1—C5—C4124.99 (9)C5—Fe1—C10—C6125.74 (8)
C6—Fe1—C5—C4166.57 (9)C8—Fe1—C10—C681.07 (9)
C2—Fe1—C5—C482.29 (10)C1—Fe1—C10—C684.20 (9)
C7—Fe1—C5—C4160.3 (2)C10—C6—C11—O2171.48 (14)
C9—Fe1—C5—C482.45 (11)C7—C6—C11—O212.1 (2)
C8—Fe1—C5—C448.80 (19)Fe1—C6—C11—O299.48 (16)
C1—Fe1—C5—C4118.77 (13)C10—C6—C11—O17.9 (2)
C3—Fe1—C6—C10168.36 (13)C7—C6—C11—O1168.49 (13)
C4—Fe1—C6—C1041.4 (2)Fe1—C6—C11—O181.09 (15)
C2—Fe1—C6—C10156.69 (9)O2—C11—O1—C124.9 (2)
C7—Fe1—C6—C10119.41 (12)C6—C11—O1—C12175.68 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.83 (2)2.21 (2)3.028 (2)167 (2)
C12—H12A···O2ii0.982.493.283 (2)138
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H6N)(C7H7O2)]
Mr259.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.72031 (18), 7.34436 (10), 11.04962 (14)
β (°) 106.1201 (7)
V3)1069.66 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.30 × 0.20 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2003)
Tmin, Tmax0.680, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
25686, 2763, 2425
Rint0.077
(sin θ/λ)max1)0.679
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.07
No. of reflections2763
No. of parameters153
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.34

Computer programs: APEX2 (Bruker, 2006), SHELXTL (Sheldrick, 2008), Mercury (Version 2.3; Macrae et al., 2006).

Selected geometric parameters (Å, º) top
C1—N11.396 (2)O1—C121.4501 (18)
C6—C111.469 (2)N1—H10.831 (16)
C11—O21.2133 (17)N1—H20.869 (16)
C11—O11.3390 (17)
O2—C11—O1123.03 (13)C1—N1—H1112.4 (17)
O2—C11—C6124.03 (13)C1—N1—H2115.1 (16)
O1—C11—C6112.94 (12)H1—N1—H2113 (2)
C11—O1—C12115.59 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.831 (16)2.212 (17)3.028 (2)167 (2)
C12—H12A···O2ii0.982.493.283 (2)137.8
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds