Download citation
Download citation
link to html
The structure of a trifluoro­methane­sulfonate salt of a non­typical triply protonated linear tetr­amine, C7H23N43+·3CF3SO3-, with a layered crystal structure is presented. One N atom remains unprotonated. The conformation of the cation is enforced by intra- and inter­molecular hydrogen bonds. The crystal structure is built of ca 10 Å deep layers, within which cations and anions are hydrogen bonded. Each layer is only weakly bound to its neighbours. This study shows a rare example of an unsymmetrically protonated polyamine and the relation between the lack of protonation, intra­molecular hydrogen bonding and the conformation of the cation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108023469/em3016sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108023469/em3016Isup2.hkl
Contains datablock I

CCDC reference: 703736

Comment top

Polyamines play a major role in many biological processes. Most eukaryotic cells have a polyamine transporter system on their cell membrane that facilitates the internalization of exogenous polyamines. This system is highly active in rapidly proliferating cells and is the target of some chemotherapeutics currently under development (Wang et al., 2003). Polyamines are also important modulators of a variety of ion channels including NMDA and AMPA receptors (Chen et al., 2005). In the course of our studies on metal complexes with polyamines, some new salts of biogenic polyamines and their derivatives have recently been described (Pospieszna-Markiewicz et al., 2006, 2007; Jazdoń et al., 2007). Here we present another example, the trifluoromethanesulfonate salt of an unexpectedly triply protonated 3,7-diazanonane-1,9-diamine, (I).

Protonated polyamines are also useful for studying the coordination properties of different anions (e.g. halides; Ilioudis et al., 2000). Linear, symmetrical tetramines in their protonated forms usually exist as di- or tetracations. For instance, in the Cambridge Structural Database (Allen, 2002; version 5.29, November 2007) there are 42 fragments containing triethylenetetramine cations: in 31 cases they are tetra-, in eight they are diprotonated, while two of three remaining structures are highly disordered (Yao et al., 1999, Zheng et al., 2003), and in only one, bis(triethylenetetramine) tris[bis(nitrilotriacetato)zirconium] tetrahydrate (Haussuhl et al., 2000), is the trication unequivocally determined. For sperminium (1,5,10,14-tetraazoniatetradecane), there are seven tetracations and one dication. The 3,7-diazanonane-1,9-diamine derivatives are represented by only one salt, in which the amine is tetra-protonated, namely benzene-1,2,4,5-tetracarboxylate (Su et al., 2002).

At room temperature, at least two of three anions in (I) display large and eccentric displacement ellipsoids, suggesting a certain degree of disorder. Lowering the temperature to 100 K significantly reduces the ellipsoids, and also improves their shapes. The 100 K structure is reported here.

The conformation of the cation is gttggggt (where t denotes trans and g gauche, cf. Fig. 1) as can be seen from the values of the torsion angles along the chain [71.00 (15)°, -178.77 (11)°, -175.46 (11)°, -66.72 (16)°, 62.13 (15)°, 71.31 (14)°, 90.19 (14)°, -170.13(11°)]. It is far from the all-trans conformation observed in some related α,ω-diaminoalkanes, e.g. in n-decylammonium chloride (Schenk & Chapuis, 1986), or 4-bromocinnamate (Ballabn et al., 2006) and also the gttttttg conformation reported for the 3,7-diazanonane-1,9-diamine tetracation (Su et al., 2002), and is probably a consequence of both inter- and intramolecular hydrogen bonds. The intramolecular N4···N8 distance is 2.8480 (16) Å (for the all-trans conformation it would be almost 5 Å), and the H8A atom is obviously involved in the interaction (Table 1); this hydrogen bond closes a six-membered chair-like ring. A different situation was observed in the other unsymmetrically protonated tetramine (Haussuhl et al., 2000), in which the N···N distance is even shorter (2.807 versus 4 Å for all-trans), but, surprisingly, hardly any hydrogen-bond interactions can be found, as the intramolecular N—H···N angle is as small as 98°. It might be noted that in both cases the N atom that might act as the hydrogen-bond acceptor has no intermolecular short contacts. The second factor that contributes to the stability of the folded conformation of the cation is the intermolecular hydrogen bonding with one of the anions (Fig. 1). The motif formed by these interactions might be described, using graph-set description (Etter et al., 1990; Bernstein et al., 1995), as R22(13), or R33(11), taking into account the intramolecular hydrogen bond. The anions are in a typical skew conformation, with the O—S—C—F torsion angles close to ±60° or 180°.

Due to the large number of hydrogen-bond donors and acceptors, the overall crystal structure would be expected to be determined by the hydrogen bonds between the ionic components (Table 1). Interestingly, this is only partly true. The crystal comprises layers expanding in the ac plane (Figs. 2 and 3) within which cations and anions are hydrogen bonded, while the layers are only held to one another by weak van der Waals interactions. The organization within a layer is quite complicated (Fig. 2). Using graph-set notation, one can find some characteristic motifs of higher rank, as all the first-rank motifs are simple dimers (D). The terminal NH3 groups are involved in two kinds of interactions: they make centrosymmetric tetramers (of second order) with two anions R44(12) with the same NH3 group, i.e. N1 to N1(2-x,2-y,1-z), N11 to N11(-x,2-y,2-z), and mixed, four-order rings: N1 to N11(1+x,y,z), all with the same graph set R44(12). These rings connect molecules into chains characterized by the interlinked motifs C44(32). The `internal' NH groups are also involved in ring-like structures. Two N4—H4 groups, together with the N1—H1B groups of the same molecule, and two anions close a centrosymmetric R44(14) ring; the N8—H8B group not involved in intramolecular hydrogen bonds makes a small R22(8) ring. All these motifs are interconnected to create the strongly bound layer, in which also some secondary, relatively short C—H···O contacts are observed (Table 1). These layers are circa 10 Å deep (almost the whole b parameter). The shortest F···F interlayer contact is 2.89 Å, indicating that only weak, unspecific interactions are involved between layers.

Related literature top

For related literature, see: Allen (2002); Ballabn et al. (2006); Bernstein et al. (1995); Chen et al. (2005); Etter et al. (1990); Haussuhl et al. (2000); Ilioudis et al. (2000); Jazdoń et al. (2007); Pospieszna-Markiewicz, Radecka-Paryzek & Kubicki (2006, 2007); Schenk & Chapuis (1986); Su et al. (2002); Wang et al. (2003); Yao et al. (1999); Zheng et al. (2003).

Experimental top

An equimolar mixture of Eu(CF3SO3)3 (18 mg, 30 µmol) in methanol (5 ml), 2,6-diacetylpyridine (4.9 mg, 30 µmol) in methanol (5 ml) and 3,7-diazanonane-1,9-diamine (5 µl, 30 µmol) in methanol (5 ml) was stirred at room temperature for 48 h. The solvent was evaporated under reduced pressure to yield a yellow powder. Yellow single crystals suitable for X-ray diffraction analysis were formed by slow diffusion of methanol into an acetonitrile solution of the compound (1 ml) at 278 K over period of a few weeks.

Refinement top

The positions of H atoms were freely refined. H atoms bound to the same non-H atom were constrained to have the same Uiso value, which was refined as a free variable.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of molecule (I) together with the atom-labelling scheme. The ellipsoids are drawn at the 50% probability level; H atoms are depicted as spheres with arbitrary radii. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The geometry of the hydrogen-bonded layer as seen along the b direction. The hydrogen bonds are depicted as dashed lines.
[Figure 3] Fig. 3. The crystal packing as seen along the c direction.
N-{3-[(2-Ammonioethyl)amino]propyl}ethane-1,2-diaminium tris(trifluoromethanesulfonate) top
Crystal data top
C7H23N43+·3(CF3O3S)Z = 2
Mr = 610.50F(000) = 624
Triclinic, P1Dx = 1.731 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1174 (8) ÅCell parameters from 3566 reflections
b = 10.5925 (7) Åθ = 4–24°
c = 12.2690 (13) ŵ = 0.44 mm1
α = 91.964 (7)°T = 100 K
β = 98.312 (8)°Prism, colourless
γ = 91.333 (6)°0.4 × 0.2 × 0.1 mm
V = 1171.28 (18) Å3
Data collection top
Kuma KM-4-CCD
diffractometer
4783 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 30.0°, θmin = 2.9°
ω scansh = 712
9862 measured reflectionsk = 1314
5707 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.2136P]
where P = (Fo2 + 2Fc2)/3
5707 reflections(Δ/σ)max = 0.001
396 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C7H23N43+·3(CF3O3S)γ = 91.333 (6)°
Mr = 610.50V = 1171.28 (18) Å3
Triclinic, P1Z = 2
a = 9.1174 (8) ÅMo Kα radiation
b = 10.5925 (7) ŵ = 0.44 mm1
c = 12.2690 (13) ÅT = 100 K
α = 91.964 (7)°0.4 × 0.2 × 0.1 mm
β = 98.312 (8)°
Data collection top
Kuma KM-4-CCD
diffractometer
4783 reflections with I > 2σ(I)
9862 measured reflectionsRint = 0.023
5707 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.50 e Å3
5707 reflectionsΔρmin = 0.36 e Å3
396 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04439 (3)0.81188 (3)0.47056 (3)0.01425 (8)
O110.00328 (11)0.77912 (10)0.57319 (8)0.0210 (2)
O120.19732 (11)0.85748 (10)0.48011 (9)0.0210 (2)
O130.06109 (11)0.88423 (10)0.39893 (8)0.0208 (2)
C110.04546 (17)0.66045 (14)0.39408 (12)0.0215 (3)
F110.06872 (11)0.67894 (9)0.29106 (7)0.0311 (2)
F120.08463 (12)0.59869 (10)0.38983 (9)0.0383 (3)
F130.15138 (12)0.58691 (9)0.44186 (8)0.0353 (2)
S20.61177 (3)1.11884 (3)0.82741 (3)0.01304 (8)
O210.76935 (11)1.13922 (11)0.84535 (10)0.0276 (3)
O220.54565 (11)1.08840 (9)0.92376 (8)0.0172 (2)
O230.55420 (11)1.04119 (9)0.72996 (8)0.0201 (2)
C210.53683 (16)1.27412 (13)0.79207 (12)0.0193 (3)
F210.38858 (10)1.26652 (9)0.76986 (8)0.0314 (2)
F220.58719 (11)1.31679 (8)0.70280 (7)0.0276 (2)
F230.57338 (12)1.35918 (8)0.87431 (8)0.0325 (2)
S30.83853 (4)0.76769 (3)0.88814 (3)0.01570 (8)
O310.68558 (12)0.77644 (12)0.90137 (11)0.0336 (3)
O320.94525 (12)0.80160 (11)0.98401 (9)0.0261 (2)
O330.87738 (13)0.82070 (10)0.78840 (9)0.0279 (2)
C310.86476 (15)0.59843 (14)0.86740 (12)0.0200 (3)
F311.00536 (10)0.57535 (9)0.85821 (9)0.0350 (2)
F320.78046 (10)0.55318 (9)0.77584 (8)0.0293 (2)
F330.82874 (12)0.53495 (10)0.95132 (9)0.0392 (3)
N10.71084 (14)0.89879 (12)0.58829 (10)0.0172 (2)
H1A0.662 (2)0.9266 (18)0.6394 (17)0.029 (3)*
H1B0.742 (2)0.9666 (19)0.5561 (16)0.029 (3)*
H1C0.788 (2)0.8612 (19)0.6172 (16)0.029 (3)*
C20.61372 (16)0.81330 (14)0.50741 (11)0.0181 (3)
H2A0.6692 (18)0.7918 (16)0.4496 (14)0.020 (3)*
H2B0.5314 (19)0.8633 (16)0.4746 (14)0.020 (3)*
C30.56367 (15)0.69626 (13)0.56148 (11)0.0166 (3)
H3A0.5220 (19)0.6345 (17)0.5047 (15)0.024 (3)*
H3B0.6471 (19)0.6555 (17)0.6046 (15)0.024 (3)*
N40.45559 (13)0.72355 (11)0.63641 (9)0.0140 (2)
H40.383 (2)0.7522 (17)0.5973 (15)0.026 (5)*
C50.41370 (16)0.60625 (13)0.68830 (12)0.0169 (3)
H5A0.5044 (18)0.5753 (16)0.7318 (14)0.017 (3)*
H5B0.3763 (18)0.5379 (16)0.6304 (14)0.017 (3)*
C60.29230 (15)0.62664 (13)0.76021 (12)0.0169 (3)
H6A0.2658 (18)0.5423 (16)0.7839 (14)0.019 (3)*
H6B0.2055 (19)0.6603 (16)0.7152 (14)0.019 (3)*
C70.34052 (15)0.71161 (13)0.86287 (11)0.0166 (3)
H7A0.4285 (17)0.6824 (15)0.9077 (13)0.014 (3)*
H7B0.2609 (17)0.7238 (15)0.9068 (13)0.014 (3)*
N80.38348 (12)0.84282 (11)0.83262 (10)0.0142 (2)
H8A0.4396 (19)0.8319 (16)0.7830 (15)0.020 (3)*
H8B0.4262 (19)0.8824 (17)0.8886 (15)0.020 (3)*
C90.25591 (15)0.91999 (13)0.78415 (11)0.0154 (3)
H9A0.1833 (18)0.8626 (16)0.7458 (13)0.016 (3)*
H9B0.2885 (18)0.9784 (16)0.7351 (14)0.016 (3)*
C100.19455 (14)0.99411 (13)0.87456 (11)0.0150 (3)
H10A0.1686 (17)0.9430 (16)0.9337 (14)0.017 (3)*
H10B0.2614 (18)1.0596 (16)0.9016 (14)0.017 (3)*
N110.05249 (13)1.05109 (12)0.82558 (10)0.0163 (2)
H11A0.063 (2)1.0860 (19)0.7659 (17)0.031 (3)*
H11B0.023 (2)1.1066 (19)0.8725 (17)0.031 (3)*
H11C0.020 (2)0.9881 (19)0.8135 (16)0.031 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01318 (16)0.01632 (16)0.01340 (15)0.00163 (12)0.00224 (11)0.00074 (12)
O110.0210 (5)0.0287 (6)0.0143 (5)0.0032 (4)0.0048 (4)0.0028 (4)
O120.0152 (5)0.0206 (5)0.0273 (5)0.0006 (4)0.0037 (4)0.0005 (4)
O130.0213 (5)0.0246 (5)0.0165 (5)0.0077 (4)0.0015 (4)0.0025 (4)
C110.0265 (8)0.0171 (7)0.0214 (7)0.0015 (6)0.0053 (6)0.0011 (5)
F110.0493 (6)0.0264 (5)0.0198 (4)0.0042 (4)0.0128 (4)0.0032 (4)
F120.0413 (6)0.0317 (5)0.0406 (6)0.0205 (5)0.0064 (5)0.0058 (4)
F130.0480 (6)0.0208 (5)0.0374 (6)0.0141 (4)0.0050 (5)0.0040 (4)
S20.01088 (15)0.01400 (15)0.01435 (15)0.00072 (11)0.00192 (11)0.00173 (11)
O210.0102 (5)0.0363 (6)0.0368 (6)0.0015 (4)0.0024 (4)0.0116 (5)
O220.0191 (5)0.0191 (5)0.0140 (5)0.0013 (4)0.0042 (4)0.0014 (4)
O230.0274 (5)0.0176 (5)0.0157 (5)0.0005 (4)0.0048 (4)0.0023 (4)
C210.0243 (7)0.0157 (6)0.0164 (6)0.0011 (5)0.0018 (5)0.0004 (5)
F210.0217 (5)0.0350 (5)0.0365 (5)0.0139 (4)0.0018 (4)0.0028 (4)
F220.0425 (6)0.0207 (4)0.0194 (4)0.0020 (4)0.0024 (4)0.0079 (3)
F230.0572 (7)0.0163 (4)0.0216 (5)0.0007 (4)0.0012 (4)0.0043 (4)
S30.01276 (16)0.01917 (17)0.01463 (16)0.00156 (12)0.00056 (12)0.00197 (12)
O310.0146 (5)0.0343 (7)0.0518 (8)0.0050 (5)0.0062 (5)0.0092 (6)
O320.0230 (5)0.0348 (6)0.0183 (5)0.0005 (5)0.0027 (4)0.0068 (4)
O330.0426 (7)0.0218 (5)0.0185 (5)0.0041 (5)0.0024 (5)0.0028 (4)
C310.0151 (6)0.0206 (7)0.0237 (7)0.0008 (5)0.0000 (5)0.0037 (6)
F310.0161 (4)0.0304 (5)0.0576 (7)0.0077 (4)0.0030 (4)0.0061 (5)
F320.0283 (5)0.0230 (5)0.0328 (5)0.0013 (4)0.0061 (4)0.0075 (4)
F330.0461 (6)0.0338 (5)0.0378 (6)0.0067 (5)0.0033 (5)0.0179 (5)
N10.0148 (6)0.0191 (6)0.0178 (6)0.0012 (5)0.0021 (5)0.0011 (5)
C20.0183 (7)0.0225 (7)0.0135 (6)0.0005 (5)0.0029 (5)0.0000 (5)
C30.0180 (7)0.0163 (6)0.0158 (6)0.0016 (5)0.0038 (5)0.0014 (5)
N40.0127 (5)0.0145 (5)0.0149 (5)0.0022 (4)0.0014 (4)0.0008 (4)
C50.0181 (7)0.0138 (6)0.0190 (6)0.0009 (5)0.0039 (5)0.0009 (5)
C60.0141 (6)0.0161 (6)0.0203 (7)0.0031 (5)0.0030 (5)0.0006 (5)
C70.0157 (6)0.0185 (7)0.0157 (6)0.0011 (5)0.0028 (5)0.0025 (5)
N80.0113 (5)0.0163 (5)0.0148 (5)0.0007 (4)0.0021 (4)0.0028 (4)
C90.0136 (6)0.0193 (7)0.0133 (6)0.0042 (5)0.0016 (5)0.0003 (5)
C100.0112 (6)0.0191 (6)0.0143 (6)0.0028 (5)0.0008 (5)0.0019 (5)
N110.0132 (5)0.0215 (6)0.0144 (6)0.0047 (5)0.0025 (4)0.0010 (5)
Geometric parameters (Å, º) top
S1—O111.4408 (10)C2—H2B0.975 (17)
S1—O121.4521 (10)C3—N41.4686 (17)
S1—O131.4562 (10)C3—H3A0.969 (18)
S1—C111.8313 (15)C3—H3B0.979 (18)
C11—F111.3317 (17)N4—C51.4823 (18)
C11—F121.3346 (18)N4—H40.831 (19)
C11—F131.3364 (17)C5—C61.5267 (19)
S2—O211.4318 (10)C5—H5A0.987 (17)
S2—O221.4450 (10)C5—H5B1.014 (17)
S2—O231.4534 (10)C6—C71.5275 (19)
S2—C211.8373 (15)C6—H6A0.984 (18)
C21—F231.3295 (16)C6—H6B0.979 (17)
C21—F221.3357 (17)C7—N81.5083 (18)
C21—F211.3396 (17)C7—H7A0.968 (16)
S3—O311.4318 (11)C7—H7B0.973 (16)
S3—O321.4433 (10)N8—C91.5007 (17)
S3—O331.4496 (12)N8—H8A0.856 (18)
S3—C311.8283 (15)N8—H8B0.833 (18)
C31—F331.3247 (18)C9—C101.5166 (18)
C31—F311.3305 (16)C9—H9A0.949 (17)
C31—F321.3337 (16)C9—H9B0.950 (17)
N1—C21.4952 (18)C10—N111.4965 (17)
N1—H1A0.87 (2)C10—H10A0.973 (17)
N1—H1B0.89 (2)C10—H10B0.932 (17)
N1—H1C0.86 (2)N11—H11A0.85 (2)
C2—C31.518 (2)N11—H11B0.88 (2)
C2—H2A0.953 (17)N11—H11C0.92 (2)
O11—S1—O12114.75 (6)C2—C3—H3A109.0 (11)
O11—S1—O13114.74 (6)N4—C3—H3B107.0 (10)
O12—S1—O13114.68 (6)C2—C3—H3B111.8 (11)
O11—S1—C11104.22 (7)H3A—C3—H3B105.9 (14)
O12—S1—C11103.22 (6)C3—N4—C5110.17 (10)
O13—S1—C11103.07 (7)C3—N4—H4105.5 (13)
F11—C11—F12107.97 (12)C5—N4—H4110.9 (13)
F11—C11—F13108.63 (12)N4—C5—C6112.59 (11)
F12—C11—F13108.08 (13)N4—C5—H5A107.3 (10)
F11—C11—S1110.38 (10)C6—C5—H5A111.1 (9)
F12—C11—S1110.55 (10)N4—C5—H5B111.0 (10)
F13—C11—S1111.14 (10)C6—C5—H5B107.5 (9)
O21—S2—O22115.61 (6)H5A—C5—H5B107.2 (13)
O21—S2—O23115.16 (7)C5—C6—C7114.01 (11)
O22—S2—O23113.62 (6)C5—C6—H6A105.9 (9)
O21—S2—C21104.78 (7)C7—C6—H6A108.4 (10)
O22—S2—C21103.18 (6)C5—C6—H6B108.9 (10)
O23—S2—C21102.21 (6)C7—C6—H6B110.7 (10)
F23—C21—F22108.18 (12)H6A—C6—H6B108.7 (14)
F23—C21—F21107.90 (12)N8—C7—C6111.30 (11)
F22—C21—F21107.51 (11)N8—C7—H7A104.3 (10)
F23—C21—S2111.50 (10)C6—C7—H7A112.6 (9)
F22—C21—S2111.09 (10)N8—C7—H7B104.8 (10)
F21—C21—S2110.50 (10)C6—C7—H7B112.4 (10)
O31—S3—O32116.27 (7)H7A—C7—H7B110.8 (13)
O31—S3—O33115.01 (8)C9—N8—C7114.58 (11)
O32—S3—O33112.61 (7)C9—N8—H8A107.4 (11)
O31—S3—C31104.28 (7)C7—N8—H8A105.2 (12)
O32—S3—C31103.18 (7)C9—N8—H8B107.5 (12)
O33—S3—C31103.40 (7)C7—N8—H8B109.4 (12)
F33—C31—F31108.00 (12)H8A—N8—H8B112.8 (17)
F33—C31—F32107.98 (12)N8—C9—C10110.26 (11)
F31—C31—F32107.95 (12)N8—C9—H9A106.9 (10)
F33—C31—S3110.92 (11)C10—C9—H9A111.2 (10)
F31—C31—S3110.97 (10)N8—C9—H9B109.8 (10)
F32—C31—S3110.89 (10)C10—C9—H9B108.2 (10)
C2—N1—H1A110.3 (13)H9A—C9—H9B110.5 (14)
C2—N1—H1B111.5 (12)N11—C10—C9108.38 (11)
H1A—N1—H1B106.5 (17)N11—C10—H10A105.1 (9)
C2—N1—H1C111.4 (13)C9—C10—H10A114.3 (10)
H1A—N1—H1C110.1 (17)N11—C10—H10B108.2 (10)
H1B—N1—H1C106.9 (17)C9—C10—H10B109.1 (10)
N1—C2—C3111.49 (12)H10A—C10—H10B111.4 (14)
N1—C2—H2A107.2 (10)C10—N11—H11A110.4 (13)
C3—C2—H2A111.4 (10)C10—N11—H11B110.3 (12)
N1—C2—H2B107.0 (10)H11A—N11—H11B110.1 (18)
C3—C2—H2B113.1 (10)C10—N11—H11C108.5 (12)
H2A—C2—H2B106.3 (14)H11A—N11—H11C110.7 (18)
N4—C3—C2112.79 (11)H11B—N11—H11C106.6 (17)
N4—C3—H3A110.1 (10)
O11—S1—C11—F11171.71 (10)O31—S3—C31—F3357.42 (12)
O12—S1—C11—F1168.08 (11)O32—S3—C31—F3364.49 (11)
O13—S1—C11—F1151.58 (12)O33—S3—C31—F33178.02 (10)
O11—S1—C11—F1252.33 (12)O31—S3—C31—F31177.48 (11)
O12—S1—C11—F12172.54 (10)O32—S3—C31—F3155.57 (12)
O13—S1—C11—F1267.80 (12)O33—S3—C31—F3161.93 (12)
O11—S1—C11—F1367.69 (12)O31—S3—C31—F3262.55 (12)
O12—S1—C11—F1352.51 (12)O32—S3—C31—F32175.54 (10)
O13—S1—C11—F13172.17 (10)O33—S3—C31—F3258.04 (12)
O21—S2—C21—F2361.88 (12)N1—C2—C3—N471.00 (15)
O22—S2—C21—F2359.51 (12)C2—C3—N4—C5178.77 (11)
O23—S2—C21—F23177.66 (10)C3—N4—C5—C6175.46 (11)
O21—S2—C21—F2258.88 (11)N4—C5—C6—C766.72 (16)
O22—S2—C21—F22179.73 (9)C5—C6—C7—N862.13 (15)
O23—S2—C21—F2261.58 (11)C6—C7—N8—C971.31 (14)
O21—S2—C21—F21178.12 (10)C7—N8—C9—C1090.19 (14)
O22—S2—C21—F2160.49 (11)N8—C9—C10—N11170.13 (11)
O23—S2—C21—F2157.66 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O230.87 (2)1.99 (2)2.8239 (16)161.4 (18)
N1—H1B···O12i0.89 (2)2.01 (2)2.8847 (17)165.2 (17)
N1—H1C···O330.86 (2)2.20 (2)2.8526 (17)132.9 (16)
N1—H1C···O11ii0.86 (2)2.236 (19)2.9516 (16)141.0 (17)
N4—H4···O120.831 (19)2.380 (19)3.2049 (16)172.0 (17)
N8—H8A···O230.856 (18)2.573 (17)3.0034 (16)112.2 (13)
N8—H8A···O310.856 (18)2.581 (17)2.8726 (16)101.2 (13)
N8—H8B···O22iii0.833 (18)2.288 (18)3.0254 (15)147.6 (16)
N8—H8B···O220.833 (18)2.413 (18)3.0573 (15)134.7 (15)
N8—H8A···N40.856 (18)2.125 (18)2.8480 (16)141.8 (15)
C9—H9B···O230.950 (17)2.508 (16)3.1473 (18)124.7 (12)
C9—H9A···O110.949 (17)2.631 (17)3.5090 (17)154.0 (13)
C10—H10B···O220.932 (17)2.576 (16)3.2955 (17)134.3 (12)
N11—H11A···O13iv0.85 (2)2.05 (2)2.8727 (16)161.7 (19)
N11—H11B···O32iii0.88 (2)1.96 (2)2.7618 (16)150.3 (17)
N11—H11C···O33v0.92 (2)1.98 (2)2.8713 (18)162.6 (16)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x+1, y+2, z+2; (iv) x, y+2, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H23N43+·3(CF3O3S)
Mr610.50
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.1174 (8), 10.5925 (7), 12.2690 (13)
α, β, γ (°)91.964 (7), 98.312 (8), 91.333 (6)
V3)1171.28 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.4 × 0.2 × 0.1
Data collection
DiffractometerKuma KM-4-CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9862, 5707, 4783
Rint0.023
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.07
No. of reflections5707
No. of parameters396
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O230.87 (2)1.99 (2)2.8239 (16)161.4 (18)
N1—H1B···O12i0.89 (2)2.01 (2)2.8847 (17)165.2 (17)
N1—H1C···O330.86 (2)2.20 (2)2.8526 (17)132.9 (16)
N1—H1C···O11ii0.86 (2)2.236 (19)2.9516 (16)141.0 (17)
N4—H4···O120.831 (19)2.380 (19)3.2049 (16)172.0 (17)
N8—H8A···O230.856 (18)2.573 (17)3.0034 (16)112.2 (13)
N8—H8A···O310.856 (18)2.581 (17)2.8726 (16)101.2 (13)
N8—H8B···O22iii0.833 (18)2.288 (18)3.0254 (15)147.6 (16)
N8—H8B···O220.833 (18)2.413 (18)3.0573 (15)134.7 (15)
N8—H8A···N40.856 (18)2.125 (18)2.8480 (16)141.8 (15)
C9—H9B···O230.950 (17)2.508 (16)3.1473 (18)124.7 (12)
C9—H9A···O110.949 (17)2.631 (17)3.5090 (17)154.0 (13)
C10—H10B···O220.932 (17)2.576 (16)3.2955 (17)134.3 (12)
N11—H11A···O13iv0.85 (2)2.05 (2)2.8727 (16)161.7 (19)
N11—H11B···O32iii0.88 (2)1.96 (2)2.7618 (16)150.3 (17)
N11—H11C···O33v0.92 (2)1.98 (2)2.8713 (18)162.6 (16)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x+1, y+2, z+2; (iv) x, y+2, z+1; (v) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds