Download citation
Download citation
link to html
catena-Poly[[tetra­aqua­bis(1H-pyrazole-κN2)nickel(II)] [[di­aqua­bis(1H-pyrazole-κN2)nickel(II)]-μ-ben­zene-1,2,4,5-tetra­carboxyl­ato-κ2O1:O4] tetra­hydrate], {[Ni(C3H4N2)2(H2O)4][Ni(C10H2O8)(C3H4N2)2(H2O)2]·4H2O}n, (I), and poly[[(μ4-benzene-1,2,4,5-tetra­carboxyl­ato-κ4O1:O2:O4:O5)octa­kis(1H-pyrazole-κN2)dicobalt(II)] tetra­hydrate], {[Co2(C10H2O8)(C3H4N2)8]·4H2O}n, (II), are polymeric compounds crystallizing in the space group P\overline{1}, with two independent metallic cations and one benzene-1,2,4,5-tetra­carboxyl­ate (btc) anion, each lying on symmetry centres. Individual coordination polyhedra are regular and the main differences are in the way the btc anion binds [μ2 in (I) and μ4 in (II)], promoting a `chain-like' one-dimensional structure in (I) and a `sieve-like' two-dimensional motif in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109019490/em3027sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109019490/em3027Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109019490/em3027IIsup3.hkl
Contains datablock II

CCDC references: 742224; 742225

Comment top

The study of one-, two- or three-dimensional molecular systems based on carboxylate-bridged metal centres is attractive not only due to their usually interesting structural characteristics (Eddaoudi et al., 2001) but also for their potential applications, viz. in heterogeneous catalysis, medicine or chemical separation, and, on occasion, due to their eventual electronic and/or magnetic properties (Yaghi et al., 1996; Ait-Haddou et al., 2004).

In the synthesis of these systems several factors are of relevance, namely the characteristics of the organic ligands, such as bridging capacity, shape, functionality, flexibility etc. (Tudor et al., 2003; Kooijman et al., 2004), the non-covalent interactions which they might eventually give rise to, viz. hydrogen bonding, ππ interactions etc. (Perron et al., 2004), and, obviously, the nature of the metal ion.

The dramatic effect of this latter factor is apparent in the title complexes, [Ni(btc)(pyr)2(H2O)2]2-.[Ni(pyr)2(H2O)4]2+.4H2O, (I), and Co2(btc)(pyr)8.4H2O, (II) (btc is benzene-1,2,4,5-tetracarboxylate and pyr is pyrazole), where absolute similarity in synthetic procedures, reaction conditions and reactant characteristics (containing closely related, but not identical, metal cations) nevertheless results in different compounds, both at a molecular and at a crystal structure level.

Figs. 1 and 2 show molecular views of (I) and (II), respectively. Tables 1 and 3, in turn, give some selected coordination parameters, and Tables 2 and 4 provide the hydrogen-bonding interactions. Even though both structures are polymeric and crystallize in the triclinic space group P1, with two octahedral metal centres and one btc ligand occupying special positions on non-equivalent symmetry centres, this is basically the only common feature they share.

Compound (I) is ionic, with two well differentiated centrosymmetric substructures, {[Ni(btc)(pyr)(H2O)2]2-}n and n[Ni(pyr)2(H2O)4]2+. The Ni centre in each one of these ionic units displays a rather regular octahedral environment, with mean coordination distances Ni—O = 2.085 (3) and 2.068 (9) Å and Ni—N = 2.070 (3) and 2.068 (3) Å, and extreme values for the cis-coordination angles of 90±3.82 (8) and 90±2.62 (10)° for atoms Ni1 and Ni2, respectively.

In structure (II), instead, both Co centres present one and the same [CoO(btc)2N(pyr)4] coordination but with comparable regularity in the mean coordination distances of Co—O = 2.133 (3) and 2.070 (2) Å and Co—N = 2.070 (3) and 2.120 (7) Å, and extreme values for the cis-coordination angles of 90±4.87 (9) and 90±2.03 (9)° for atoms Co1 and Co2, respectively.

As already stated, in both structures the btc anion lies on a centre of symmetry and, even though it acts as the bridging agent in both cases, it does so in two quite different ways, binding in a µ2-bidentate fashion in the Ni compound and in a µ4-tetradentate way in the Co one. This results in dramatic differences in both structural dimensionality and packing behaviour.

In structure (I), the simple bridging of the [Ni(pyr)2(H2O)4]2+ groups via the (btc)4- anions generates negatively charged chains parallel to [001] containing only one of the two independent Ni atoms, Ni1 (Fig. 3a). Atom Ni2 is involved in the formation of isolated [Ni(pyr)2(H2O)4]2+ cationic groups which form hydrogen-bonded chains perpendicular to the latter [Former?] which balance charges (see discussion below and Fig. 3b).

The larger connectivity of the anion in (II) determines a two-dimensional array with a square grid motif (Fig. 2) presenting the (btc)4- ligands at the corners, interconnecting the two non-equivalent [Co(pyr)4]2+ units located at the edge centres, in a process which involves both atoms Co1 and Co2. The result, presented in Fig. 5, is a neutral tightly bound two-dimensional structure in the form of a `sieve'.

The way in which the polymeric entities interact with each other in each structure is also different, though mediated in both cases by an extremely complex hydrogen-bonding scheme where all the available donors are active [ten water O—H groups, two pyr N—H groups plus two non-conventional pyr C—H groups in (I), and four water O—H groups plus four pyr N—H groups in (II); Tables 3 and 4]. The only exception is atom H5WA in (I), which does not have any possible acceptor to interact with (see Refinement section). The remaining H atoms on atoms O4W and O5W interlink the isolated cationic units having atoms Ni2 as their centres, to define hydrogen-bonded chains running along b (Fig. 3b), almost perpendicular to the covalent chains which run along c, but shifted half a unit-cell translation along a, so that they do not intersect. Figs. 4(a) and 4(b) show views along the c direction, with a c/2 shift in the vertical direction, suggesting the way in which the voids between covalent chains (Fig. 4a) are `filled' by the hydrogen-bonded Ni2 chains (Fig. 4b). Hydrogen bonding between the two types of ionic chains stabilises the structure.

The interplanar interactions in (II) are simpler and are mediated by two solvent water molecules basically interacting with the carboxylate O atoms (Fig. 6). There is, in addition, a ππ bond involving one of the pyr rings [Cg···Cg(1 - x, -y, 1 - z) = 3.74 Å; slippage 26.66°; Cg is the centroid of the N15/N25/C15/C25/C35 ring]

A survey of the 2009 version of the Cambridge Structural Database (CSD; Allen, 2002) shows that no structures have been published previously containing both the btc anion and the pyr ligand. There are, however, quite a few with the closely related L = imidazole (imid) group, differing from pyr in that the two N atoms are not nearest neighbours (positions 1 and 2 in the ring) but next-nearest (positions 1 and 3). In particular, CSD refcode OJOTEM (Cheng et al., 2003), (III), is almost isostructural with (I) in that it presents the equivalent [Ni(L)2(H2O)4(btc)2-]n covalent anionic chain counterbalanced by a perpendicular non-intersecting hydrogen-bonded chain made up of water molecules and [Ni(L)n(H2O)m]2+ cations, the differences being that in OJOTEM L= imid, m = 2 and n = 4, while in (I) L = pyr, m = 4 and n = 2.

This `quasi-isostructurality' between complexes (I) and (III), with an almost identical disposition of equivalent groups, results from the position of the non-coordinated `second' N atom (N22) in the five-membered ring. In structure (I) it occupies site 2, vicinal to the coordinated atom N21 at site 1, a position which forces its H atom (H22) to point inwards within the chain (see Fig. 1), and thus it forms intrachain rather than interchain hydrogen bonds. Its counterpart in OJOTEM, instead, occupies position 3 in the five-membered ring (next-nearest neighbour to the coordinated N atom, the position occupied by atom C12 in Fig. 1), and thus points outwards from the chain in a suitable orientation to act as a donor for strong interchain bonds, which serve to build up hydrogen-bonded two-dimensional structures instead of the basically isolated chains found in (I).

A similar situation arises in (II) where, due to their inward-facing orientation, three out of the four possible N—H groups are forced to make intraplanar hydrogen bonds (Table 4 and Fig. 6) and only the fourth (N25—H25) is involved in the interplanar linkage, via a hydrogen-bonding interaction mediated by atom O1W.

As a final curiosity resulting from this CSD search, it can be mentioned that the [Ni(pyr)2(H2O)4]2+ group in (I) has been reported only once before, its only appearance being in a copper complex (CSD refcode UFIDUI; Wang et al., 2001).

Experimental top

An aqueous solution (30 ml) containing Ni(acetate)2.4H2O (0.2985 g) or Co(acetate)2.4H2O (0.2988 g) for (I) and (II), respectively, was slowly added to an aqueous solution (150 ml) containing benzene-1,2,4,5-tetracarboxylic acid (0.15249 g [5 d.p.s justified?]) and NaOH (0.0903 g). The reaction mixture was heated under reflux for 10 min. An ethanolic solution (30 ml) of pyrazol (0.2055 g) was added and the resulting solution was maintained under reflux for 4 h. Single crystals suitable for X-ray crystallography were grown from the solution by slow evaporation at room temperature.

Refinement top

C-bound H atoms were constrained geometrically and allowed to ride, with C—H = 0.93–0.97 Å. O-bound H atoms were initially found in a difference electron-density map and refined with restrained O—H [0.85 (1) Å] and H···H [1.30 (2) Å] distances until convergence, and then constrained, riding on the host O atoms in the final cycles. In all cases, Uiso(H) = 1.2 or 1.5Ueq(parent).

Computing details top

For both compounds, data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2002); data reduction: SAINT-NT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The asymmetric unit is shown in bold. [Symmetry codes: (i) -x, 1 - y, 2 - z; (ii) -x + 1, -y, -z + 1; (iii) -x, -y + 1, -z + 1.]
[Figure 2] Fig. 2. Molecular view of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The asymmetric unit is shown in bold. [Symmetry codes: (i) -x, 1 - y, 2 - z; (ii) -x, -y + 2, -z + 1; (iii) -x, -y + 1, -z + 1.]
[Figure 3] Fig. 3. Packing view of (I), projected down [100]*. (a) At height x = 0.00, showing the (covalent) anionic chains running along [001]. (b) At height x = 1/2, showing the (hydrogen-bonded) cationic chains running along [010].
[Figure 4] Fig. 4. Packing view of (I), projected down [001]*. (a) At height z = 0.00, showing a cross section of the (covalent) anionic chains running along [001] (out of the figure). (b) At height z = 1/2, showing the (hydrogen-bonded) cationic chains running along [010], in between the former chains.
[Figure 5] Fig. 5. Packing view of (II), projected down [100]*, showing (in bold) the `grid structure' generated by CoII cations and btc anions.
[Figure 6] Fig. 6. Packing view of (II), projected down [010]*, showing the water-mediated hydrogen-bond interaction between two-dimensional `grid structures' (in bold).
(I) catena-Poly[[tetraaquabis(1H-pyrazole-κN2)nickel(II)] [[diaquabis(1H-pyrazole-κN2)nickel(II)]- µ-benzene-1,2,4,5-tetracarboxylato-κ2O1:O4] tetrahydrate] top
Crystal data top
[Ni(C3H4N2)2(H2O)4][Ni(C10H2O8)(C3H4N2)2(H2O)2]·4H2OZ = 1
Mr = 820.02F(000) = 426
Triclinic, P1Dx = 1.619 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6399 (12) ÅCell parameters from 5423 reflections
b = 10.7925 (17) Åθ = 2.7–26.9°
c = 11.4616 (19) ŵ = 1.21 mm1
α = 73.224 (3)°T = 298 K
β = 74.613 (2)°Needle, colourless
γ = 71.287 (3)°0.28 × 0.07 × 0.07 mm
V = 841.3 (2) Å3
Data collection top
Bruker SMART? CCD area-detector
diffractometer
3650 independent reflections
Radiation source: fine-focus sealed tube2759 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
h = 910
Tmin = 0.89, Tmax = 0.92k = 1313
7155 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.067P)2]
where P = (Fo2 + 2Fc2)/3
3650 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Ni(C3H4N2)2(H2O)4][Ni(C10H2O8)(C3H4N2)2(H2O)2]·4H2Oγ = 71.287 (3)°
Mr = 820.02V = 841.3 (2) Å3
Triclinic, P1Z = 1
a = 7.6399 (12) ÅMo Kα radiation
b = 10.7925 (17) ŵ = 1.21 mm1
c = 11.4616 (19) ÅT = 298 K
α = 73.224 (3)°0.28 × 0.07 × 0.07 mm
β = 74.613 (2)°
Data collection top
Bruker SMART? CCD area-detector
diffractometer
3650 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
2759 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.92Rint = 0.030
7155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.01Δρmax = 0.58 e Å3
3650 reflectionsΔρmin = 0.31 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50001.00000.02409 (17)
Ni20.50000.00000.50000.02789 (18)
O110.2245 (3)0.7347 (2)0.5380 (2)0.0400 (6)
O210.0754 (3)0.7843 (2)0.6323 (2)0.0320 (5)
O310.0276 (3)0.5108 (2)0.81139 (18)0.0288 (5)
O410.2319 (3)0.4510 (3)0.8245 (2)0.0403 (6)
N120.2330 (4)0.3358 (3)1.0064 (2)0.0319 (6)
N220.2635 (5)0.2457 (3)1.1120 (3)0.0543 (9)
H220.18670.24851.18190.065*
N130.2921 (4)0.0288 (3)0.6548 (3)0.0370 (7)
N230.2614 (5)0.1258 (4)0.7161 (3)0.0581 (9)
H230.32330.18540.69380.070*
C110.0384 (4)0.5966 (3)0.5414 (3)0.0220 (6)
C210.0456 (4)0.5005 (3)0.6274 (3)0.0233 (6)
C310.0830 (4)0.4059 (3)0.5836 (3)0.0249 (7)
H310.13970.34220.63990.030*
C410.0661 (5)0.7128 (3)0.5750 (3)0.0250 (7)
C510.0885 (4)0.4871 (3)0.7661 (3)0.0251 (7)
C120.4230 (8)0.1525 (5)1.0979 (5)0.0778 (16)
H120.47070.08061.15890.093*
C220.5028 (7)0.1819 (5)0.9784 (6)0.0827 (17)
H22A0.61820.13500.93990.099*
C320.3795 (6)0.2970 (4)0.9220 (4)0.0555 (11)
H320.39820.33910.83830.067*
C130.1238 (8)0.1179 (6)0.8154 (5)0.0849 (19)
H130.07810.17460.87050.102*
C230.0637 (7)0.0118 (7)0.8204 (5)0.095 (2)
H23A0.02980.02000.88080.114*
C330.1688 (6)0.0419 (4)0.7173 (4)0.0547 (11)
H330.15450.11470.69610.066*
O1W0.1654 (3)0.6350 (2)0.9435 (2)0.0365 (6)
H1WA0.24670.63030.87680.044*
H1WB0.22460.61721.00210.044*
O2W0.4087 (3)0.2026 (2)0.4274 (2)0.0373 (6)
H2WA0.47170.25620.37950.045*
H2WB0.30670.22120.40160.045*
O3W0.3164 (3)0.0361 (2)0.4165 (2)0.0379 (6)
H3WA0.21460.02610.41390.045*
H3WB0.28840.10700.46270.045*
O4W0.4509 (3)0.5957 (3)0.7361 (2)0.0466 (7)
H4WA0.41400.55470.69790.056*
H4WB0.54940.54260.76150.056*
O5W0.5589 (4)0.6224 (3)0.3864 (3)0.0593 (8)
H5WA0.64170.59080.43200.071*
H5WB0.45190.63750.43410.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0281 (3)0.0272 (3)0.0175 (3)0.0075 (2)0.0058 (2)0.0041 (2)
Ni20.0259 (3)0.0264 (3)0.0301 (3)0.0081 (2)0.0056 (3)0.0027 (2)
O110.0377 (14)0.0400 (14)0.0499 (16)0.0185 (11)0.0042 (12)0.0156 (12)
O210.0374 (13)0.0254 (12)0.0335 (13)0.0042 (10)0.0073 (11)0.0113 (10)
O310.0317 (12)0.0376 (13)0.0196 (11)0.0116 (10)0.0057 (9)0.0068 (9)
O410.0384 (14)0.0654 (17)0.0233 (12)0.0293 (13)0.0001 (11)0.0070 (11)
N120.0374 (16)0.0318 (15)0.0243 (14)0.0070 (13)0.0069 (12)0.0044 (11)
N220.070 (2)0.0435 (19)0.0348 (18)0.0023 (18)0.0140 (17)0.0036 (15)
N130.0364 (17)0.0377 (16)0.0342 (16)0.0090 (13)0.0044 (13)0.0067 (13)
N230.059 (2)0.055 (2)0.053 (2)0.0020 (18)0.0104 (19)0.0162 (18)
C110.0224 (15)0.0234 (15)0.0214 (15)0.0056 (12)0.0053 (12)0.0063 (12)
C210.0244 (15)0.0260 (16)0.0206 (15)0.0076 (13)0.0063 (12)0.0041 (12)
C310.0289 (16)0.0224 (15)0.0226 (16)0.0087 (13)0.0062 (13)0.0003 (12)
C410.0320 (17)0.0241 (15)0.0202 (15)0.0082 (14)0.0109 (13)0.0009 (12)
C510.0276 (16)0.0256 (16)0.0206 (15)0.0047 (13)0.0062 (13)0.0041 (12)
C120.074 (4)0.059 (3)0.078 (4)0.022 (3)0.031 (3)0.011 (3)
C220.047 (3)0.063 (3)0.110 (5)0.015 (2)0.008 (3)0.033 (3)
C320.056 (3)0.047 (2)0.048 (2)0.012 (2)0.017 (2)0.0130 (19)
C130.076 (4)0.095 (4)0.042 (3)0.016 (3)0.005 (3)0.014 (3)
C230.046 (3)0.139 (6)0.053 (3)0.017 (3)0.017 (2)0.017 (4)
C330.043 (2)0.063 (3)0.051 (3)0.025 (2)0.005 (2)0.001 (2)
O1W0.0413 (14)0.0418 (14)0.0290 (12)0.0194 (11)0.0079 (11)0.0009 (10)
O2W0.0324 (13)0.0287 (12)0.0474 (15)0.0089 (10)0.0107 (11)0.0006 (11)
O3W0.0338 (13)0.0306 (13)0.0501 (15)0.0085 (10)0.0128 (11)0.0060 (11)
O4W0.0377 (15)0.0589 (17)0.0423 (15)0.0191 (13)0.0103 (12)0.0005 (13)
O5W0.0427 (16)0.081 (2)0.0477 (17)0.0036 (15)0.0070 (14)0.0202 (15)
Geometric parameters (Å, º) top
Ni1—N122.070 (3)C11—C411.504 (4)
Ni1—N12i2.070 (3)C21—C311.391 (4)
Ni1—O1Wi2.083 (2)C21—C511.509 (4)
Ni1—O1W2.083 (2)C31—C11iii1.388 (4)
Ni1—O312.088 (2)C31—H310.9300
Ni1—O31i2.088 (2)C12—C221.334 (7)
Ni2—O2Wii2.059 (2)C12—H120.9300
Ni2—O2W2.059 (2)C22—C321.398 (7)
Ni2—N132.068 (3)C22—H22A0.9300
Ni2—N13ii2.068 (3)C32—H320.9300
Ni2—O3Wii2.076 (2)C13—C231.345 (9)
Ni2—O3W2.076 (2)C13—H130.9300
O11—C411.247 (4)C23—C331.404 (7)
O21—C411.255 (4)C23—H23A0.9300
O31—C511.260 (4)C33—H330.9300
O41—C511.239 (4)O1W—H1WA0.8500
N12—C321.312 (4)O1W—H1WB0.8501
N12—N221.338 (4)O2W—H2WA0.8500
N22—C121.313 (5)O2W—H2WB0.8501
N22—H220.8600O3W—H3WA0.8499
N13—C331.331 (5)O3W—H3WB0.8499
N13—N231.351 (4)O4W—H4WA0.8500
N23—C131.332 (6)O4W—H4WB0.8501
N23—H230.8600O5W—H5WA0.8500
C11—C31iii1.388 (4)O5W—H5WB0.8501
C11—C211.400 (4)
N12—Ni1—N12i180.0C31iii—C11—C41117.0 (3)
N12—Ni1—O1Wi87.54 (10)C21—C11—C41123.3 (3)
N12i—Ni1—O1Wi92.46 (10)C31—C21—C11118.3 (3)
N12—Ni1—O1W92.46 (10)C31—C21—C51117.2 (3)
N12i—Ni1—O1W87.54 (10)C11—C21—C51124.4 (3)
O1Wi—Ni1—O1W180.0C11iii—C31—C21122.2 (3)
N12—Ni1—O3189.34 (9)C11iii—C31—H31118.9
N12i—Ni1—O3190.66 (9)C21—C31—H31118.9
O1Wi—Ni1—O3193.82 (8)O11—C41—O21125.3 (3)
O1W—Ni1—O3186.18 (8)O11—C41—C11117.5 (3)
N12—Ni1—O31i90.66 (9)O21—C41—C11117.1 (3)
N12i—Ni1—O31i89.34 (9)O41—C51—O31126.4 (3)
O1Wi—Ni1—O31i86.18 (8)O41—C51—C21116.8 (3)
O1W—Ni1—O31i93.82 (8)O31—C51—C21116.7 (3)
O31—Ni1—O31i180.000 (1)N22—C12—C22106.1 (4)
O2Wii—Ni2—O2W180.00 (14)N22—C12—H12126.9
O2Wii—Ni2—N1392.62 (10)C22—C12—H12126.9
O2W—Ni2—N1387.38 (10)C12—C22—C32106.8 (4)
O2Wii—Ni2—N13ii87.38 (10)C12—C22—H22A126.6
O2W—Ni2—N13ii92.62 (10)C32—C22—H22A126.6
N13—Ni2—N13ii180.0N12—C32—C22108.9 (4)
O2Wii—Ni2—O3Wii89.96 (9)N12—C32—H32125.5
O2W—Ni2—O3Wii90.04 (9)C22—C32—H32125.5
N13—Ni2—O3Wii89.00 (10)N23—C13—C23106.6 (5)
N13ii—Ni2—O3Wii91.00 (10)N23—C13—H13126.7
O2Wii—Ni2—O3W90.04 (9)C23—C13—H13126.7
O2W—Ni2—O3W89.96 (9)C13—C23—C33107.1 (4)
N13—Ni2—O3W91.00 (10)C13—C23—H23A126.5
N13ii—Ni2—O3W89.00 (10)C33—C23—H23A126.5
O3Wii—Ni2—O3W180.0N13—C33—C23108.5 (4)
C51—O31—Ni1124.1 (2)N13—C33—H33125.8
C32—N12—N22105.2 (3)C23—C33—H33125.8
C32—N12—Ni1132.6 (3)Ni1—O1W—H1WA116.9
N22—N12—Ni1122.2 (2)Ni1—O1W—H1WB104.9
C12—N22—N12112.9 (4)H1WA—O1W—H1WB107.4
C12—N22—H22123.5Ni2—O2W—H2WA129.1
N12—N22—H22123.5Ni2—O2W—H2WB111.1
C33—N13—N23105.9 (3)H2WA—O2W—H2WB107.4
C33—N13—Ni2129.6 (3)Ni2—O3W—H3WA112.7
N23—N13—Ni2124.5 (3)Ni2—O3W—H3WB105.5
C13—N23—N13111.8 (4)H3WA—O3W—H3WB107.4
C13—N23—H23124.1H4WA—O4W—H4WB107.4
N13—N23—H23124.1H5WA—O5W—H5WB107.4
C31iii—C11—C21119.5 (3)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N22—H22···O21i0.862.042.876 (4)162
N23—H23···O5Wiv0.862.373.216 (5)168
O1W—H1WA···O4W0.851.952.798 (3)172
O1W—H1WB···O41i0.851.922.679 (3)148
O2W—H2WA···O4Wiv0.851.902.734 (3)165
O2W—H2WB···O21iii0.851.932.759 (3)165
O3W—H3WA···O21iii0.851.972.748 (3)152
O3W—H3WB···O11v0.851.832.675 (3)170
O4W—H4WB···O41vi0.851.862.702 (4)171
O4W—H4WA···O5Wiv0.852.313.097 (4)154
O5W—H5WB···O110.852.002.809 (4)159
O5W—H5WA···Cg2vii0.852.843.64156
C32—H32···O5Wiv0.932.443.329 (5)161
C12—H12···Cg3viii0.932.923.67140
Symmetry codes: (i) x, y+1, z+2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y1, z; (vi) x+1, y, z; (vii) x1, y, z; (viii) x, y+1, z1.
(II) poly[[(µ4-benzene-1,2,4,5-tetracarboxylato- κ4O1:O2:O4:O5)octakis(1H- pyrazole-κN2)dicobalt(II)] tetrahydrate] top
Crystal data top
[Co2(C10H2O8)(C3H4N2)8]·4H2OZ = 1
Mr = 984.70F(000) = 508
Triclinic, P1Dx = 1.566 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9122 (18) ÅCell parameters from 6202 reflections
b = 11.045 (2) Åθ = 3.0–27.1°
c = 11.450 (2) ŵ = 0.88 mm1
α = 83.381 (3)°T = 298 K
β = 74.579 (3)°Polyhedron, orange
γ = 74.162 (3)°0.42 × 0.30 × 0.14 mm
V = 1044.1 (3) Å3
Data collection top
Bruker SMART? CCD area-detector
diffractometer
4455 independent reflections
Radiation source: fine-focus sealed tube3228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
h = 1111
Tmin = 0.69, Tmax = 0.89k = 1414
8610 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.3795P]
where P = (Fo2 + 2Fc2)/3
4455 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Co2(C10H2O8)(C3H4N2)8]·4H2Oγ = 74.162 (3)°
Mr = 984.70V = 1044.1 (3) Å3
Triclinic, P1Z = 1
a = 8.9122 (18) ÅMo Kα radiation
b = 11.045 (2) ŵ = 0.88 mm1
c = 11.450 (2) ÅT = 298 K
α = 83.381 (3)°0.42 × 0.30 × 0.14 mm
β = 74.579 (3)°
Data collection top
Bruker SMART? CCD area-detector
diffractometer
4455 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
3228 reflections with I > 2σ(I)
Tmin = 0.69, Tmax = 0.89Rint = 0.027
8610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.60 e Å3
4455 reflectionsΔρmin = 0.55 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.50001.00000.02710 (17)
Co20.00001.00000.50000.02621 (17)
O110.2707 (3)0.3750 (2)0.7006 (2)0.0423 (6)
O210.0428 (3)0.4921 (2)0.80832 (19)0.0353 (5)
O310.2032 (3)0.6802 (2)0.6342 (2)0.0350 (5)
O410.0655 (3)0.80508 (19)0.5125 (2)0.0390 (6)
N120.1951 (3)0.5835 (3)0.9758 (3)0.0349 (6)
N220.2830 (4)0.6137 (3)0.8675 (3)0.0464 (8)
H220.26380.60550.79940.056*
N130.1551 (3)0.3198 (2)1.0225 (2)0.0331 (6)
N230.2611 (3)0.2545 (2)0.9311 (2)0.0349 (6)
H230.27930.28210.85670.042*
N140.0142 (3)1.0120 (2)0.6796 (2)0.0328 (6)
N240.1158 (3)0.9252 (3)0.7327 (2)0.0354 (7)
H240.16930.85330.70340.043*
N150.2462 (3)1.0007 (3)0.4309 (2)0.0354 (6)
N250.3668 (4)0.8991 (3)0.3939 (3)0.0451 (8)
H250.35520.82380.39770.054*
C110.0685 (3)0.4794 (3)0.5998 (3)0.0241 (6)
C210.0533 (4)0.5950 (3)0.5347 (3)0.0253 (6)
C310.0148 (4)0.6129 (3)0.4366 (3)0.0272 (7)
H310.02480.69010.39340.033*
C410.1338 (4)0.4485 (3)0.7118 (3)0.0283 (7)
C510.1112 (4)0.7013 (3)0.5640 (3)0.0277 (7)
C120.4034 (5)0.6577 (4)0.8777 (4)0.0595 (11)
H120.47960.68370.81440.071*
C220.3939 (5)0.6575 (4)0.9967 (5)0.0611 (12)
H22A0.46130.68391.03230.073*
C320.2627 (5)0.6097 (4)1.0560 (3)0.0464 (9)
H320.22790.59801.13960.056*
C130.3353 (4)0.1412 (3)0.9699 (4)0.0465 (9)
H130.41300.08000.92210.056*
C230.2776 (5)0.1314 (3)1.0909 (3)0.0493 (10)
H23A0.30650.06331.14340.059*
C330.1665 (5)0.2442 (3)1.1198 (3)0.0462 (10)
H330.10680.26491.19800.055*
C140.1239 (5)0.9637 (4)0.8359 (3)0.0465 (9)
H140.18700.91880.88730.056*
C240.0229 (5)1.0810 (4)0.8530 (3)0.0468 (9)
H24A0.00281.13240.91720.056*
C340.0433 (4)1.1069 (3)0.7536 (3)0.0383 (8)
H340.11811.18110.74050.046*
C150.5071 (4)0.9298 (4)0.3503 (3)0.0496 (10)
H150.60660.87470.32070.059*
C250.4772 (5)1.0549 (4)0.3573 (3)0.0501 (10)
H25A0.55101.10380.33290.060*
C350.3148 (4)1.0957 (3)0.4081 (3)0.0385 (8)
H350.26051.17910.42420.046*
O1W0.3949 (4)0.6402 (3)0.3256 (3)0.0729 (9)
H1WA0.49560.63280.31090.088*
H1WB0.37990.56670.34180.088*
O2W0.4419 (3)0.3811 (3)0.4310 (3)0.0691 (9)
H2WA0.54060.37080.42920.083*
H2WB0.39120.37770.50500.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0279 (3)0.0266 (3)0.0263 (3)0.0031 (3)0.0099 (3)0.0005 (2)
Co20.0305 (3)0.0227 (3)0.0287 (3)0.0097 (2)0.0111 (3)0.0024 (2)
O110.0363 (14)0.0494 (15)0.0349 (13)0.0035 (11)0.0138 (11)0.0000 (11)
O210.0396 (13)0.0411 (13)0.0235 (12)0.0060 (11)0.0088 (10)0.0024 (10)
O310.0405 (13)0.0338 (12)0.0383 (13)0.0153 (10)0.0186 (11)0.0040 (10)
O410.0565 (16)0.0214 (11)0.0454 (14)0.0107 (11)0.0246 (12)0.0037 (10)
N120.0341 (16)0.0375 (16)0.0350 (16)0.0112 (13)0.0107 (13)0.0009 (13)
N220.0511 (19)0.0524 (19)0.0424 (18)0.0231 (16)0.0166 (15)0.0079 (15)
N130.0338 (15)0.0282 (14)0.0325 (15)0.0005 (12)0.0083 (12)0.0003 (12)
N230.0369 (16)0.0336 (15)0.0325 (15)0.0024 (12)0.0132 (13)0.0007 (12)
N140.0375 (16)0.0327 (15)0.0306 (15)0.0110 (12)0.0115 (13)0.0013 (12)
N240.0368 (16)0.0381 (16)0.0332 (16)0.0098 (13)0.0127 (13)0.0019 (12)
N150.0337 (15)0.0354 (16)0.0385 (16)0.0102 (13)0.0099 (13)0.0011 (13)
N250.0453 (19)0.0369 (17)0.053 (2)0.0083 (14)0.0130 (16)0.0055 (14)
C110.0252 (16)0.0228 (15)0.0227 (15)0.0035 (12)0.0064 (13)0.0002 (12)
C210.0276 (16)0.0237 (15)0.0243 (16)0.0060 (12)0.0056 (13)0.0021 (12)
C310.0304 (17)0.0231 (15)0.0275 (17)0.0061 (13)0.0092 (13)0.0046 (12)
C410.0330 (18)0.0250 (16)0.0313 (18)0.0114 (14)0.0123 (15)0.0017 (13)
C510.0300 (17)0.0248 (16)0.0268 (16)0.0075 (13)0.0044 (14)0.0002 (13)
C120.048 (2)0.060 (3)0.077 (3)0.026 (2)0.019 (2)0.012 (2)
C220.053 (3)0.058 (3)0.088 (3)0.022 (2)0.035 (2)0.006 (2)
C320.049 (2)0.054 (2)0.044 (2)0.0100 (19)0.0244 (19)0.0041 (18)
C130.042 (2)0.037 (2)0.052 (2)0.0068 (16)0.0146 (19)0.0035 (17)
C230.055 (2)0.038 (2)0.045 (2)0.0012 (18)0.0155 (19)0.0127 (17)
C330.050 (2)0.045 (2)0.0302 (19)0.0033 (18)0.0048 (17)0.0063 (16)
C140.052 (2)0.057 (2)0.034 (2)0.0141 (19)0.0181 (18)0.0006 (18)
C240.059 (3)0.052 (2)0.034 (2)0.021 (2)0.0097 (19)0.0084 (17)
C340.047 (2)0.0334 (18)0.0336 (19)0.0135 (16)0.0069 (16)0.0010 (15)
C150.030 (2)0.072 (3)0.041 (2)0.0063 (19)0.0033 (17)0.007 (2)
C250.040 (2)0.063 (3)0.051 (2)0.025 (2)0.0094 (19)0.006 (2)
C350.036 (2)0.0360 (19)0.046 (2)0.0127 (16)0.0125 (17)0.0027 (16)
O1W0.0518 (18)0.068 (2)0.089 (2)0.0070 (16)0.0088 (17)0.0068 (17)
O2W0.0460 (17)0.096 (2)0.0609 (19)0.0130 (16)0.0124 (14)0.0002 (17)
Geometric parameters (Å, º) top
Co1—N132.123 (3)C11—C31iii1.383 (4)
Co1—N13i2.123 (3)C11—C211.395 (4)
Co1—N12i2.124 (3)C11—C411.512 (4)
Co1—N122.124 (3)C21—C311.384 (4)
Co1—O212.133 (2)C21—C511.506 (4)
Co1—O21i2.133 (2)C31—C11iii1.383 (4)
Co2—O412.070 (2)C31—H310.9300
Co2—O41ii2.070 (2)C12—C221.343 (6)
Co2—N14ii2.114 (3)C12—H120.9300
Co2—N142.114 (3)C22—C321.393 (6)
Co2—N152.127 (3)C22—H22A0.9300
Co2—N15ii2.127 (3)C32—H320.9300
O11—C411.251 (4)C13—C231.346 (5)
O21—C411.242 (4)C13—H130.9300
O31—C511.255 (4)C23—C331.375 (5)
O41—C511.243 (4)C23—H23A0.9300
N12—C321.319 (4)C33—H330.9300
N12—N221.339 (4)C14—C241.362 (5)
N22—C121.329 (5)C14—H140.9300
N22—H220.8600C24—C341.383 (5)
N13—C331.322 (4)C24—H24A0.9300
N13—N231.336 (4)C34—H340.9300
N23—C131.334 (4)C15—C251.342 (5)
N23—H230.8600C15—H150.9300
N14—C341.327 (4)C25—C351.376 (5)
N14—N241.340 (4)C25—H25A0.9300
N24—C141.327 (4)C35—H350.9300
N24—H240.8600O1W—H1WA0.8501
N15—C351.321 (4)O1W—H1WB0.8501
N15—N251.342 (4)O2W—H2WA0.8499
N25—C151.337 (5)O2W—H2WB0.8500
N25—H250.8600
N13—Co1—N13i180.00 (15)N15—N25—H25124.3
N13—Co1—N12i90.09 (11)C31iii—C11—C21118.4 (3)
N13i—Co1—N12i89.91 (11)C31iii—C11—C41116.9 (3)
N13—Co1—N1289.91 (11)C21—C11—C41124.6 (3)
N13i—Co1—N1290.09 (11)C31—C21—C11118.8 (3)
N12i—Co1—N12180.00 (12)C31—C21—C51117.9 (3)
N13—Co1—O2194.87 (9)C11—C21—C51123.2 (3)
N13i—Co1—O2185.13 (9)C11iii—C31—C21122.7 (3)
N12i—Co1—O2189.65 (10)C11iii—C31—H31118.6
N12—Co1—O2190.35 (10)C21—C31—H31118.6
N13—Co1—O21i85.13 (9)O21—C41—O11125.7 (3)
N13i—Co1—O21i94.87 (9)O21—C41—C11117.1 (3)
N12i—Co1—O21i90.35 (10)O11—C41—C11117.0 (3)
N12—Co1—O21i89.65 (10)O41—C51—O31124.6 (3)
O21—Co1—O21i180.000 (1)O41—C51—C21115.8 (3)
O41—Co2—O41ii180.000 (1)O31—C51—C21119.5 (3)
O41—Co2—N14ii87.97 (9)N22—C12—C22106.9 (4)
O41ii—Co2—N14ii92.03 (9)N22—C12—H12126.6
O41—Co2—N1492.03 (9)C22—C12—H12126.6
O41ii—Co2—N1487.97 (9)C12—C22—C32106.0 (4)
N14ii—Co2—N14180.000 (1)C12—C22—H22A127.0
O41—Co2—N1589.73 (10)C32—C22—H22A127.0
O41ii—Co2—N1590.27 (10)N12—C32—C22109.8 (4)
N14ii—Co2—N1588.63 (10)N12—C32—H32125.1
N14—Co2—N1591.37 (10)C22—C32—H32125.1
O41—Co2—N15ii90.27 (10)N23—C13—C23107.7 (3)
O41ii—Co2—N15ii89.73 (10)N23—C13—H13126.2
N14ii—Co2—N15ii91.37 (10)C23—C13—H13126.2
N14—Co2—N15ii88.63 (10)C13—C23—C33104.7 (3)
N15—Co2—N15ii180.000 (1)C13—C23—H23A127.6
C41—O21—Co1148.3 (2)C33—C23—H23A127.6
C51—O41—Co2153.9 (2)N13—C33—C23111.6 (3)
C32—N12—N22105.3 (3)N13—C33—H33124.2
C32—N12—Co1130.4 (3)C23—C33—H33124.2
N22—N12—Co1124.1 (2)N24—C14—C24107.5 (3)
C12—N22—N12112.0 (3)N24—C14—H14126.2
C12—N22—H22124.0C24—C14—H14126.2
N12—N22—H22124.0C14—C24—C34104.7 (3)
C33—N13—N23104.6 (3)C14—C24—H24A127.6
C33—N13—Co1131.4 (2)C34—C24—H24A127.6
N23—N13—Co1124.0 (2)N14—C34—C24111.0 (3)
C13—N23—N13111.4 (3)N14—C34—H34124.5
C13—N23—H23124.3C24—C34—H34124.5
N13—N23—H23124.3N25—C15—C25107.1 (3)
C34—N14—N24105.0 (3)N25—C15—H15126.4
C34—N14—Co2131.1 (2)C25—C15—H15126.4
N24—N14—Co2122.8 (2)C15—C25—C35105.7 (4)
C14—N24—N14111.7 (3)C15—C25—H25A127.1
C14—N24—H24124.1C35—C25—H25A127.1
N14—N24—H24124.1N15—C35—C25111.0 (3)
C35—N15—N25104.7 (3)N15—C35—H35124.5
C35—N15—Co2130.1 (2)C25—C35—H35124.5
N25—N15—Co2125.1 (2)H1WA—O1W—H1WB107.4
C15—N25—N15111.4 (3)H2WA—O2W—H2WB107.4
C15—N25—H25124.3
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+2, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N22—H22···O310.862.122.907 (4)152
N23—H23···O110.861.962.806 (4)166
N24—H24···O310.862.072.878 (4)157
N25—H25···O1W0.862.182.978 (4)154
O1W—H1WA···O11iv0.852.032.875 (4)172
O1W—H1WB···O2W0.852.182.940 (4)149
O2W—H2WA···O31iv0.852.142.952 (4)160
O2W—H2WB···O110.852.213.060 (4)176
Symmetry code: (iv) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ni(C3H4N2)2(H2O)4][Ni(C10H2O8)(C3H4N2)2(H2O)2]·4H2O[Co2(C10H2O8)(C3H4N2)8]·4H2O
Mr820.02984.70
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)298298
a, b, c (Å)7.6399 (12), 10.7925 (17), 11.4616 (19)8.9122 (18), 11.045 (2), 11.450 (2)
α, β, γ (°)73.224 (3), 74.613 (2), 71.287 (3)83.381 (3), 74.579 (3), 74.162 (3)
V3)841.3 (2)1044.1 (3)
Z11
Radiation typeMo KαMo Kα
µ (mm1)1.210.88
Crystal size (mm)0.28 × 0.07 × 0.070.42 × 0.30 × 0.14
Data collection
DiffractometerBruker SMART? CCD area-detector
diffractometer
Bruker SMART? CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS in SAINT-NT; Bruker, 2002)
Multi-scan
(SADABS in SAINT-NT; Bruker, 2002)
Tmin, Tmax0.89, 0.920.69, 0.89
No. of measured, independent and
observed [I > 2σ(I)] reflections
7155, 3650, 2759 8610, 4455, 3228
Rint0.0300.027
(sin θ/λ)max1)0.6610.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.125, 1.01 0.053, 0.123, 1.04
No. of reflections36504455
No. of parameters229292
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.310.60, 0.55

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) for (I) top
Ni1—N122.070 (3)Ni2—O2W2.059 (2)
Ni1—O1W2.083 (2)Ni2—N132.068 (3)
Ni1—O312.088 (2)Ni2—O3W2.076 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N22—H22···O21i0.862.042.876 (4)162.4
N23—H23···O5Wii0.862.373.216 (5)168.4
O1W—H1WA···O4W0.851.952.798 (3)172.2
O1W—H1WB···O41i0.851.922.679 (3)148.2
O2W—H2WA···O4Wii0.851.902.734 (3)164.9
O2W—H2WB···O21iii0.851.932.759 (3)164.8
O3W—H3WA···O21iii0.851.972.748 (3)151.8
O3W—H3WB···O11iv0.851.832.675 (3)170.3
O4W—H4WB···O41v0.851.862.702 (4)170.5
O4W—H4WA···O5Wii0.852.313.097 (4)154.0
O5W—H5WB···O110.852.002.809 (4)159.1
O5W—H5WA···Cg2vi0.852.843.64156
C32—H32···O5Wii0.932.443.329 (5)160.8
C12—H12···Cg3vii0.932.923.67140
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1, y, z; (vi) x1, y, z; (vii) x, y+1, z1.
Selected bond lengths (Å) for (II) top
Co1—N132.123 (3)Co2—O412.070 (2)
Co1—N122.124 (3)Co2—N142.114 (3)
Co1—O212.133 (2)Co2—N152.127 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N22—H22···O310.862.122.907 (4)152.0
N23—H23···O110.861.962.806 (4)166.1
N24—H24···O310.862.072.878 (4)156.5
N25—H25···O1W0.862.182.978 (4)154.0
O1W—H1WA···O11i0.852.032.875 (4)171.9
O1W—H1WB···O2W0.852.182.940 (4)148.7
O2W—H2WA···O31i0.852.142.952 (4)160.2
O2W—H2WB···O110.852.213.060 (4)176.2
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds