Download citation
Download citation
link to html
The title compound, catena-poly[[chlorido­tetra­kis(ethylene­diamine-κ2N,N′)samarium(III)] [indium(III)-di-μ-tellurido-in­dium(III)-di-μ-tellurido]], {[SmCl(C2H8N2)4][In2Te4]}n, con­sists of a one-dimensional sinusoidal {[InTe2]}n anionic chain and [SmCl(en)4]2+ cations (en is ethylene­diamine). The only other previously reported lanthanide analogue, viz. [LaCl(en)4][In2Te4], contains more usual linear one-dimensional {[InTe2]}n anion chains [Chen, Li, Chen & Proserpio (1998). Inorg. Chim. Acta, 273, 255–258]. The one-dimensional poly­meric {[InTe2]}n chain is built of InTe4 tetra­hedra sharing opposite edges. The SmIII ion in the [SmCl(en)4]2+ cation is nine-coordinated by eight N atoms from four bidentate en mol­ecules and by one chloride ion to form a monocapped square-anti­prismatic geometry. The presence or absence of N—H...Cl hydrogen bonding is shown to affect the conformation of the anion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010803521X/em3020sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010803521X/em3020Isup2.hkl
Contains datablock I

CCDC reference: 684164

Comment top

The number of hybrid organic–inorganic indium chalcogenides has increased rapidly in recent years, owing to their potential applications in catalysis, and in semiconductor and photoelectric chemistry (Zheng et al., 2005; Li et al., 1999; Manos et al., 2007; Ding et al., 2006; Rangan et al., 2000). These compounds have usually been prepared at moderate temperatures (room temperature or under mild hydro- or solvothermal conditions) in the presence of an organic base as a structure-directing or templating agent. In the family of indium tellurides, many related compounds with a variety of structures have been reported, as exemplified by zero-dimensional molecular K6In2Te6.4en (en is ethylenediamine) (Wang & Haushalter, 1997) and (NEt4)5[In3Te7].0.5Et2O (Park et al., 1995)}, one-dimensional {[InTe2]-}n chains built up from InTe4 tetrahedra sharing opposite edges in [(n-C4H9)4N]2[In2Te4] (Warren et al., 1994) or [Zn(taa)(µ-tren)0.5][InTe2]Cl [taa = N,N,N-tris(2-aminoethyl)amine and tren = triethylenetetramine], [M(en)3]In2Te4.en (M = Ni or Co) and [M(en)3]2[In4Te8].0.5en (M = Mn, Fe or Zn) (Zhou et al., 2007), one-dimensional chains with fused five-membered rings in [M(en)3][In2Te6] (M = Fe or Zn) and α- or β-[Mo3(en)32-Te2)33-Te)(µ3-O)][In2Te6] (Li et al., 1997), a two-dimensional layered network built of an In4Te10 supertetrahedron sharing bonds via µ2-Te, µ2-Te2 and µ6-Te3 in [Zn(en)3]4In16(Te2)4(Te3)Te22 (Chen et al., 2001), and three-dimensional frameworks constructed from the crosslinking of helical chains of corner-sharing InTe4 tetrahedra in UCR-2InTe-amine [amine = triethylenetetramine, tris(2-aminoethyl)amine or N-(2-aminoethyl)propane-1,3-diamine; UCR = University of California at Riverside] (Wang et al., 2002). The cations of these compounds are tetraalkylammonium, protonated amine, alkali metal cations or transition metal complex cations, but indium tellurides with lanthanide-containing countercations prepared under mild solvothermal conditions are rare. The only example that has been found is [LaCl(en)4]In2Te4, (II) (Chen et al., 1998), which contains one-dimensional straight {[InTe2]-}n anion chains. We report here the unusual example of the title indium telluride {[SmCl(en)4][In2Te4]}n, (I), containing sinusoidal {[InTe2]-}n anion chains with [SmCl(en)4]2+ as counterions.

In the asymmetric unit of (I), there are two In atoms, one Sm atom and four Te atoms, all of which occupy general positions. The SmIII centre is chelated by four bidentate en ligands and coordinated by one Cl- ion to form a monocapped square-antiprism geometry (Fig. 1a). The one-dimensional polymeric anion chain is built of InTe4 tetrahedra sharing opposite edges with the formula {[In2Te4]2-}n and propagates along the crystallographic a axis (Fig. 1b). All central In atoms in (I) are arranged in a sinusoidal line and the In···In···In angles are in the range 157.04 (3)–160.81 (3)°. There are two kinds of In···In distances in (I), 3.6170 (11) Å for In1···In2 and 3.4948 (11) Å for In1···In2ii [symmetry code: (ii) 1/2 + x, y, 1/2 - z]. The repeat unit consists of four edge-sharing InTe4 tetrahedra for a complete sinusoidal period of 13.7359 (11) Å, which is less than the sum of the four In···In distances [14.2236 (s.u.?) Å]. The atoms in the In1/Te3/Te4/In2 ring are almost coplanar, but the In1/Te1/Te2/In2ii ring has a butterfly structure; the dihedral angle between the wing planes In1/Te1/In2ii and In1/Te2/In2ii is 28.82 (4)°. When viewed down the one-dimensional {[InTe2]-}n chain axis, the butterfly rings display two alternating orientations (Fig. 2). A search of the Cambridge Structural Database (Version?; Allen, 2002) reveals that this sinusoidal period is rather shorter than that observed in a number of ethylenediamine transition metal-containing indium tellurides (transition metal = Mn, Fe, Co, Ni or Zn; Zhou et al., 2007), where it is in the range ca 14.2–14.6 Å.

In (I), [SmCl(en)4]2+ cations are linked into a one-dimensional sinusoidal cationic chain by way of N—H···Cl hydrogen bonds (Fig. 3) running parallel to the a axis. Pseudo-channels are constructed by the cationic chains surrounding the one-dimensional {[InTe2]-}n chains (Fig. 2). In addition, there are numerous weak N—H···Te contacts. These weak interactions seemingly contribute to the formation of the one-dimensional sinusoidal {[InTe2]-}n chains and stabilize the whole crystal structure.

Both (I) and the reported [LaCl(en)4]In2Te4, (II) (Chen et al., 1998), contain a Cl- ion which covalently coordinates to the LnIII centre to complete the coordination, but the role of this ion in the two structures is different. The [SmCl(en)4]2+ cations of (I) are assembled into a one-dimensional sinusoidal chain by N—H···Cl hydrogen bonds but, importantly, no similar hydrogen bonds exist between the [LaCl(en)4]2+ cations of (II). The ionic radius of the Sm3+ ion (1.132 Å) (Suganuma & Hori, 1999) is smaller than that of the La3+ ion (1.216 Å) (Lien et al., 2005). When the Cl- ion bonds to the Sm3+ ion of (I), its bond [2.869 (3) Å] is shorter than the La—Cl bond in (II) [2.945 (9) Å], and the electronegativity of the Cl atom in (I) should be larger than that in (II). For an N—H···Cl hydrogen bond, it is well known that the higher the electronegativity of the Cl atom, the stronger the hydrogen bond. Thus, the hydrogen-bond assembled sinusoidal cation chain in (I) affects the conformation of the anion. There is no such templating effect in (II) and the anionic chains are therefore straight. So (I) and (II) show different conformations of the polymeric anions.

Experimental top

Single crystals of the title complex suitable for X-ray crystallographic analysis were obtained by solvothermal treatment of SmCl3 (0.05 mmol), InCl3 (0.1 mmol), Te powder (0.2 mmol) and ethylenediamine (1 ml). The reagents were placed in a thick Pyrex tube (ca 20 cm long), which was heated to 418 K for 13 d and then cooled to room temperature. Yellow block-shaped crystals of (I) were obtained (yield 26%, based on Sm).

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 Å and N—H = 0.91 Å, and with Uiso(H) = 1.2Ueq(C,N). There was some evidence of disorder in the en ligand containing atoms N3 and N4. This was refined with geometric and displacement parameter restraints to improve the geometry using a single set of atom positions.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Views of (a) the cation and (b) the anion of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the structure of (I), along the [100] direction. All N—H···Cl contacts have been omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the N—H···Cl hydrogen bonds (dashed lines).
catena-poly[chloridotris(ethylenediamine-κ2N,N')samarium(III) [indium(III)-di-µ-tellurido-indium(III)-di-µ-tellurido]] top
Crystal data top
[SmCl(C2H8N2)4][In2Te4]F(000) = 4168
Mr = 1166.26Dx = 2.869 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 15461 reflections
a = 13.7359 (11) Åθ = 3.2–25.4°
b = 18.5660 (16) ŵ = 8.18 mm1
c = 21.1782 (18) ÅT = 223 K
V = 5400.9 (8) Å3Block, yellow
Z = 80.40 × 0.30 × 0.10 mm
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
4938 independent reflections
Radiation source: fine-focus sealed tube4478 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.2°
ω scansh = 1614
Absorption correction: multi-scan
(Jacobson, 1998)
k = 2222
Tmin = 0.068, Tmax = 0.443l = 2525
49875 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.29 w = 1/[σ2(Fo2) + (0.0187P)2 + 70.31P]
where P = (Fo2 + 2Fc2)/3
4938 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 1.78 e Å3
37 restraintsΔρmin = 1.90 e Å3
Crystal data top
[SmCl(C2H8N2)4][In2Te4]V = 5400.9 (8) Å3
Mr = 1166.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.7359 (11) ŵ = 8.18 mm1
b = 18.5660 (16) ÅT = 223 K
c = 21.1782 (18) Å0.40 × 0.30 × 0.10 mm
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
4938 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
4478 reflections with I > 2σ(I)
Tmin = 0.068, Tmax = 0.443Rint = 0.077
49875 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05737 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.29 w = 1/[σ2(Fo2) + (0.0187P)2 + 70.31P]
where P = (Fo2 + 2Fc2)/3
4938 reflectionsΔρmax = 1.78 e Å3
217 parametersΔρmin = 1.90 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.70700 (4)0.21517 (3)0.43520 (2)0.01921 (13)
Cl10.8812 (2)0.26810 (17)0.49384 (14)0.0361 (7)
N10.7702 (6)0.1200 (5)0.5170 (4)0.033 (2)
H1A0.83390.11040.50860.040*
H1B0.76700.13950.55630.040*
C10.7154 (8)0.0521 (5)0.5165 (6)0.039 (3)
H1C0.73490.02260.55270.046*
H1D0.73040.02520.47790.046*
C20.6099 (8)0.0665 (6)0.5195 (5)0.035 (3)
H2C0.59420.09050.55950.042*
H2D0.57400.02100.51790.042*
N20.5805 (7)0.1130 (5)0.4659 (4)0.032 (2)
H2A0.52270.13420.47560.038*
H2B0.57050.08460.43150.038*
N30.5406 (6)0.2634 (5)0.3963 (4)0.032 (2)
H3A0.50110.26860.43050.038*
H3B0.55020.30800.37960.038*
C30.4892 (9)0.2199 (10)0.3496 (7)0.072 (5)
H3C0.45450.18100.37130.087*
H3D0.44070.25000.32830.087*
C40.5526 (10)0.1891 (9)0.3030 (7)0.070 (4)
H4C0.56880.22610.27170.083*
H4D0.51780.15040.28100.083*
N40.6427 (7)0.1599 (6)0.3289 (5)0.042 (3)
H4A0.69010.16530.29920.050*
H4B0.63410.11180.33480.050*
N50.8409 (8)0.1356 (6)0.3795 (5)0.047 (3)
H5A0.87000.10660.40850.057*
H5B0.81240.10700.34980.057*
C50.9146 (9)0.1818 (8)0.3493 (6)0.048 (4)
H5C0.95660.15210.32240.057*
H5D0.95530.20390.38190.057*
C60.8694 (10)0.2388 (7)0.3107 (7)0.047 (3)
H6C0.92020.27150.29540.056*
H6D0.83770.21700.27390.056*
N60.7975 (7)0.2800 (5)0.3467 (4)0.030 (2)
H6A0.75250.29710.31900.035*
H6B0.82830.31870.36380.035*
N70.6933 (7)0.3557 (5)0.4538 (5)0.033 (2)
H7A0.75420.37370.46000.040*
H7B0.66910.37640.41810.040*
C70.6314 (9)0.3771 (7)0.5079 (6)0.042 (3)
H7C0.56260.37510.49570.051*
H7D0.64670.42660.52060.051*
C80.6494 (9)0.3273 (7)0.5615 (6)0.043 (3)
H8C0.71740.33110.57500.051*
H8D0.60770.34040.59720.051*
N80.6283 (6)0.2530 (5)0.5418 (4)0.032 (2)
H8A0.56260.24760.53860.038*
H8B0.64950.22240.57240.038*
Te30.40385 (5)0.45995 (4)0.15792 (3)0.02522 (17)
Te10.70749 (5)0.57217 (4)0.19345 (4)0.02735 (18)
Te20.70583 (5)0.34483 (4)0.19393 (3)0.02606 (18)
Te40.51204 (5)0.46188 (4)0.34705 (3)0.03040 (19)
In10.58088 (5)0.45999 (4)0.22201 (4)0.02546 (19)
In20.33516 (5)0.45924 (4)0.28342 (4)0.02416 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.0183 (3)0.0232 (3)0.0161 (3)0.0013 (2)0.0003 (2)0.0004 (2)
Cl10.0231 (14)0.0534 (18)0.0318 (16)0.0042 (14)0.0051 (12)0.0067 (14)
N10.029 (5)0.051 (6)0.019 (5)0.001 (5)0.001 (4)0.005 (5)
C10.061 (9)0.026 (6)0.028 (7)0.006 (6)0.006 (6)0.004 (5)
C20.044 (7)0.034 (6)0.028 (7)0.008 (6)0.000 (5)0.000 (5)
N20.034 (5)0.037 (5)0.024 (5)0.002 (4)0.000 (4)0.002 (4)
N30.026 (5)0.038 (5)0.032 (5)0.004 (4)0.008 (4)0.007 (4)
C30.049 (8)0.110 (13)0.057 (9)0.011 (8)0.031 (7)0.028 (9)
C40.062 (9)0.091 (11)0.055 (9)0.002 (8)0.030 (7)0.029 (8)
N40.043 (6)0.051 (6)0.031 (6)0.015 (5)0.002 (5)0.005 (5)
N50.056 (7)0.056 (7)0.030 (6)0.024 (6)0.014 (5)0.003 (5)
C50.035 (7)0.077 (10)0.031 (7)0.008 (7)0.005 (6)0.010 (7)
C60.052 (8)0.044 (8)0.045 (8)0.012 (7)0.015 (7)0.002 (7)
N60.043 (6)0.029 (5)0.017 (5)0.009 (5)0.003 (4)0.001 (4)
N70.023 (5)0.035 (5)0.042 (6)0.002 (4)0.001 (4)0.001 (5)
C70.042 (7)0.035 (7)0.050 (8)0.004 (6)0.000 (6)0.021 (6)
C80.033 (7)0.058 (8)0.037 (7)0.014 (6)0.001 (6)0.014 (7)
N80.021 (5)0.046 (6)0.028 (5)0.007 (4)0.001 (4)0.005 (5)
Te30.0236 (4)0.0301 (4)0.0219 (4)0.0040 (3)0.0010 (3)0.0025 (3)
Te10.0246 (4)0.0244 (4)0.0331 (4)0.0002 (3)0.0015 (3)0.0035 (3)
Te20.0293 (4)0.0254 (4)0.0235 (4)0.0014 (3)0.0044 (3)0.0019 (3)
Te40.0280 (4)0.0395 (4)0.0237 (4)0.0005 (3)0.0042 (3)0.0039 (3)
In10.0209 (4)0.0287 (4)0.0268 (4)0.0009 (3)0.0015 (3)0.0016 (3)
In20.0199 (4)0.0282 (4)0.0244 (4)0.0006 (3)0.0011 (3)0.0021 (3)
Geometric parameters (Å, º) top
Sm1—N62.551 (8)N5—H5A0.9100
Sm1—N32.589 (9)N5—H5B0.9100
Sm1—N82.599 (9)C5—C61.474 (18)
Sm1—N12.621 (9)C5—H5C0.9800
Sm1—N42.628 (9)C5—H5D0.9800
Sm1—N52.638 (10)C6—N61.462 (15)
Sm1—N72.646 (9)C6—H6C0.9800
Sm1—N22.653 (9)C6—H6D0.9800
Sm1—Cl12.869 (3)N6—H6A0.9100
N1—C11.469 (12)N6—H6B0.9100
N1—H1A0.9100N7—C71.482 (15)
N1—H1B0.9100N7—H7A0.9100
C1—C21.475 (15)N7—H7B0.9100
C1—H1C0.9800C7—C81.484 (18)
C1—H1D0.9800C7—H7C0.9800
C2—N21.483 (11)C7—H7D0.9800
C2—H2C0.9800C8—N81.470 (15)
C2—H2D0.9800C8—H8C0.9800
N2—H2A0.9100C8—H8D0.9800
N2—H2B0.9100N8—H8A0.9100
N3—C31.459 (12)N8—H8B0.9100
N3—H3A0.9100Te3—In12.7848 (10)
N3—H3B0.9100Te3—In22.8204 (11)
C3—C41.435 (16)Te1—In2i2.7769 (10)
C3—H3C0.9800Te1—In12.7798 (10)
C3—H3D0.9800Te2—In12.8055 (11)
C4—N41.457 (13)Te2—In2i2.8103 (10)
C4—H4C0.9800Te4—In22.7787 (10)
C4—H4D0.9800Te4—In12.8121 (11)
N4—H4A0.9100In2—Te1ii2.7769 (10)
N4—H4B0.9100In2—Te2ii2.8103 (10)
N5—C51.473 (17)
N6—Sm1—N391.9 (3)N4—C4—H4C108.8
N6—Sm1—N8135.5 (3)C3—C4—H4D108.8
N3—Sm1—N879.4 (3)N4—C4—H4D108.8
N6—Sm1—N1129.9 (3)H4C—C4—H4D107.7
N3—Sm1—N1137.4 (3)C4—N4—Sm1117.6 (7)
N8—Sm1—N175.3 (3)C4—N4—H4A107.9
N6—Sm1—N473.6 (3)Sm1—N4—H4A107.9
N3—Sm1—N464.2 (3)C4—N4—H4B107.9
N8—Sm1—N4135.2 (3)Sm1—N4—H4B107.9
N1—Sm1—N4114.5 (3)H4A—N4—H4B107.2
N6—Sm1—N566.1 (3)C5—N5—Sm1110.3 (8)
N3—Sm1—N5131.8 (3)C5—N5—H5A109.6
N8—Sm1—N5146.1 (3)Sm1—N5—H5A109.6
N1—Sm1—N571.8 (3)C5—N5—H5B109.6
N4—Sm1—N568.4 (3)Sm1—N5—H5B109.6
N6—Sm1—N771.3 (3)H5A—N5—H5B108.1
N3—Sm1—N769.1 (3)N5—C5—C6111.7 (11)
N8—Sm1—N764.9 (3)N5—C5—H5C109.3
N1—Sm1—N7126.2 (3)C6—C5—H5C109.3
N4—Sm1—N7119.2 (3)N5—C5—H5D109.3
N5—Sm1—N7131.9 (3)C6—C5—H5D109.3
N6—Sm1—N2146.8 (3)H5C—C5—H5D107.9
N3—Sm1—N275.3 (3)N6—C6—C5111.8 (11)
N8—Sm1—N273.0 (3)N6—C6—H6C109.3
N1—Sm1—N264.7 (3)C5—C6—H6C109.3
N4—Sm1—N273.2 (3)N6—C6—H6D109.3
N5—Sm1—N299.5 (3)C5—C6—H6D109.3
N7—Sm1—N2128.5 (3)H6C—C6—H6D107.9
N6—Sm1—Cl175.5 (2)C6—N6—Sm1117.8 (7)
N3—Sm1—Cl1139.1 (2)C6—N6—H6A107.9
N8—Sm1—Cl183.0 (2)Sm1—N6—H6A107.9
N1—Sm1—Cl170.7 (2)C6—N6—H6B107.9
N4—Sm1—Cl1141.7 (2)Sm1—N6—H6B107.9
N5—Sm1—Cl178.7 (3)H6A—N6—H6B107.2
N7—Sm1—Cl169.9 (2)C7—N7—Sm1114.8 (7)
N2—Sm1—Cl1133.24 (19)C7—N7—H7A108.6
C1—N1—Sm1113.9 (6)Sm1—N7—H7A108.6
C1—N1—H1A108.8C7—N7—H7B108.6
Sm1—N1—H1A108.8Sm1—N7—H7B108.6
C1—N1—H1B108.8H7A—N7—H7B107.5
Sm1—N1—H1B108.8N7—C7—C8109.2 (10)
H1A—N1—H1B107.7N7—C7—H7C109.8
N1—C1—C2110.3 (9)C8—C7—H7C109.8
N1—C1—H1C109.6N7—C7—H7D109.8
C2—C1—H1C109.6C8—C7—H7D109.8
N1—C1—H1D109.6H7C—C7—H7D108.3
C2—C1—H1D109.6N8—C8—C7109.6 (10)
H1C—C1—H1D108.1N8—C8—H8C109.8
C1—C2—N2109.9 (9)C7—C8—H8C109.8
C1—C2—H2C109.7N8—C8—H8D109.8
N2—C2—H2C109.7C7—C8—H8D109.8
C1—C2—H2D109.7H8C—C8—H8D108.2
N2—C2—H2D109.7C8—N8—Sm1114.7 (7)
H2C—C2—H2D108.2C8—N8—H8A108.6
C2—N2—Sm1115.2 (6)Sm1—N8—H8A108.6
C2—N2—H2A108.5C8—N8—H8B108.6
Sm1—N2—H2A108.5Sm1—N8—H8B108.6
C2—N2—H2B108.5H8A—N8—H8B107.6
Sm1—N2—H2B108.5In1—Te3—In280.38 (3)
H2A—N2—H2B107.5In2i—Te1—In177.94 (3)
C3—N3—Sm1116.8 (7)In1—Te2—In2i76.97 (3)
C3—N3—H3A108.1In2—Te4—In180.63 (3)
Sm1—N3—H3A108.1Te1—In1—Te3116.13 (3)
C3—N3—H3B108.1Te1—In1—Te298.17 (3)
Sm1—N3—H3B108.1Te3—In1—Te2115.51 (3)
H3A—N3—H3B107.3Te1—In1—Te4113.95 (3)
C4—C3—N3113.2 (11)Te3—In1—Te499.52 (3)
C4—C3—H3C108.9Te2—In1—Te4114.51 (3)
N3—C3—H3C108.9Te1ii—In2—Te4116.96 (4)
C4—C3—H3D108.9Te1ii—In2—Te2ii98.12 (3)
N3—C3—H3D108.9Te4—In2—Te2ii118.90 (3)
H3C—C3—H3D107.8Te1ii—In2—Te3111.96 (3)
C3—C4—N4113.9 (11)Te4—In2—Te399.46 (3)
C3—C4—H4C108.8Te2ii—In2—Te3112.08 (3)
N6—Sm1—N1—C1123.8 (7)N5—C5—C6—N652.6 (15)
N3—Sm1—N1—C142.7 (9)C5—C6—N6—Sm129.7 (13)
N8—Sm1—N1—C198.3 (7)N3—Sm1—N6—C6132.3 (8)
N4—Sm1—N1—C135.1 (8)N8—Sm1—N6—C6150.9 (8)
N5—Sm1—N1—C190.0 (8)N1—Sm1—N6—C638.6 (9)
N7—Sm1—N1—C1140.9 (7)N4—Sm1—N6—C669.9 (8)
N2—Sm1—N1—C120.4 (7)N5—Sm1—N6—C63.3 (8)
Cl1—Sm1—N1—C1174.1 (8)N7—Sm1—N6—C6160.5 (9)
Sm1—N1—C1—C249.3 (11)N2—Sm1—N6—C666.6 (10)
N1—C1—C2—N257.6 (13)Cl1—Sm1—N6—C687.2 (8)
C1—C2—N2—Sm138.2 (11)N6—Sm1—N7—C7175.7 (8)
N6—Sm1—N2—C2134.7 (7)N3—Sm1—N7—C776.1 (8)
N3—Sm1—N2—C2154.9 (8)N8—Sm1—N7—C711.7 (7)
N8—Sm1—N2—C271.8 (7)N1—Sm1—N7—C758.0 (8)
N1—Sm1—N2—C29.6 (7)N4—Sm1—N7—C7117.8 (8)
N4—Sm1—N2—C2138.0 (8)N5—Sm1—N7—C7155.8 (7)
N5—Sm1—N2—C274.2 (8)N2—Sm1—N7—C726.6 (9)
N7—Sm1—N2—C2107.7 (8)Cl1—Sm1—N7—C7103.3 (8)
Cl1—Sm1—N2—C29.3 (9)Sm1—N7—C7—C840.6 (11)
N6—Sm1—N3—C388.9 (10)N7—C7—C8—N858.3 (13)
N8—Sm1—N3—C3135.0 (10)C7—C8—N8—Sm148.6 (11)
N1—Sm1—N3—C380.8 (11)N6—Sm1—N8—C89.3 (9)
N4—Sm1—N3—C318.2 (10)N3—Sm1—N8—C891.1 (8)
N5—Sm1—N3—C329.8 (11)N1—Sm1—N8—C8123.6 (8)
N7—Sm1—N3—C3158.0 (10)N4—Sm1—N8—C8126.3 (8)
N2—Sm1—N3—C360.0 (10)N5—Sm1—N8—C8109.4 (9)
Cl1—Sm1—N3—C3158.9 (9)N7—Sm1—N8—C819.3 (7)
Sm1—N3—C3—C439.6 (18)N2—Sm1—N8—C8168.8 (8)
N3—C3—C4—N443 (2)Cl1—Sm1—N8—C851.8 (7)
C3—C4—N4—Sm126.1 (19)In2i—Te1—In1—Te3146.16 (4)
N6—Sm1—N4—C496.3 (11)In2i—Te1—In1—Te222.45 (3)
N3—Sm1—N4—C44.1 (10)In2i—Te1—In1—Te499.04 (4)
N8—Sm1—N4—C443.2 (12)In2—Te3—In1—Te1123.73 (4)
N1—Sm1—N4—C4136.8 (10)In2—Te3—In1—Te2122.10 (4)
N5—Sm1—N4—C4166.6 (11)In2—Te3—In1—Te41.00 (3)
N7—Sm1—N4—C439.5 (11)In2i—Te2—In1—Te122.25 (3)
N2—Sm1—N4—C485.7 (11)In2i—Te2—In1—Te3146.41 (4)
Cl1—Sm1—N4—C4133.8 (10)In2i—Te2—In1—Te498.82 (4)
N6—Sm1—N5—C523.2 (7)In2—Te4—In1—Te1125.28 (4)
N3—Sm1—N5—C592.9 (9)In2—Te4—In1—Te31.01 (3)
N8—Sm1—N5—C5114.6 (8)In2—Te4—In1—Te2122.79 (4)
N1—Sm1—N5—C5129.0 (9)In1—Te4—In2—Te1ii121.67 (4)
N4—Sm1—N5—C5104.2 (8)In1—Te4—In2—Te2ii120.82 (4)
N7—Sm1—N5—C56.4 (10)In1—Te4—In2—Te31.00 (3)
N2—Sm1—N5—C5171.7 (8)In1—Te3—In2—Te1ii125.25 (4)
Cl1—Sm1—N5—C555.8 (8)In1—Te3—In2—Te41.01 (3)
Sm1—N5—C5—C648.6 (12)In1—Te3—In2—Te2ii125.60 (4)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1iii0.912.743.619 (10)164
N3—H3A···Cl1iii0.912.403.248 (10)156
N8—H8A···Cl1iii0.912.603.498 (9)169
N7—H7A···Cl10.912.723.166 (10)111
Symmetry code: (iii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[SmCl(C2H8N2)4][In2Te4]
Mr1166.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)223
a, b, c (Å)13.7359 (11), 18.5660 (16), 21.1782 (18)
V3)5400.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)8.18
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.068, 0.443
No. of measured, independent and
observed [I > 2σ(I)] reflections
49875, 4938, 4478
Rint0.077
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.101, 1.29
No. of reflections4938
No. of parameters217
No. of restraints37
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0187P)2 + 70.31P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.78, 1.90

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.912.743.619 (10)163.8
N3—H3A···Cl1i0.912.403.248 (10)155.6
N8—H8A···Cl1i0.912.603.498 (9)168.9
N7—H7A···Cl10.912.723.166 (10)111.2
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds