Download citation
Download citation
link to html
The title phosphine oxide–phosphine, 0.43C17H16NOP·0.57C17H16NP, (I)/(II), was obtained as a 0.861 (6):1.139 (6) cocrystallized mixture. Hydrogen bonding between the two constituents leads to the formation of 2:2 solid-state assemblies. Instead of forming the expected simple N,P-chelated system via loss of the N-bound H atom, reaction of 2-(diphenyl­phosphinometh­yl)pyrrole, (II), with TiCl4 leads to the formation of the title titanium(IV) complex, [TiCl4(C17H16NP)], (IV), containing a rearranged neutral ligand in which the N-bound H atom moves to one of the pyrrole C atoms, giving a partially unsaturated ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110004506/em3032sup1.cif
Contains datablocks global, I_II, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110004506/em3032I_IIsup2.hkl
Contains datablock I_II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110004506/em3032IVsup3.hkl
Contains datablock IV

CCDC references: 774070; 774071

Comment top

The desire to improve on existing catalytic processes, and to find new catalytic systems, continues to drive synthetic chemists to create novel ligand systems. For example, ongoing efforts to find post-metallocene polymerization catalysts for alkenes (Gibson & Spitzmesser, 2003) have led to the introduction of a large class of salicylaldiminato and pyrrolaldiminato ligands (see, for example, Yoshida et al., 2001; Tsurugi & Mashima, 2006; Cui et al., 2003; Yang et al., 2007). The combination of an anionic pyrrolate moiety with other donors is, however, less common. In an effort to explore routes to new N—P and N—O chelate ligands based on pyrrolates, we have recently introduced the families of pyrrole–phosphine oxide and pyrrole–phosphine ligands, (I) and (II) (see Scheme) (Broomfield, Boschert et al., 2009; Broomfield, Wright et al., 2009). These ligands are attractive as the nature of the R group can be varied at a late stage of the synthesis by appropriate choice of phosphine starting material. Introduction of other groups onto the pyrrole ring is another potential method to tune the properties of the ligand system. Exploring the reactivity of (I) (R = Ph) with early transition metals has shown that coordination demonstrates that the phosphine oxide acts as well behaved ligand with these metals. Here, we report on efforts to use the pyrrole–phosphine, (II) (R = Ph) with early transition metals.

Reaction of (II) (R = Ph) with ZrCl4 in thf [tetrahyrdrofuran] was carried out with the intention of forming the bis-ligand complex (III) (see Scheme). However, crystallization of the reaction mixture led to the isolation of crystals with an approximately stoichiometric mixture of co-crystallized (I) and (II) (Fig. 1). Synthesis of (II) from (I) is complicated by the reactivity of the phosphine with oxygen, and it is possible that the metal complex is not involved in formation of the co-crystals. The occupancy of O1 was refined freely, establishing that the site is largely occupied [occupancy of 0.861 (6)].

The molecular geometry of (I) here (Table 1) is very similar to that observed when the same molecule crystallizes in the absence of (II) (Broomfield, Wright et al., 2009). The geometric data observed for (I) are also in the range anticipated for this molecule. More interesting are the inter-molecular interactions between (I) and (II) (Fig. 2, Table 2). Hydrogen bonding between two molecules of (I) leads to solid-state dimer formation. This is in contrast to the supramolecular arrangement seen in crystals of (I) alone, where infinite one-dimensional chains are formed by hydrogen bonding between adjacent molecules (Broomfield, Wright et al., 2009). The O1···N1 separation observed here [2.821 (4) Å] is slightly shorter than that seen in the infinite chain arrangement [2.868 (3) Å]. In addition to this pairing hydrogen-bond interaction, each molecule of (I) also hydrogen bonds to one molecule of (II), with an O1···N2 distance of 2.792 (3) Å. The result of this hydrogen-bond framework is the formation of an overall 0D 2:2 supramolecular structure.

A search of the Cambridge Structural Database (CSD; Allen, 2002) reveals five structures which consist of independent molecules of a phosphine and its oxide: AZUDII (Atikinson et al., 2004), EXUDAC (Mohamed et al., 2004), QEMFAP (Chekhlov, 2000), SIXJEO (Carriedo et al., 1990) and UJAPEA (Hitchcock et al., 2003). All show statistical interspersion of the phosphine oxide in the structure, in marked contrast to the pattern seen here. The presence of the strongly hydrogen-bonding amine group and the resulting hydrogen-bond network may account for the greater order seen in the present structure.

In contrast to the lack of reaction between (II) and ZrCl4, reaction of (II) with TiCl4 did lead to the formation of a metal-containing species (see Scheme). However, analysis of the Fourier difference map following data collection revealed that C3 carries two H atoms, and that the ligand is overall neutral, giving complex (IV) (Fig. 3). The C—C distances in the nitrogen-containing ring are fully in agreement with the locations of the H atoms (Table 3). The geometry of the metal is approximately octahedral, with the N1—Ti1—P1 bite angle significantly smaller than 90°, presumably due to the constraint imposed by the ligand backbone. The mechanism for the reaction is likely to involve initial coordination of (II) to the metal, yielding (V), followed by an acid-mediated rearragement (see Scheme). This type of rearrangement has previously been reported when pyrroles are reacted in the precence of the strong Lewis base B(C6F5)3 (Guidotti et al., 2003; Focante et al., 2004; Kehr et al., 2001).

There are two structures in the CSD which contain a rearranged pyrrole ligand without the presence of a porphyrin ring or secondary bonding interactions: WELTIQ (DuBois et al., 1999) and XITLES (Kreickmann et al., 2007). WELTIQ contains rhenium, and has a Re—N bond distance of 2.171 (6) Å, while XITLES is a tungsten complex with a W—N distance of 2.136 (3) Å. The Ti—N distance obtained in the current work, 2.174 (5) Å, is therefore somewhat longer than might be initially anticipated on the basis of the smaller size of the Ti centre compared to Re and W. In the case of Ti—P bonds, a search of the CSD gives a range of 2.254–2.904 Å for 226 database entries, with a mean value of 2.584 (4) Å. The value observed for (IV) is above the average, at 2.6428 (17) Å, but is not atypical. Presumably the chelating nature of the ligand in (IV) is responsible for the length of the bonds observed here.

In summary, whilst ligand (II) shows good promise in forming complexes with later transition metals, early metals reveal additional ligand reactivity which may have to be modulated in order to successfully obtain the desired complexes. Efforts to control this reactivity are ongoing, for example by blocking the 2-position on the pyrrole ring with a bulky alkyl to prevent ligand rearrangement.

Related literature top

For related literature, see: Allen (2002); Atikinson et al. (2004); Broomfield, Boschert, Wright, Highes & Bochmann (2009); Broomfield, Wright & Bochmann (2009); Carriedo et al. (1990); Chekhlov (2000); Cui et al. (2003); DuBois, Vasquez, Peslherbe & Noll (1999); Focante et al. (2004); Gibson & Spitzmesser (2003); Guidotti et al. (2003); Hitchcock et al. (2003); Kehr et al. (2001); Kreickmann et al. (2007); Sheldrick (2008); Tsurugi & Mashima (2006); Yang et al. (2007); Yoshida et al. (2001).

Experimental top

Ligand (II) was obtained as described elsewhere (Broomfield, Wright et al., 2009). Reaction of the free ligand with ZrCl4 in thf, followed by addition of an equal amount of hexane and cooling to 243 K led to the formation of crystals of (I)/(II) [0.861:1.139 (6)]. Reaction of TiCl4 with the free ligand in dichloromethane, followed by dilution with hexane and cooling to 243 K gave crystals of (IV) after storage for some days.

Refinement top

All C-bound H atoms were refined using a riding model (Sheldrick, 2008) and with isotropic thermal parameters 1.2 times that of the parent C atom for CH and CH2 and 1.5 times for methyl H. Methyl groups were allowed additional rotational freedom. In (I)/(II), protons H1 and H2 (bound to N) were located in the Fourier difference map and both coordinates and Uiso values were freely refined. The site occupancy of the O atom in (I)/(II) (O1) was freely refined to a value of 0.861 (6).

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. ORTEP representation of the structure of co-crystallized (I) and (II) with 50% probability ellipsoids; H atoms except H1 and H2 have been omitted for clarity.
[Figure 2] Fig. 2. ORTEP representation of the hydrogen-bond arrangement in co-crystallized (I) and (II) with 50% ellipsoids; symmetry operations to generate equivalent positions: (i) = - x, 1 - y, -z.
[Figure 3] Fig. 3. ORTEP representation of the structure of (IV) with 50% probability ellipsoids.
(I_II) 2-(Diphenylphosphinoylmethyl)pyrrole–2-(diphenylphosphinomethyl)pyrrole (0.43/0.57) top
Crystal data top
0.43C17H16NOP·0.57C17H16NPF(000) = 1147.2
Mr = 272.18Dx = 1.229 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5193 reflections
a = 9.6282 (9) Åθ = 3.3–27.5°
b = 15.2848 (14) ŵ = 0.18 mm1
c = 20.391 (2) ÅT = 140 K
β = 101.376 (8)°Needle, colourless
V = 2941.9 (5) Å30.32 × 0.08 × 0.08 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur 3/CCD
diffractometer
5167 independent reflections
Radiation source: Enhance (Mo) X-ray Source3223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 16.0050 pixels mm-1θmax = 25.0°, θmin = 3.3°
Thin slice ϕ and ω scansh = 1111
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2006)
k = 1818
Tmin = 0.822, Tmax = 0.986l = 2424
30196 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0309P)2]
where P = (Fo2 + 2Fc2)/3
5167 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
0.43C17H16NOP·0.57C17H16NPV = 2941.9 (5) Å3
Mr = 272.18Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.6282 (9) ŵ = 0.18 mm1
b = 15.2848 (14) ÅT = 140 K
c = 20.391 (2) Å0.32 × 0.08 × 0.08 mm
β = 101.376 (8)°
Data collection top
Oxford Diffraction Xcalibur 3/CCD
diffractometer
5167 independent reflections
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2006)
3223 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.986Rint = 0.110
30196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.26 e Å3
5167 reflectionsΔρmin = 0.31 e Å3
361 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
H10.056 (3)0.5599 (19)0.0613 (15)0.042 (10)*
N10.0998 (3)0.55652 (17)0.09407 (14)0.0313 (7)
O10.0511 (2)0.39822 (15)0.00634 (11)0.0352 (10)0.861 (6)
P10.19363 (8)0.37050 (5)0.01121 (4)0.0284 (2)
C10.2987 (3)0.46179 (18)0.03278 (14)0.0282 (7)
H1A0.32000.50250.00570.034*
H1B0.38980.43920.04130.034*
C20.2238 (3)0.51095 (19)0.09337 (15)0.0268 (7)
C30.0572 (3)0.5970 (2)0.15504 (15)0.0334 (8)
H30.02410.63300.16790.040*
C40.1534 (3)0.5760 (2)0.19380 (16)0.0383 (8)
H40.15080.59450.23850.046*
C50.2575 (3)0.5214 (2)0.15505 (16)0.0375 (8)
H50.33680.49650.16940.045*
C60.2895 (3)0.32452 (19)0.06648 (14)0.0270 (7)
C70.2174 (3)0.2669 (2)0.10100 (15)0.0341 (8)
H70.12150.25260.08290.041*
C80.2829 (4)0.2303 (2)0.16111 (16)0.0422 (9)
H80.23250.19080.18380.051*
C90.4226 (4)0.2514 (2)0.18815 (16)0.0413 (9)
H90.46760.22710.22980.050*
C100.4962 (3)0.3075 (2)0.15463 (16)0.0392 (9)
H100.59230.32110.17290.047*
C110.4301 (3)0.3445 (2)0.09385 (15)0.0347 (8)
H110.48120.38350.07110.042*
C120.1943 (3)0.28782 (18)0.07457 (13)0.0231 (7)
C130.2745 (3)0.2114 (2)0.06199 (15)0.0326 (8)
H130.33070.20140.01880.039*
C140.2724 (3)0.1496 (2)0.11254 (16)0.0430 (9)
H140.32750.09790.10380.052*
C150.1907 (4)0.1637 (2)0.17498 (16)0.0477 (10)
H150.18950.12150.20930.057*
C160.1106 (3)0.2387 (2)0.18801 (16)0.0432 (9)
H160.05420.24800.23120.052*
C170.1120 (3)0.3007 (2)0.13826 (15)0.0324 (8)
H170.05660.35230.14760.039*
N20.2147 (3)0.38732 (17)0.09038 (13)0.0334 (7)
H20.128 (3)0.3884 (19)0.0656 (14)0.038 (9)*
P20.16415 (8)0.18713 (5)0.02148 (4)0.0323 (2)
C180.2944 (3)0.27617 (19)0.01553 (14)0.0306 (8)
H18A0.38520.24960.01000.037*
H18B0.25840.31210.02460.037*
C190.3203 (3)0.33382 (19)0.07588 (14)0.0262 (7)
C200.2644 (4)0.4336 (2)0.14746 (16)0.0406 (9)
H200.21200.47460.16780.049*
C210.4027 (3)0.4107 (2)0.17018 (16)0.0431 (9)
H210.46380.43270.20900.052*
C220.4380 (3)0.3478 (2)0.12503 (15)0.0344 (8)
H220.52740.32010.12820.041*
C230.1336 (3)0.14105 (19)0.06363 (14)0.0299 (8)
C240.2087 (3)0.1642 (2)0.11299 (16)0.0394 (9)
H240.28610.20370.10240.047*
C250.1719 (3)0.1305 (2)0.17742 (15)0.0417 (9)
H250.22280.14810.21070.050*
C260.0624 (4)0.0719 (2)0.19321 (17)0.0454 (9)
H260.03840.04830.23710.055*
C270.0136 (4)0.0470 (2)0.14471 (18)0.0489 (10)
H270.08900.00610.15540.059*
C280.0210 (3)0.0821 (2)0.08079 (16)0.0391 (9)
H280.03240.06580.04820.047*
C290.2838 (3)0.10498 (19)0.06945 (14)0.0282 (7)
C300.3283 (3)0.1189 (2)0.13835 (15)0.0368 (8)
H300.29590.16910.15840.044*
C310.4186 (3)0.0606 (2)0.17753 (15)0.0418 (9)
H310.44930.07160.22400.050*
C320.4647 (3)0.0141 (2)0.14909 (16)0.0401 (9)
H320.52600.05440.17610.048*
C330.4211 (3)0.0293 (2)0.08175 (15)0.0382 (8)
H330.45230.08030.06230.046*
C340.3317 (3)0.0295 (2)0.04204 (15)0.0339 (8)
H340.30250.01830.00450.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0308 (17)0.0312 (17)0.0334 (18)0.0002 (13)0.0098 (14)0.0022 (14)
O10.0308 (16)0.0387 (18)0.0363 (17)0.0021 (12)0.0068 (11)0.0031 (12)
P10.0321 (5)0.0243 (5)0.0296 (5)0.0024 (4)0.0077 (4)0.0025 (4)
C10.0273 (17)0.0231 (18)0.0344 (19)0.0006 (15)0.0062 (14)0.0059 (15)
C20.0242 (18)0.0205 (18)0.0366 (19)0.0043 (15)0.0080 (14)0.0053 (15)
C30.0311 (19)0.028 (2)0.038 (2)0.0005 (15)0.0002 (15)0.0007 (16)
C40.043 (2)0.041 (2)0.033 (2)0.0058 (18)0.0118 (16)0.0036 (16)
C50.0345 (19)0.036 (2)0.048 (2)0.0004 (17)0.0218 (16)0.0009 (17)
C60.0287 (17)0.0225 (18)0.0301 (18)0.0029 (15)0.0065 (14)0.0064 (15)
C70.0296 (18)0.033 (2)0.039 (2)0.0022 (16)0.0041 (15)0.0025 (16)
C80.050 (2)0.039 (2)0.040 (2)0.0020 (19)0.0128 (17)0.0078 (17)
C90.053 (2)0.036 (2)0.032 (2)0.0048 (19)0.0006 (17)0.0014 (17)
C100.035 (2)0.038 (2)0.041 (2)0.0008 (18)0.0024 (16)0.0070 (18)
C110.039 (2)0.029 (2)0.036 (2)0.0046 (16)0.0079 (15)0.0036 (16)
C120.0194 (16)0.0243 (19)0.0266 (18)0.0059 (14)0.0071 (13)0.0012 (14)
C130.0362 (19)0.033 (2)0.0275 (18)0.0050 (16)0.0040 (14)0.0017 (16)
C140.056 (2)0.030 (2)0.043 (2)0.0124 (17)0.0106 (17)0.0004 (17)
C150.074 (3)0.035 (2)0.035 (2)0.000 (2)0.0146 (18)0.0123 (17)
C160.057 (2)0.042 (2)0.028 (2)0.0006 (19)0.0013 (16)0.0048 (17)
C170.0367 (19)0.029 (2)0.0326 (19)0.0039 (16)0.0083 (15)0.0025 (16)
N20.0279 (16)0.0347 (18)0.0374 (17)0.0004 (14)0.0060 (13)0.0002 (14)
P20.0293 (5)0.0286 (5)0.0397 (5)0.0013 (4)0.0086 (4)0.0028 (4)
C180.0313 (18)0.0279 (19)0.0323 (18)0.0019 (16)0.0055 (14)0.0020 (15)
C190.0266 (18)0.0232 (18)0.0297 (18)0.0005 (15)0.0074 (14)0.0042 (14)
C200.048 (2)0.038 (2)0.041 (2)0.0051 (18)0.0202 (17)0.0091 (18)
C210.041 (2)0.055 (3)0.034 (2)0.0196 (19)0.0091 (17)0.0103 (18)
C220.0282 (18)0.039 (2)0.037 (2)0.0047 (16)0.0070 (15)0.0027 (16)
C230.0271 (18)0.0247 (19)0.0364 (19)0.0054 (15)0.0027 (14)0.0023 (15)
C240.0322 (19)0.041 (2)0.043 (2)0.0071 (17)0.0033 (16)0.0046 (18)
C250.044 (2)0.046 (2)0.035 (2)0.0012 (19)0.0045 (16)0.0005 (18)
C260.053 (2)0.040 (2)0.039 (2)0.0031 (19)0.0010 (18)0.0042 (18)
C270.047 (2)0.038 (2)0.056 (3)0.0118 (18)0.0009 (19)0.007 (2)
C280.039 (2)0.033 (2)0.045 (2)0.0008 (17)0.0080 (16)0.0010 (17)
C290.0308 (18)0.0252 (19)0.0305 (19)0.0083 (15)0.0103 (14)0.0024 (15)
C300.052 (2)0.028 (2)0.035 (2)0.0047 (17)0.0172 (16)0.0003 (17)
C310.062 (2)0.036 (2)0.0262 (19)0.006 (2)0.0056 (17)0.0055 (17)
C320.047 (2)0.033 (2)0.040 (2)0.0023 (18)0.0079 (16)0.0111 (17)
C330.049 (2)0.029 (2)0.037 (2)0.0017 (17)0.0081 (16)0.0008 (16)
C340.040 (2)0.034 (2)0.0284 (18)0.0003 (17)0.0068 (15)0.0030 (16)
Geometric parameters (Å, º) top
N1—C31.377 (4)N2—C201.365 (4)
N1—C21.379 (4)N2—C191.381 (3)
N1—H10.86 (3)N2—H20.88 (3)
O1—P11.458 (2)P2—C231.842 (3)
P1—C121.808 (3)P2—C291.848 (3)
P1—C61.811 (3)P2—C181.871 (3)
P1—C11.827 (3)C18—C191.494 (4)
C1—C21.503 (4)C18—H18A0.9900
C1—H1A0.9900C18—H18B0.9900
C1—H1B0.9900C19—C221.374 (4)
C2—C51.369 (4)C20—C211.366 (4)
C3—C41.369 (4)C20—H200.9500
C3—H30.9500C21—C221.418 (4)
C4—C51.418 (4)C21—H210.9500
C4—H40.9500C22—H220.9500
C5—H50.9500C23—C241.396 (4)
C6—C111.393 (4)C23—C281.400 (4)
C6—C71.394 (4)C24—C251.391 (4)
C7—C81.382 (4)C24—H240.9500
C7—H70.9500C25—C261.373 (4)
C8—C91.387 (4)C25—H250.9500
C8—H80.9500C26—C271.394 (4)
C9—C101.377 (4)C26—H260.9500
C9—H90.9500C27—C281.388 (4)
C10—C111.396 (4)C27—H270.9500
C10—H100.9500C28—H280.9500
C11—H110.9500C29—C341.399 (4)
C12—C131.395 (4)C29—C301.402 (4)
C12—C171.396 (4)C30—C311.384 (4)
C13—C141.395 (4)C30—H300.9500
C13—H130.9500C31—C321.393 (4)
C14—C151.375 (4)C31—H310.9500
C14—H140.9500C32—C331.374 (4)
C15—C161.378 (4)C32—H320.9500
C15—H150.9500C33—C341.390 (4)
C16—C171.387 (4)C33—H330.9500
C16—H160.9500C34—H340.9500
C17—H170.9500
C3—N1—C2109.9 (3)C12—C17—H17119.8
C3—N1—H1125 (2)C20—N2—C19109.9 (3)
C2—N1—H1125 (2)C20—N2—H2127.6 (19)
O1—P1—C12112.83 (12)C19—N2—H2122.5 (19)
O1—P1—C6112.16 (13)C23—P2—C29101.88 (13)
C12—P1—C6106.31 (13)C23—P2—C18101.63 (13)
O1—P1—C1111.55 (13)C29—P2—C1899.95 (13)
C12—P1—C1106.36 (13)C19—C18—P2112.4 (2)
C6—P1—C1107.23 (13)C19—C18—H18A109.1
C2—C1—P1112.40 (18)P2—C18—H18A109.1
C2—C1—H1A109.1C19—C18—H18B109.1
P1—C1—H1A109.1P2—C18—H18B109.1
C2—C1—H1B109.1H18A—C18—H18B107.9
P1—C1—H1B109.1C22—C19—N2106.8 (3)
H1A—C1—H1B107.9C22—C19—C18132.2 (3)
C5—C2—N1107.0 (3)N2—C19—C18121.0 (2)
C5—C2—C1130.7 (3)N2—C20—C21108.1 (3)
N1—C2—C1122.3 (3)N2—C20—H20126.0
C4—C3—N1107.5 (3)C21—C20—H20126.0
C4—C3—H3126.3C20—C21—C22107.2 (3)
N1—C3—H3126.3C20—C21—H21126.4
C3—C4—C5107.5 (3)C22—C21—H21126.4
C3—C4—H4126.2C19—C22—C21108.1 (3)
C5—C4—H4126.2C19—C22—H22126.0
C2—C5—C4108.1 (3)C21—C22—H22126.0
C2—C5—H5125.9C24—C23—C28118.0 (3)
C4—C5—H5125.9C24—C23—P2125.0 (2)
C11—C6—C7118.5 (3)C28—C23—P2117.0 (2)
C11—C6—P1123.6 (2)C25—C24—C23121.0 (3)
C7—C6—P1117.9 (2)C25—C24—H24119.5
C8—C7—C6121.2 (3)C23—C24—H24119.5
C8—C7—H7119.4C26—C25—C24120.3 (3)
C6—C7—H7119.4C26—C25—H25119.8
C7—C8—C9119.7 (3)C24—C25—H25119.8
C7—C8—H8120.1C25—C26—C27119.8 (3)
C9—C8—H8120.1C25—C26—H26120.1
C10—C9—C8120.0 (3)C27—C26—H26120.1
C10—C9—H9120.0C28—C27—C26119.9 (3)
C8—C9—H9120.0C28—C27—H27120.0
C9—C10—C11120.3 (3)C26—C27—H27120.0
C9—C10—H10119.9C27—C28—C23120.9 (3)
C11—C10—H10119.9C27—C28—H28119.5
C6—C11—C10120.2 (3)C23—C28—H28119.5
C6—C11—H11119.9C34—C29—C30117.8 (3)
C10—C11—H11119.9C34—C29—P2124.7 (2)
C13—C12—C17118.8 (3)C30—C29—P2117.5 (2)
C13—C12—P1122.2 (2)C31—C30—C29120.9 (3)
C17—C12—P1119.0 (2)C31—C30—H30119.6
C14—C13—C12120.3 (3)C29—C30—H30119.6
C14—C13—H13119.9C30—C31—C32120.2 (3)
C12—C13—H13119.9C30—C31—H31119.9
C15—C14—C13120.0 (3)C32—C31—H31119.9
C15—C14—H14120.0C33—C32—C31119.7 (3)
C13—C14—H14120.0C33—C32—H32120.1
C14—C15—C16120.3 (3)C31—C32—H32120.1
C14—C15—H15119.8C32—C33—C34120.3 (3)
C16—C15—H15119.8C32—C33—H33119.9
C15—C16—C17120.2 (3)C34—C33—H33119.9
C15—C16—H16119.9C33—C34—C29121.1 (3)
C17—C16—H16119.9C33—C34—H34119.5
C16—C17—C12120.4 (3)C29—C34—H34119.5
C16—C17—H17119.8
O1—P1—C1—C251.6 (2)C13—C12—C17—C160.2 (4)
C12—P1—C1—C271.8 (2)P1—C12—C17—C16179.8 (2)
C6—P1—C1—C2174.7 (2)C23—P2—C18—C19171.0 (2)
C3—N1—C2—C51.3 (3)C29—P2—C18—C1984.6 (2)
C3—N1—C2—C1178.3 (2)C20—N2—C19—C220.3 (3)
P1—C1—C2—C5115.8 (3)C20—N2—C19—C18179.6 (3)
P1—C1—C2—N164.7 (3)P2—C18—C19—C22113.9 (3)
C2—N1—C3—C40.9 (3)P2—C18—C19—N266.9 (3)
N1—C3—C4—C50.2 (3)C19—N2—C20—C210.2 (4)
N1—C2—C5—C41.1 (3)N2—C20—C21—C220.1 (4)
C1—C2—C5—C4178.5 (3)N2—C19—C22—C210.2 (3)
C3—C4—C5—C20.6 (4)C18—C19—C22—C21179.5 (3)
O1—P1—C6—C11135.9 (3)C20—C21—C22—C190.1 (4)
C12—P1—C6—C11100.4 (3)C29—P2—C23—C2495.6 (3)
C1—P1—C6—C1113.1 (3)C18—P2—C23—C247.3 (3)
O1—P1—C6—C743.2 (3)C29—P2—C23—C2888.2 (2)
C12—P1—C6—C780.5 (3)C18—P2—C23—C28168.9 (2)
C1—P1—C6—C7166.0 (2)C28—C23—C24—C250.7 (4)
C11—C6—C7—C80.1 (5)P2—C23—C24—C25175.5 (2)
P1—C6—C7—C8179.0 (2)C23—C24—C25—C261.5 (5)
C6—C7—C8—C90.5 (5)C24—C25—C26—C270.9 (5)
C7—C8—C9—C101.0 (5)C25—C26—C27—C280.5 (5)
C8—C9—C10—C111.0 (5)C26—C27—C28—C231.3 (5)
C7—C6—C11—C100.2 (4)C24—C23—C28—C270.8 (4)
P1—C6—C11—C10178.9 (2)P2—C23—C28—C27177.2 (2)
C9—C10—C11—C60.4 (5)C23—P2—C29—C340.1 (3)
O1—P1—C12—C13131.6 (2)C18—P2—C29—C34104.1 (3)
C6—P1—C12—C138.3 (3)C23—P2—C29—C30179.1 (2)
C1—P1—C12—C13105.8 (2)C18—P2—C29—C3076.6 (2)
O1—P1—C12—C1748.4 (3)C34—C29—C30—C311.2 (4)
C6—P1—C12—C17171.8 (2)P2—C29—C30—C31179.6 (2)
C1—P1—C12—C1774.2 (2)C29—C30—C31—C321.3 (5)
C17—C12—C13—C140.4 (4)C30—C31—C32—C330.6 (5)
P1—C12—C13—C14179.6 (2)C31—C32—C33—C340.1 (5)
C12—C13—C14—C150.3 (5)C32—C33—C34—C290.2 (5)
C13—C14—C15—C160.1 (5)C30—C29—C34—C330.4 (4)
C14—C15—C16—C170.1 (5)P2—C29—C34—C33179.7 (2)
C15—C16—C17—C120.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.88 (3)1.91 (3)2.790 (3)174 (3)
N1—H1···O1i0.86 (3)1.99 (3)2.821 (4)164 (3)
Symmetry code: (i) x, y+1, z.
(IV) tetrachlorido(5-diphenylphosphinomethyl-2H-pyrrole- κ2N,P)titanium(IV) top
Crystal data top
[TiCl4(C17H16NP)]Z = 2
Mr = 454.98F(000) = 460
Triclinic, P1Dx = 1.581 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1481 (17) ÅCell parameters from 1842 reflections
b = 8.6323 (16) Åθ = 3.5–27.5°
c = 14.202 (3) ŵ = 1.09 mm1
α = 98.159 (15)°T = 140 K
β = 98.727 (16)°Needle, orange
γ = 100.588 (16)°0.14 × 0.06 × 0.06 mm
V = 955.6 (3) Å3
Data collection top
Oxford Diffraction Xcalibur 3/CCD
diffractometer
3347 independent reflections
Radiation source: Enhance (Mo) X-ray Source1864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.112
Detector resolution: 16.0050 pixels mm-1θmax = 25.0°, θmin = 3.5°
Thin slice ϕ and ω scansh = 99
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2006)
k = 1010
Tmin = 0.905, Tmax = 0.937l = 1616
10184 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0307P)2]
where P = (Fo2 + 2Fc2)/3
3347 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[TiCl4(C17H16NP)]γ = 100.588 (16)°
Mr = 454.98V = 955.6 (3) Å3
Triclinic, P1Z = 2
a = 8.1481 (17) ÅMo Kα radiation
b = 8.6323 (16) ŵ = 1.09 mm1
c = 14.202 (3) ÅT = 140 K
α = 98.159 (15)°0.14 × 0.06 × 0.06 mm
β = 98.727 (16)°
Data collection top
Oxford Diffraction Xcalibur 3/CCD
diffractometer
3347 independent reflections
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2006)
1864 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.937Rint = 0.112
10184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 0.89Δρmax = 0.53 e Å3
3347 reflectionsΔρmin = 0.48 e Å3
217 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.26998 (13)0.27029 (11)0.21430 (7)0.0204 (3)
C10.2003 (7)0.6387 (6)0.1838 (3)0.0185 (13)
H1A0.08140.61710.19420.022*
H1B0.23580.75400.18190.022*
C20.2159 (6)0.5402 (6)0.0921 (4)0.0176 (13)
C30.2492 (7)0.3295 (6)0.0073 (4)0.0253 (14)
H3A0.15620.23540.03450.030*
H3B0.35930.29740.00940.030*
C40.2342 (7)0.4612 (7)0.0612 (4)0.0246 (14)
H40.23860.45750.12790.030*
C50.2135 (7)0.5852 (6)0.0017 (4)0.0250 (14)
H50.19960.68570.01790.030*
C60.5492 (7)0.6938 (6)0.2772 (4)0.0189 (13)
C70.6838 (7)0.6629 (6)0.3385 (4)0.0271 (14)
H70.66330.58610.37940.032*
C80.8448 (7)0.7418 (6)0.3405 (4)0.0293 (15)
H80.93640.71770.38180.035*
C90.8775 (7)0.8567 (6)0.2834 (4)0.0283 (15)
H90.99040.91240.28570.034*
C100.7446 (7)0.8889 (6)0.2236 (4)0.0248 (14)
H100.76550.96750.18390.030*
C110.5816 (7)0.8089 (6)0.2204 (4)0.0226 (14)
H110.49030.83290.17890.027*
C120.2900 (7)0.6707 (6)0.3933 (4)0.0175 (13)
C130.3162 (7)0.8355 (6)0.4170 (4)0.0258 (14)
H130.36320.90050.37500.031*
C140.2747 (7)0.9073 (7)0.5018 (4)0.0293 (15)
H140.29211.02050.51780.035*
C150.2078 (7)0.8110 (7)0.5619 (4)0.0243 (14)
H150.17840.85830.61990.029*
C160.1833 (7)0.6489 (7)0.5395 (4)0.0248 (14)
H160.13930.58440.58250.030*
C170.2219 (7)0.5774 (6)0.4547 (4)0.0243 (14)
H170.20160.46410.43880.029*
Cl10.54140 (19)0.28949 (17)0.19072 (11)0.0306 (4)
Cl20.00233 (18)0.30511 (16)0.23398 (10)0.0270 (4)
Cl30.3352 (2)0.21919 (17)0.36339 (10)0.0314 (4)
Cl40.1693 (2)0.02861 (16)0.11559 (11)0.0325 (4)
N10.2376 (5)0.3943 (5)0.0920 (3)0.0208 (11)
P10.33927 (19)0.58169 (16)0.27991 (10)0.0180 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0231 (6)0.0184 (6)0.0219 (6)0.0043 (5)0.0077 (5)0.0068 (5)
C10.022 (3)0.013 (3)0.020 (3)0.002 (2)0.004 (3)0.005 (3)
C20.012 (3)0.016 (3)0.022 (3)0.001 (2)0.001 (2)0.002 (3)
C30.030 (4)0.032 (4)0.014 (3)0.007 (3)0.006 (3)0.001 (3)
C40.026 (4)0.030 (4)0.015 (3)0.002 (3)0.004 (3)0.008 (3)
C50.028 (4)0.021 (3)0.025 (3)0.001 (3)0.001 (3)0.011 (3)
C60.024 (4)0.015 (3)0.017 (3)0.006 (3)0.007 (3)0.002 (3)
C70.025 (4)0.026 (3)0.030 (4)0.001 (3)0.006 (3)0.009 (3)
C80.022 (4)0.029 (4)0.040 (4)0.013 (3)0.007 (3)0.004 (3)
C90.024 (4)0.017 (3)0.043 (4)0.001 (3)0.020 (3)0.008 (3)
C100.033 (4)0.020 (3)0.020 (3)0.002 (3)0.012 (3)0.001 (3)
C110.029 (4)0.022 (3)0.018 (3)0.006 (3)0.007 (3)0.005 (3)
C120.020 (3)0.015 (3)0.016 (3)0.003 (2)0.003 (2)0.001 (2)
C130.031 (4)0.023 (3)0.026 (4)0.007 (3)0.011 (3)0.006 (3)
C140.037 (4)0.021 (3)0.029 (4)0.009 (3)0.011 (3)0.005 (3)
C150.028 (4)0.031 (4)0.015 (3)0.008 (3)0.009 (3)0.002 (3)
C160.026 (4)0.034 (4)0.020 (3)0.011 (3)0.008 (3)0.009 (3)
C170.029 (4)0.016 (3)0.030 (4)0.006 (3)0.008 (3)0.007 (3)
Cl10.0256 (9)0.0310 (9)0.0413 (10)0.0107 (7)0.0139 (7)0.0116 (7)
Cl20.0223 (9)0.0311 (9)0.0301 (9)0.0044 (7)0.0106 (7)0.0095 (7)
Cl30.0423 (10)0.0313 (9)0.0273 (9)0.0145 (7)0.0094 (7)0.0152 (7)
Cl40.0453 (11)0.0172 (8)0.0333 (9)0.0026 (7)0.0096 (8)0.0012 (7)
N10.020 (3)0.025 (3)0.017 (3)0.004 (2)0.008 (2)0.001 (2)
P10.0202 (9)0.0179 (8)0.0179 (8)0.0053 (7)0.0057 (7)0.0057 (7)
Geometric parameters (Å, º) top
Ti1—N12.174 (5)C7—C81.357 (7)
Ti1—Cl32.2293 (18)C7—H70.9500
Ti1—Cl12.2663 (19)C8—C91.382 (8)
Ti1—Cl42.2766 (17)C8—H80.9500
Ti1—Cl22.3079 (19)C9—C101.367 (7)
Ti1—P12.6428 (17)C9—H90.9500
C1—C21.487 (7)C10—C111.371 (7)
C1—P11.820 (5)C10—H100.9500
C1—H1A0.9900C11—H110.9500
C1—H1B0.9900C12—C171.378 (7)
C2—N11.303 (6)C12—C131.384 (7)
C2—C51.439 (7)C12—P11.817 (5)
C3—N11.464 (6)C13—C141.392 (7)
C3—C41.471 (7)C13—H130.9500
C3—H3A0.9900C14—C151.376 (8)
C3—H3B0.9900C14—H140.9500
C4—C51.320 (7)C15—C161.361 (7)
C4—H40.9500C15—H150.9500
C5—H50.9500C16—C171.380 (7)
C6—C111.379 (7)C16—H160.9500
C6—C71.384 (7)C17—H170.9500
C6—P11.813 (5)
N1—Ti1—Cl3162.51 (12)C6—C7—H7119.9
N1—Ti1—Cl185.23 (13)C7—C8—C9120.9 (6)
Cl3—Ti1—Cl192.25 (7)C7—C8—H8119.5
N1—Ti1—Cl491.10 (12)C9—C8—H8119.5
Cl3—Ti1—Cl4106.38 (7)C10—C9—C8118.9 (6)
Cl1—Ti1—Cl495.06 (7)C10—C9—H9120.6
N1—Ti1—Cl286.30 (13)C8—C9—H9120.6
Cl3—Ti1—Cl293.35 (7)C9—C10—C11120.6 (5)
Cl1—Ti1—Cl2168.17 (7)C9—C10—H10119.7
Cl4—Ti1—Cl293.35 (7)C11—C10—H10119.7
N1—Ti1—P171.36 (11)C10—C11—C6120.4 (5)
Cl3—Ti1—P191.32 (6)C10—C11—H11119.8
Cl1—Ti1—P189.10 (6)C6—C11—H11119.8
Cl4—Ti1—P1161.60 (6)C17—C12—C13119.2 (5)
Cl2—Ti1—P180.36 (6)C17—C12—P1121.4 (4)
C2—C1—P1106.2 (3)C13—C12—P1119.3 (4)
C2—C1—H1A110.5C12—C13—C14120.7 (5)
P1—C1—H1A110.5C12—C13—H13119.6
C2—C1—H1B110.5C14—C13—H13119.6
P1—C1—H1B110.5C15—C14—C13118.7 (5)
H1A—C1—H1B108.7C15—C14—H14120.7
N1—C2—C5112.2 (5)C13—C14—H14120.7
N1—C2—C1119.5 (5)C16—C15—C14120.9 (5)
C5—C2—C1128.2 (5)C16—C15—H15119.6
N1—C3—C4104.9 (4)C14—C15—H15119.6
N1—C3—H3A110.8C15—C16—C17120.5 (6)
C4—C3—H3A110.8C15—C16—H16119.7
N1—C3—H3B110.8C17—C16—H16119.7
C4—C3—H3B110.8C12—C17—C16119.9 (5)
H3A—C3—H3B108.8C12—C17—H17120.0
C5—C4—C3108.8 (5)C16—C17—H17120.0
C5—C4—H4125.6C2—N1—C3106.7 (5)
C3—C4—H4125.6C2—N1—Ti1128.2 (4)
C4—C5—C2107.4 (5)C3—N1—Ti1125.0 (3)
C4—C5—H5126.3C6—P1—C12104.3 (2)
C2—C5—H5126.3C6—P1—C1104.4 (2)
C11—C6—C7118.8 (5)C12—P1—C1106.5 (2)
C11—C6—P1124.4 (4)C6—P1—Ti1117.80 (17)
C7—C6—P1116.8 (4)C12—P1—Ti1123.63 (18)
C8—C7—C6120.3 (6)C1—P1—Ti197.79 (16)
C8—C7—H7119.9

Experimental details

(I_II)(IV)
Crystal data
Chemical formula0.43C17H16NOP·0.57C17H16NP[TiCl4(C17H16NP)]
Mr272.18454.98
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)140140
a, b, c (Å)9.6282 (9), 15.2848 (14), 20.391 (2)8.1481 (17), 8.6323 (16), 14.202 (3)
α, β, γ (°)90, 101.376 (8), 9098.159 (15), 98.727 (16), 100.588 (16)
V3)2941.9 (5)955.6 (3)
Z82
Radiation typeMo KαMo Kα
µ (mm1)0.181.09
Crystal size (mm)0.32 × 0.08 × 0.080.14 × 0.06 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur 3/CCD
diffractometer
Oxford Diffraction Xcalibur 3/CCD
diffractometer
Absorption correctionMulti-scan
(ABSPACK; Oxford Diffraction, 2006)
Multi-scan
(ABSPACK; Oxford Diffraction, 2006)
Tmin, Tmax0.822, 0.9860.905, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
30196, 5167, 3223 10184, 3347, 1864
Rint0.1100.112
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.095, 1.01 0.057, 0.098, 0.89
No. of reflections51673347
No. of parameters361217
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.310.53, 0.48

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1993), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) for (I_II) top
O1—P11.458 (2)P2—C231.842 (3)
P1—C121.808 (3)P2—C291.848 (3)
P1—C61.811 (3)P2—C181.871 (3)
P1—C11.827 (3)
O1—P1—C12112.83 (12)C6—P1—C1107.23 (13)
O1—P1—C6112.16 (13)C23—P2—C29101.88 (13)
C12—P1—C6106.31 (13)C23—P2—C18101.63 (13)
O1—P1—C1111.55 (13)C29—P2—C1899.95 (13)
C12—P1—C1106.36 (13)
Hydrogen-bond geometry (Å, º) for (I_II) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.88 (3)1.91 (3)2.790 (3)174 (3)
N1—H1···O1i0.86 (3)1.99 (3)2.821 (4)164 (3)
Symmetry code: (i) x, y+1, z.
Selected geometric parameters (Å, º) for (IV) top
Ti1—N12.174 (5)C2—N11.303 (6)
Ti1—Cl32.2293 (18)C2—C51.439 (7)
Ti1—Cl12.2663 (19)C3—N11.464 (6)
Ti1—Cl42.2766 (17)C3—C41.471 (7)
Ti1—Cl22.3079 (19)C4—C51.320 (7)
Ti1—P12.6428 (17)
N1—Ti1—Cl491.10 (12)N1—Ti1—P171.36 (11)
Cl3—Ti1—Cl4106.38 (7)Cl1—Ti1—P189.10 (6)
Cl1—Ti1—Cl2168.17 (7)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds