Download citation
Download citation
link to html
The mol­ecular and supramolecular structures of 2-(1,3-dioxo-2,3,3a,4,7,7a-hexa­hydro-1H-isoindol-2-yl)phenyl acetate, C16-H15NO4, (I), and its para isomer, 4-(1,3-dioxo-2,3,3a,4,7,7a-hexa­hydro-1H-isoindol-2-yl)phenyl acetate, (II), are reported. The torsion angle between the succinimide and benzene rings depends on the position of the acet­oxy substitution [89.7 (1) and 61.9 (1)° for (I) and (II), respectively]. The twist of the acet­oxy group relative to the mean plane of the benzene ring is almost independent of the acet­oxy position [66.0 (1) and 70.0 (1)°]. Packing inter­actions for both compounds include soft C—H...X (X = O and Ph) inter­actions, forming chains of centrosymmetric dimers and inter­linked chains for (I) and (II), respectively. In addition, three perpendicular dipole C=O...C=O inter­actions contribute to the supramolecular structure of (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106002186/em1003sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106002186/em1003Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106002186/em1003IIsup3.hkl
Contains datablock II

CCDC references: 603194; 603195

Comment top

Substituted N-aryl maleimides have been used to control the stereochemistry of Diels–Alder cycloadditions (Kitagawa et al., 1998). On the grounds of [Depending on?] the appropriate selection of the o-substituent, the N—Ar torsion angle and the barrier to rotation is increased in comparison to the unsubstituted N—Ar maleimides (Curran et al., 1994). More recently, molecular induced recognition between the diene and maleimide have been used to control the stereochemistry of cycloaddition reactions (Bennes et al., 2001). However, the X-ray structures of only five Diels–Alder adducts derived from butadiene and substituted N—Ar maleimides have been reported, in contrast to almost forty N—Ar unsubstituted adducts (Cambridge Structural Database, Version of May 2005; Allen, 2002). Previously, the molecular and supramolecular structures of two Diels–Alder adducts between ortho- and para-N-acetoxyphenylmaleimides and furan, were reported (Trujillo-Ferrara et al., 2004). The molecular and supramolecular structures of the Diels–Alder adducts 2-(1,3-dioxo-2,3,3a,4,7,7a-hexahydro-1H-isoindol-2-yl)phenyl acetate, (I), and its para-isomer (II), are analyzed here. Compounds (I) and (II) crystallize in the monoclinic space groups P21/n and P21/c, respectively. Their molecular structures are shown in Figs. 1 and 2, and selected bond lengths and angles are listed in Tables 1 and 3, respectively. In both compounds, the succinimide group (C1/O1/N2/C3/O3/C3A/C7A) has a mean deviation from the plane of 0.002 Å in both compounds, and the cyclohexene ring exhibits a boat-like conformation. The phenyl ring is twisted relative to the succinimide ring by 89.7 (1)° in (I), the ortho-isomer, and by 61.9 (1)° in (II), the para-isomer. These results are in agreement with the expected values for the necessary twist to relieve unfavorable steric interactions between the o-acetoxy group, on the C6H4 ring, and the succinimide carbonyl groups. The twist exhibited by (I) is equivalent to the value found in other ortho tBu (Curran et al., 1994) or F-substituted Diels–Alder adducts (Li et al., 2005), but in this last compound and in (I), the ortho substituent points to the folded face of the cyclohexene ring. The acetoxy group is twisted by 66.0 (1) and 70.0 (1)° from the mean plane of the C6H4 ring in (I) and (II), respectively. These values contrast with the broad range found for Diels–Alder adducts derived from o- and p-N-acetoxyphenyl maleimides and furan (Trujillo-Ferrara et al., 2004).

The supramolecular structure of both compounds is determined by soft C—H···X (X = O and π) interactions (Steiner, 2002; Umezawa et al., 1998) and by carbonyl–carbonyl interactions, in the case of (II). The hydrogen-bonding geometry (and all symmetry codes) is listed in Tables 2 and 4 for (I) and (II), respectively. In (I), a centrosymmetric ring motif having graph set R22(18) (Bernstein et al., 1995) is formed by C16—H16A···O3i interactions, involving a CH3 hydrogen donor and a succinimide carbonyl group as the acceptor. Although weak, the geometry of this Csp3—H···O interaction (Table 2) falls within the accepted ranges (Steiner & Desiraju, 1998). These dimers are interlinked by C12—H12···O15ii interactions between an aromatic H atom and the acetoxycarbonyl group (Table 2). Thus, chains of rings developing along the [3 9 13] direction, are formed (Fig. 3). In (II), antiparallel chains having graph-set notation C(6) are formed by C13—H13···O3iii interactions, and these develop along the b axis (Table 4). The chains are interlinked by C7A—H7A···Cg3iv interactions between an axial H atom at the ring fusion and the C6H4 ring of a neighboring molecule (Table 4, where Cg3 is the centroid of the C8—C13 ring) along the [504] direction (Fig. 4). Besides C—H···X (X = O and π) hydrogen bonding, two carbonyl–carbonyl interactions contribute to the overall molecular architecture. Both imide carbonyl groups, C1O1 and C3O3, are simultaneously involved in perpendicular dipole interactions with the acetoxy carbonyl group C15O15 [O15···C3 = 3.152 (2) Å and C15O5···C3v = 139.3 (2)°; O15···C1 = 3.314 (2) Å and C15 O15···C1v = 155.2 (2)°; symmetry code: (v) x, −y + 3/2, z + 1/2 (please check; codes iv and v are the same)]. The O atom of the acetoxy carbonyl group C15O15 donates electronic density to the C atoms of both imide carbonyl groups C1O1 and C3O3. The donor–aceptor roles of the C1=O1 and C15=O15 carbonyl groups are exchanged in the third carbonyl interaction C1O1···C15vi [O1···C15 = 3.160 (2) Å and C1O1···C15vi = 152.1 (2)°; symmetry code: (vi) x, −y + 5/2, + z − 1/2]. Consequently, four-membered infinite antiparallel chains of rings zigzaging along the [010] direction are formed (Fig. 4). It is worthy of mention that the C···O distances fall below the cut-off at 3.6 Å and the CO···C angles are in agreement with the average value of 159.7 (7)° characteristic of this dipole–dipole interaction (Allen et al., 1998). Theoretical calculations have shown that this motif is frequently found in structures containing weak hydrogen-bonding donors and its strength is comparable to a C—H···O hydrogen bond (Allen et al., 1998).

A brief comparison with the analogous Diels–Alder adducts from furan (Trujillo-Ferrara et al., 2004), shows that the carbonyl group from the acetoxycarbonyl group, at least one carbonyl group from the succinimide ring and the C6H4 ring are always engaged as acceptors in hydrogen bonding, whereas the OCH3, Csp3H (axial) and Csp2H (aryl) H atoms always participate as hydrogen-bonding donors. However, instead of the tetrameric aggregates present in the supramolecular structure of furan-derivatives, butadiene derivatives (I) and (II) arrange in chains.

Experimental top

Diels–Alder adducts (I) and (II) were obtained by the reaction between 1H-pyrrole-1-(2'-acetoxyphenyl)-2,5-dione or 1H-pyrrole-1-(4'-acetoxyphenyl)-2,5-dione (0.25 g, 1.8 mmol) and sulfolene (0.52 g, 2.2 mmol) dissolved in xylene (1.5 ml) in a sealed ampoule at 413 K for 10 h. The products crystallized as white solids in 82 and 85% yield, respectively. In both cases, crystals suitable for X-ray analysis were obtained from chloroform solutions by slow hexane diffusion. For (I) (m.p. 706–709 K) IR (KBr) ν cm−1: 1770, 1704 (CO), 1596 (CC), 1366 (OAc), 1344, 1318(C—N); 1H NMR (p.p.m.): δ 7.43 (td, 1H, Hp), 7.32 and 7.29 (m, 1H each, Hm), 7.26 (m, 1H, Ho), 6.00 (t, 2H, H5,6), 3.26 (dd, 2H, H3a,7a), 2.71 and 2.73 (ddd, 4H, H4,7), 2.19 (s, 3H, Me); 13C NMR (p.p.m.): δ 178.2 (C1,3), 167.6 (COO), 145.8 and 129.1 (Co), 129.7 (Ci), 128.6 (Cp), 127.5 (C5,6), 126.0 and 123.6 (Cm), 39.2 (C3a,7a), 23.3 (C4,7), 20.8 (Me); MS m/z (%) 285 (6) (M+), 243 (100), 181 (1), 110 (95), 80 (34). For (II) (m.p. 688–691 K) IR (KBr) ν cm−1: 1752, 1716 (CO), 1598 (C C), 1344 (OAc), 1344 (C—N); 1H NMR (p.p.m.): δ 7.29 (d, 2H, Ho), 7.26 (d, 2H, Hm), 5.95 (t, 2H, H5,6), 3.20 (dt, 2H, H3a,7a), 2.67 and 2.28 (m, 4H, H4,7), 2.27 (s, 3H, CH3); 13C NMR (p.p.m.): δ 179.1 (C1,3), 169.0 (COO), 150.2 (Cp), 129.5 (Ci), 127.8 (Co), 127.4 (C5,6), 122.2 (Cm), 39.2 (C3a,7a), 23.7 (C4,7), 21.1 (Me); MS m/z (%) 285 (6) (M+), 243 (100), 189 (4), 135 (15), 110 (3), 80 (46).

Refinement top

All H atoms were refined as riding on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and with Uiso(H) value of 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The centroid of a set of atoms was calculated using the program Mercury (Bruno et al., 2002).

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf–Nonius, 1995); cell refinement: CAD-4 EXPRESS; data reduction: JANA98 (Vaclav, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title ortho-Diels–Alder adduct (I), with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of the title para-Diels–Alder adduct (II), with displacement ellipsoids at the 30% probability level.
[Figure 3] Fig. 3. The supramolecular structure of the title ortho-Diels–Alder adduct (I), viewed along the c axis. [Symmetry codes: (i) −x, −y, 1 − z; (ii) 1/2 − x, 1/2 + y, 1/2 − z.]
[Figure 4] Fig. 4. The supramolecular structure of the title para-Diels–Alder adduct (II), viewed along the b axis. [Symmetry codes: (iii) x, 1 + y, z; (iv) x, 3/2 − y, 1/2 + z; (v) x, 3/2 − y, 1/2 + z; (vi) x, 5/2 − y, −1/2 + z.] [Codes iv and v are the same.]
(I) 2-(1,3-dioxo-2,3,3a,4,7,7a-hexahydro-1H-isoindol-2-yl)phenyl acetate top
Crystal data top
C16H15NO4F(000) = 600
Mr = 285.30Dx = 1.360 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 24 reflections
a = 9.6673 (7) Åθ = 10–11°
b = 9.6787 (7) ŵ = 0.10 mm1
c = 15.5880 (18) ÅT = 293 K
β = 107.131 (2)°Block, colorless
V = 1393.8 (2) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1861 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 28.0°, θmin = 2.2°
Detector resolution: 3 pixels mm-1h = 120
ω/2θ scansk = 012
3470 measured reflectionsl = 1920
3291 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.0798P]
where P = (Fo2 + 2Fc2)/3
3291 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H15NO4V = 1393.8 (2) Å3
Mr = 285.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6673 (7) ŵ = 0.10 mm1
b = 9.6787 (7) ÅT = 293 K
c = 15.5880 (18) Å0.40 × 0.30 × 0.20 mm
β = 107.131 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1861 reflections with I > 2σ(I)
3470 measured reflectionsRint = 0.018
3291 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.07Δρmax = 0.19 e Å3
3291 reflectionsΔρmin = 0.19 e Å3
190 parameters
Special details top

Experimental. Diffractometer operator Susana Rojas Lima scanwidth_degrees 0.7 low_scanspeed_degrees/min 16.1 high_scanspeed_degrees/min 60 Background measurement: Moving crystal and moving counter at the beginning and end of scan, each for 25% of total scan area. Crystal mounted on a glass fiber.

Melting points were measured on a Gallen–Kamp MFB-595 apparatus and are uncorrected. IR spectra were recorded as KBr discs using a Perkin–Elmer 16 F PC IR spectrophotometer. 1H and 13C NMR spectra were recorded using a Jeol Eclipse spectrometer (1H, 270.17; 13C, 67.94 MHz) in CDCl3 solutions, (SiMe4 as internal reference). Mass spectra were recorded on a Hewlett Packard 5989 A Series II spectrometer.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55936 (14)0.33488 (17)0.55129 (9)0.0620 (5)
O30.07218 (15)0.32484 (17)0.42650 (10)0.0676 (5)
O140.33007 (13)0.02698 (13)0.49051 (7)0.0469 (4)
O150.12026 (16)0.07623 (19)0.41869 (10)0.0766 (6)
N20.31988 (15)0.31031 (14)0.47415 (9)0.0393 (4)
C10.43448 (19)0.35858 (18)0.54445 (12)0.0430 (5)
C30.18586 (18)0.35293 (18)0.48060 (12)0.0429 (5)
C3A0.2091 (2)0.43737 (18)0.56519 (12)0.0462 (6)
C40.1285 (2)0.3735 (2)0.62686 (14)0.0578 (7)
C50.2086 (3)0.2541 (2)0.67797 (15)0.0634 (8)
C60.3485 (3)0.2616 (3)0.71395 (14)0.0659 (8)
C70.4300 (3)0.3886 (3)0.70302 (13)0.0642 (7)
C7A0.3741 (2)0.44307 (18)0.60651 (12)0.0475 (6)
C80.33770 (18)0.22604 (17)0.40252 (11)0.0375 (5)
C90.34090 (18)0.08391 (17)0.41081 (11)0.0392 (5)
C100.36327 (19)0.0019 (2)0.34332 (12)0.0487 (6)
C110.3795 (2)0.0636 (2)0.26696 (12)0.0531 (6)
C120.3739 (2)0.2054 (2)0.25753 (12)0.0527 (6)
C130.35428 (19)0.2864 (2)0.32569 (12)0.0459 (5)
C150.2146 (2)0.0571 (2)0.48639 (12)0.0481 (6)
C160.2282 (3)0.1181 (2)0.57601 (15)0.0700 (8)
H3A0.172610.531180.548900.0554*
H4A0.115500.443030.668610.0693*
H4B0.033380.343220.590980.0693*
H50.159110.174120.684300.0761*
H60.398090.187290.746760.0791*
H7A0.405970.539010.605480.0570*
H7B0.532280.367160.716980.0771*
H7C0.418480.459240.744510.0771*
H100.367350.093730.349340.0584*
H110.394260.008980.221380.0636*
H120.383420.246050.205500.0632*
H130.352150.382080.320030.0551*
H16A0.146040.176040.572320.1050*
H16B0.232270.045500.618620.1050*
H16C0.315120.172300.594960.1050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0360 (7)0.0903 (11)0.0571 (8)0.0027 (7)0.0098 (6)0.0093 (8)
O30.0387 (8)0.0933 (11)0.0648 (9)0.0015 (8)0.0058 (7)0.0170 (8)
O140.0522 (7)0.0489 (7)0.0369 (6)0.0129 (6)0.0089 (5)0.0039 (5)
O150.0600 (10)0.1109 (13)0.0558 (9)0.0327 (9)0.0123 (8)0.0044 (8)
N20.0344 (7)0.0424 (7)0.0404 (7)0.0025 (6)0.0099 (6)0.0017 (6)
C10.0386 (9)0.0469 (9)0.0423 (9)0.0063 (8)0.0103 (7)0.0011 (7)
C30.0366 (9)0.0438 (9)0.0477 (10)0.0013 (7)0.0115 (8)0.0029 (7)
C3A0.0473 (10)0.0404 (9)0.0523 (10)0.0059 (8)0.0170 (8)0.0005 (8)
C40.0501 (11)0.0724 (14)0.0571 (12)0.0057 (10)0.0255 (9)0.0012 (10)
C50.0718 (15)0.0657 (13)0.0635 (13)0.0013 (12)0.0365 (12)0.0074 (10)
C60.0775 (16)0.0774 (14)0.0472 (11)0.0214 (13)0.0252 (11)0.0172 (10)
C70.0551 (12)0.0916 (16)0.0420 (10)0.0002 (12)0.0083 (9)0.0154 (10)
C7A0.0506 (10)0.0430 (9)0.0488 (10)0.0082 (8)0.0145 (8)0.0086 (8)
C80.0324 (8)0.0442 (9)0.0354 (8)0.0027 (7)0.0094 (6)0.0006 (7)
C90.0372 (8)0.0455 (9)0.0333 (8)0.0031 (7)0.0078 (7)0.0028 (7)
C100.0460 (10)0.0495 (10)0.0492 (10)0.0032 (9)0.0119 (8)0.0071 (9)
C110.0470 (10)0.0710 (13)0.0454 (10)0.0054 (10)0.0202 (8)0.0110 (9)
C120.0457 (10)0.0767 (14)0.0389 (9)0.0050 (10)0.0173 (8)0.0078 (9)
C130.0398 (9)0.0512 (10)0.0461 (9)0.0018 (8)0.0118 (8)0.0092 (8)
C150.0517 (10)0.0480 (10)0.0473 (10)0.0093 (9)0.0186 (8)0.0051 (8)
C160.0831 (16)0.0705 (14)0.0595 (13)0.0222 (12)0.0259 (11)0.0110 (11)
Geometric parameters (Å, º) top
O1—C11.202 (2)C10—C111.381 (3)
O3—C31.203 (2)C11—C121.380 (3)
O14—C91.391 (2)C12—C131.378 (3)
O14—C151.368 (2)C15—C161.486 (3)
O15—C151.189 (2)C3A—H3A0.98
N2—C11.390 (2)C4—H4A0.97
N2—C31.391 (2)C4—H4B0.97
N2—C81.434 (2)C5—H50.93
C1—C7A1.509 (3)C6—H60.93
C3—C3A1.511 (3)C7—H7B0.97
C3A—C41.535 (3)C7—H7C0.97
C3A—C7A1.535 (3)C7A—H7A0.98
C4—C51.485 (3)C10—H100.93
C5—C61.305 (4)C11—H110.93
C6—C71.497 (4)C12—H120.93
C7—C7A1.534 (3)C13—H130.93
C8—C91.381 (2)C16—H16A0.96
C8—C131.384 (2)C16—H16B0.96
C9—C101.385 (2)C16—H16C0.96
O1···C1i3.330 (2)C10···H13vi3.01
O14···C9ii3.279 (2)C11···H13vi2.86
O14···C13.395 (2)C13···H7Ai2.81
O14···C10ii3.325 (2)C15···H102.95
O14···N22.7532 (19)H3A···O3v2.87
O15···C103.016 (3)H4A···C72.97
O1···H7B2.69H4A···H11viii2.55
O1···H7Ai2.84H4B···O32.70
O1···H10ii2.78H5···H16B2.55
O3···H16Aiii2.56H5···H7Cix2.57
O3···H6iv2.81H5···O15iii2.87
O3···H4B2.70H6···O3x2.81
O3···H3Av2.87H7A···O1i2.84
O15···H102.90H7A···C13i2.81
O15···H12vi2.58H7A···H13i2.41
O15···H5iii2.87H7B···O12.69
N2···O142.7532 (19)H7C···C42.98
C1···O143.395 (2)H7C···H5xi2.57
C1···C53.578 (3)H10···O152.90
C1···O1i3.330 (2)H10···C152.95
C1···C1i3.472 (3)H10···O1ii2.78
C5···C13.578 (3)H11···H13vi2.59
C9···O14ii3.279 (2)H11···H4Axii2.55
C10···C13vi3.529 (3)H12···O15vii2.58
C10···O153.016 (3)H13···C10vii3.01
C10···O14ii3.325 (2)H13···C11vii2.86
C11···C13vi3.531 (3)H13···H11vii2.59
C13···C11vii3.531 (3)H13···C7Ai3.06
C13···C10vii3.529 (3)H13···H7Ai2.41
C4···H7C2.98H16A···O3iii2.56
C5···H16B3.07H16B···C53.07
C7···H4A2.97H16B···H52.55
C7A···H13i3.06
C9—O14—C15117.97 (13)C4—C3A—H3A109
C1—N2—C3112.73 (14)C7A—C3A—H3A109
C1—N2—C8123.69 (15)C3A—C4—H4A109
C3—N2—C8123.58 (14)C3A—C4—H4B109
O1—C1—N2123.52 (17)C5—C4—H4A109
O1—C1—C7A127.90 (17)C5—C4—H4B109
N2—C1—C7A108.58 (16)H4A—C4—H4B108
O3—C3—N2124.08 (17)C4—C5—H5120
O3—C3—C3A127.19 (17)C6—C5—H5120
N2—C3—C3A108.74 (15)C5—C6—H6120
C3—C3A—C4110.88 (15)C7—C6—H6120
C3—C3A—C7A104.75 (15)C6—C7—H7B110
C4—C3A—C7A114.09 (15)C6—C7—H7C110
C3A—C4—C5111.64 (18)C7A—C7—H7B110
C4—C5—C6119.9 (2)C7A—C7—H7C110
C5—C6—C7120.7 (2)H7B—C7—H7C108
C6—C7—C7A110.40 (19)C1—C7A—H7A109
C1—C7A—C3A105.18 (15)C3A—C7A—H7A109
C1—C7A—C7110.57 (17)C7—C7A—H7A109
C3A—C7A—C7114.92 (18)C9—C10—H10120
N2—C8—C9119.89 (15)C11—C10—H10120
N2—C8—C13120.34 (15)C10—C11—H11120
C9—C8—C13119.76 (16)C12—C11—H11120
O14—C9—C8118.20 (15)C11—C12—H12120
O14—C9—C10121.41 (15)C13—C12—H12120
C8—C9—C10120.27 (16)C8—C13—H13120
C9—C10—C11119.32 (17)C12—C13—H13120
C10—C11—C12120.73 (17)C15—C16—H16A109
C11—C12—C13119.60 (17)C15—C16—H16B110
C8—C13—C12120.31 (17)C15—C16—H16C109
O14—C15—O15122.45 (17)H16A—C16—H16B109
O14—C15—C16110.32 (17)H16A—C16—H16C109
O15—C15—C16127.2 (2)H16B—C16—H16C109
C3—C3A—H3A109
C15—O14—C9—C1065.5 (2)N2—C3—C3A—C7A1.67 (18)
C9—O14—C15—C16174.85 (16)C3—C3A—C7A—C7123.30 (18)
C15—O14—C9—C8118.48 (18)C3—C3A—C7A—C11.47 (18)
C9—O14—C15—O154.5 (3)C4—C3A—C7A—C71.9 (2)
C3—N2—C1—C7A0.26 (19)C7A—C3A—C4—C538.9 (2)
C1—N2—C8—C989.5 (2)C3—C3A—C4—C579.1 (2)
C8—N2—C1—C7A179.92 (15)C4—C3A—C7A—C1119.96 (16)
C8—N2—C1—O10.6 (3)C3A—C4—C5—C642.9 (3)
C1—N2—C3—O3178.94 (18)C4—C5—C6—C71.1 (3)
C8—N2—C3—O30.9 (3)C5—C6—C7—C7A41.7 (3)
C8—N2—C3—C3A178.93 (14)C6—C7—C7A—C178.3 (3)
C3—N2—C1—O1179.25 (17)C6—C7—C7A—C3A40.6 (3)
C3—N2—C8—C1390.5 (2)C13—C8—C9—O14177.31 (16)
C1—N2—C3—C3A1.25 (19)C9—C8—C13—C120.0 (3)
C3—N2—C8—C990.7 (2)C13—C8—C9—C101.2 (3)
C1—N2—C8—C1389.3 (2)N2—C8—C9—C10177.68 (16)
O1—C1—C7A—C3A179.71 (19)N2—C8—C9—O141.6 (3)
N2—C1—C7A—C3A0.81 (18)N2—C8—C13—C12178.88 (17)
O1—C1—C7A—C755.1 (3)C8—C9—C10—C111.3 (3)
N2—C1—C7A—C7125.43 (18)O14—C9—C10—C11177.25 (17)
N2—C3—C3A—C4121.85 (16)C9—C10—C11—C120.1 (3)
O3—C3—C3A—C7A178.53 (18)C10—C11—C12—C131.1 (3)
O3—C3—C3A—C458.0 (3)C11—C12—C13—C81.1 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x1/2, y+1/2, z1/2; (v) x, y+1, z+1; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x1/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z+3/2; (x) x+1/2, y+1/2, z+1/2; (xi) x+1/2, y+1/2, z+3/2; (xii) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3iii0.962.563.517 (3)176
C12—H12···O15vii0.932.583.480 (3)162
Symmetry codes: (iii) x, y, z+1; (vii) x+1/2, y+1/2, z+1/2.
(II) 4-(1,3-dioxo-2,3,3a,4,7,7a-hexahydro-1H-isoindol-2-yl)phenyl acetate top
Crystal data top
C16H15NO4F(000) = 600
Mr = 285.17Dx = 1.314 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 24 reflections
a = 16.163 (1) Åθ = 10–11°
b = 6.578 (1) ŵ = 0.10 mm1
c = 13.583 (1) ÅT = 293 K
β = 93.73 (2)°Block, colorless
V = 1441.1 (3) Å30.20 × 0.15 × 0.09 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2056 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 28.0°, θmin = 2.5°
Detector resolution: 3 pixels mm-1h = 021
ω/2θ scansk = 80
3450 measured reflectionsl = 1717
3450 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0946P)2 + 0.0607P]
where P = (Fo2 + 2Fc2)/3
3450 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H15NO4V = 1441.1 (3) Å3
Mr = 285.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.163 (1) ŵ = 0.10 mm1
b = 6.578 (1) ÅT = 293 K
c = 13.583 (1) Å0.20 × 0.15 × 0.09 mm
β = 93.73 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2056 reflections with I > 2σ(I)
3450 measured reflectionsRint = 0.020
3450 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.14Δρmax = 0.43 e Å3
3450 reflectionsΔρmin = 0.20 e Å3
191 parameters
Special details top

Experimental. Diffractometer operator Susana Rojas Lima scanwidth_degrees 0.7 low_scanspeed_degrees/min 16.1 high_scanspeed_degrees/min 60 Background measurement: Moving crystal and moving counter at the beginning and end of scan, each for 25% of total scan area. Crystal mounted on a glass fiber.

Melting points were measured on a Gallen–Kamp MFB-595 apparatus and are uncorrected. IR spectra were recorded as KBr discs using a Perkin–Elmer 16 F PC IR spectrophotometer. 1H and 13C NMR spectra were recorded using a Jeol Eclipse spectrometer (1H, 270.17; 13C, 67.94 MHz) in CDCl3 solutions, (SiMe4 as internal reference). Mass spectra were recorded on a Hewlett Packard 5989 A Series II spectrometer.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24578 (12)1.0321 (3)0.36249 (11)0.0745 (6)
O30.32688 (9)0.5160 (2)0.16956 (10)0.0545 (5)
O140.09535 (9)1.1923 (2)0.05900 (10)0.0594 (5)
O150.13805 (12)1.0021 (3)0.18105 (12)0.0783 (7)
N20.27355 (9)0.7906 (2)0.24784 (10)0.0373 (4)
C10.27588 (12)0.8706 (3)0.34267 (12)0.0440 (5)
C30.31379 (11)0.6035 (3)0.24479 (13)0.0379 (5)
C3A0.33652 (11)0.5372 (3)0.34991 (13)0.0415 (5)
C40.42418 (13)0.4502 (4)0.36141 (17)0.0595 (8)
C50.48488 (14)0.6157 (5)0.35188 (17)0.0714 (9)
C60.47444 (15)0.7922 (5)0.39272 (17)0.0712 (9)
C70.40345 (15)0.8269 (4)0.45524 (16)0.0664 (8)
C7A0.32243 (11)0.7265 (3)0.41193 (12)0.0446 (6)
C80.23068 (10)0.8862 (3)0.16447 (12)0.0369 (5)
C90.16453 (11)0.7883 (3)0.11522 (13)0.0449 (6)
C100.12072 (12)0.8847 (3)0.03805 (14)0.0496 (6)
C110.14337 (11)1.0790 (3)0.01249 (13)0.0451 (6)
C120.21008 (12)1.1761 (3)0.05959 (14)0.0470 (6)
C130.25389 (12)1.0786 (3)0.13636 (13)0.0431 (5)
C150.10087 (12)1.1449 (4)0.15435 (15)0.0535 (7)
C160.05530 (15)1.2987 (4)0.21816 (18)0.0721 (9)
H3A0.297440.431670.367890.0499*
H4B0.433140.385970.425490.0715*
H4C0.431260.348190.311100.0715*
H50.531250.593490.316200.0856*
H60.511530.897180.382760.0852*
H7A0.287640.690950.465830.0535*
H7B0.394530.972010.461740.0796*
H7C0.417140.772450.520640.0796*
H90.149620.658120.134010.0539*
H100.076600.819690.003800.0595*
H120.225431.305480.040030.0565*
H130.299041.142390.169160.0518*
H16A0.054641.256280.285830.1082*
H16B0.082571.427920.210800.1082*
H16C0.000581.310500.198830.1082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1075 (14)0.0669 (10)0.0478 (8)0.0385 (10)0.0045 (8)0.0153 (7)
O30.0727 (10)0.0433 (7)0.0467 (8)0.0079 (7)0.0017 (7)0.0113 (6)
O140.0565 (9)0.0715 (10)0.0496 (8)0.0167 (8)0.0017 (6)0.0110 (7)
O150.0840 (12)0.0933 (13)0.0561 (10)0.0261 (10)0.0074 (8)0.0125 (9)
N20.0447 (8)0.0345 (7)0.0323 (7)0.0015 (6)0.0007 (5)0.0001 (5)
C10.0523 (10)0.0451 (10)0.0346 (8)0.0066 (8)0.0019 (7)0.0043 (7)
C30.0430 (9)0.0306 (8)0.0397 (8)0.0045 (7)0.0003 (7)0.0013 (7)
C3A0.0439 (10)0.0374 (9)0.0430 (9)0.0027 (8)0.0003 (7)0.0064 (7)
C40.0587 (13)0.0656 (14)0.0536 (12)0.0191 (11)0.0019 (9)0.0069 (10)
C50.0415 (11)0.120 (2)0.0523 (12)0.0006 (14)0.0002 (9)0.0062 (14)
C60.0579 (14)0.097 (2)0.0564 (13)0.0329 (14)0.0130 (10)0.0133 (13)
C70.0812 (16)0.0655 (14)0.0490 (11)0.0009 (12)0.0214 (10)0.0095 (10)
C7A0.0495 (10)0.0515 (11)0.0329 (8)0.0038 (8)0.0038 (7)0.0035 (8)
C80.0406 (9)0.0367 (8)0.0333 (7)0.0029 (7)0.0017 (6)0.0008 (7)
C90.0460 (10)0.0430 (10)0.0456 (9)0.0090 (8)0.0012 (7)0.0062 (8)
C100.0413 (9)0.0596 (12)0.0467 (10)0.0087 (9)0.0059 (8)0.0054 (9)
C110.0427 (10)0.0531 (11)0.0393 (9)0.0084 (8)0.0023 (7)0.0064 (8)
C120.0548 (11)0.0402 (10)0.0461 (10)0.0006 (9)0.0031 (8)0.0052 (8)
C130.0487 (10)0.0372 (9)0.0426 (9)0.0034 (8)0.0033 (8)0.0008 (7)
C150.0419 (10)0.0687 (14)0.0492 (10)0.0001 (10)0.0024 (8)0.0066 (10)
C160.0602 (14)0.0900 (18)0.0643 (14)0.0033 (13)0.0100 (10)0.0289 (13)
Geometric parameters (Å, º) top
O1—C11.206 (3)C10—C111.380 (3)
O3—C31.204 (2)C11—C121.375 (3)
O14—C111.415 (2)C12—C131.380 (3)
O14—C151.341 (2)C15—C161.495 (3)
O15—C151.185 (3)C3A—H3A0.98
N2—C11.390 (2)C4—H4B0.97
N2—C31.394 (2)C4—H4C0.97
N2—C81.434 (2)C5—H50.93
C1—C7A1.503 (3)C6—H60.93
C3—C3A1.515 (3)C7—H7B0.97
C3A—C41.527 (3)C7—H7C0.97
C3A—C7A1.529 (3)C7A—H7A0.98
C4—C51.477 (4)C9—H90.93
C5—C61.302 (4)C10—H100.93
C6—C71.489 (3)C12—H120.93
C7—C7A1.548 (3)C13—H130.93
C8—C91.383 (3)C16—H16A0.96
C8—C131.381 (3)C16—H16B0.96
C9—C101.381 (3)C16—H16C0.96
O1···C133.098 (2)C1···H133.00
O1···C12i3.374 (3)C3···H92.99
O1···C15i3.160 (3)C4···H7C3.04
O1···C16i3.388 (3)C5···H4Cviii3.08
O3···C7ii3.398 (3)C6···H4Bix3.04
O3···C93.223 (2)C7···H4B2.97
O3···C12iii3.229 (2)C8···H7Aii2.95
O3···C13iii3.131 (2)C9···H16Cx3.02
O15···C9ii3.412 (3)C9···H7Aii2.94
O15···C103.105 (3)C10···H7Aii2.97
O15···N2ii3.116 (2)C11···H7Aii3.03
O15···C3Aii3.219 (3)C12···H7Aii3.04
O15···C1ii3.314 (3)C13···H7Aii3.00
O15···C3ii3.152 (3)C15···H103.07
O1···H16Bi2.77H3A···O1iii2.76
O1···H12i2.68H3A···O15vi2.65
O1···H3Aiv2.76H4B···C72.97
O1···H7B2.71H4B···C6ix3.04
O1···H132.91H4C···O32.71
O3···H4C2.71H4C···C5v3.08
O3···H12iii2.71H4C···H5v2.51
O3···H13iii2.50H5···H4Cviii2.51
O3···H6v2.86H6···O3viii2.86
O15···H3Aii2.65H7A···C8vi2.95
O15···H9ii2.74H7A···C9vi2.94
N2···O15vi3.116 (2)H7A···C10vi2.97
C1···O15vi3.314 (3)H7A···C11vi3.03
C3···C63.412 (3)H7A···C12vi3.04
C3···O15vi3.152 (3)H7A···C13vi3.00
C3A···O15vi3.219 (3)H7B···O12.71
C6···C33.412 (3)H7C···C43.04
C7···O3vi3.398 (3)H9···C32.99
C9···O15vi3.412 (3)H9···O15vi2.74
C9···O33.223 (2)H10···C153.07
C10···O153.105 (3)H12···O3iv2.71
C12···O1vii3.374 (3)H12···O1vii2.68
C12···O3iv3.229 (2)H13···O12.91
C13···O3iv3.131 (2)H13···O3iv2.50
C13···O13.098 (2)H13···C13.00
C15···O1vii3.160 (3)H16B···O1vii2.77
C16···O1vii3.388 (3)H16C···C9x3.02
C11—O14—C15118.19 (16)C4—C3A—H3A109
C1—N2—C3112.17 (14)C7A—C3A—H3A109
C1—N2—C8123.27 (15)C3A—C4—H4B110
C3—N2—C8124.49 (14)C3A—C4—H4C110
O1—C1—N2123.60 (17)C5—C4—H4B110
O1—C1—C7A127.50 (16)C5—C4—H4C110
N2—C1—C7A108.89 (15)H4B—C4—H4C108
O3—C3—N2123.76 (17)C4—C5—H5119
O3—C3—C3A128.12 (18)C6—C5—H5120
N2—C3—C3A108.13 (15)C5—C6—H6120
C3—C3A—C4111.77 (16)C7—C6—H6120
C3—C3A—C7A104.43 (15)C6—C7—H7B109
C4—C3A—C7A114.80 (16)C6—C7—H7C109
C3A—C4—C5109.4 (2)C7A—C7—H7B109
C4—C5—C6121.0 (2)C7A—C7—H7C109
C5—C6—C7120.4 (3)H7B—C7—H7C108
C6—C7—C7A112.46 (19)C1—C7A—H7A109
C1—C7A—C3A104.79 (14)C3A—C7A—H7A109
C1—C7A—C7110.21 (17)C7—C7A—H7A109
C3A—C7A—C7113.84 (16)C8—C9—H9120
N2—C8—C9119.77 (17)C10—C9—H9120
N2—C8—C13119.63 (15)C9—C10—H10120
C9—C8—C13120.56 (17)C11—C10—H10120
C8—C9—C10119.71 (18)C11—C12—H12121
C9—C10—C11119.02 (18)C13—C12—H12121
O14—C11—C10121.18 (16)C8—C13—H13120
O14—C11—C12116.95 (17)C12—C13—H13120
C10—C11—C12121.74 (18)C15—C16—H16A109
C11—C12—C13118.95 (18)C15—C16—H16B109
C8—C13—C12119.98 (17)C15—C16—H16C109
O14—C15—O15123.2 (2)H16A—C16—H16B109
O14—C15—C16110.0 (2)H16A—C16—H16C109
O15—C15—C16126.9 (2)H16B—C16—H16C109
C3—C3A—H3A109
C15—O14—C11—C1076.1 (2)N2—C3—C3A—C7A12.20 (19)
C15—O14—C11—C12108.1 (2)C3—C3A—C4—C570.2 (2)
C11—O14—C15—O156.9 (3)C7A—C3A—C4—C548.5 (2)
C11—O14—C15—C16172.12 (17)C3—C3A—C7A—C111.94 (18)
C3—N2—C1—O1179.2 (2)C3—C3A—C7A—C7108.55 (17)
C3—N2—C1—C7A0.3 (2)C4—C3A—C7A—C1134.67 (17)
C8—N2—C1—O13.9 (3)C4—C3A—C7A—C714.2 (2)
C8—N2—C1—C7A177.27 (15)C3A—C4—C5—C641.4 (3)
C1—N2—C3—O3172.18 (18)C4—C5—C6—C73.8 (4)
C1—N2—C3—C3A7.7 (2)C5—C6—C7—C7A40.6 (3)
C8—N2—C3—O310.9 (3)C6—C7—C7A—C188.7 (2)
C8—N2—C3—C3A169.19 (15)C6—C7—C7A—C3A28.7 (3)
C1—N2—C8—C9116.7 (2)N2—C8—C9—C10176.80 (16)
C1—N2—C8—C1360.9 (2)C13—C8—C9—C100.8 (3)
C3—N2—C8—C959.9 (2)N2—C8—C13—C12176.48 (16)
C3—N2—C8—C13122.54 (19)C9—C8—C13—C121.1 (3)
O1—C1—C7A—C3A173.2 (2)C8—C9—C10—C110.9 (3)
O1—C1—C7A—C763.9 (3)C9—C10—C11—O14173.36 (17)
N2—C1—C7A—C3A8.0 (2)C9—C10—C11—C122.3 (3)
N2—C1—C7A—C7114.85 (17)O14—C11—C12—C13173.84 (17)
O3—C3—C3A—C443.0 (3)C10—C11—C12—C132.0 (3)
O3—C3—C3A—C7A167.67 (19)C11—C12—C13—C80.3 (3)
N2—C3—C3A—C4136.89 (17)
Symmetry codes: (i) x, y+5/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1, y1/2, z+1/2; (vi) x, y+3/2, z+1/2; (vii) x, y+5/2, z1/2; (viii) x+1, y+1/2, z+1/2; (ix) x+1, y+1, z+1; (x) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3iv0.932.503.131 (2)125
C7A—H7A···Cg3vi0.982.653.611 (2)167
Symmetry codes: (iv) x, y+1, z; (vi) x, y+3/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H15NO4C16H15NO4
Mr285.30285.17
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)9.6673 (7), 9.6787 (7), 15.5880 (18)16.163 (1), 6.578 (1), 13.583 (1)
β (°) 107.131 (2) 93.73 (2)
V3)1393.8 (2)1441.1 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.40 × 0.30 × 0.200.20 × 0.15 × 0.09
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Enraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3470, 3291, 1861 3450, 3450, 2056
Rint0.0180.020
(sin θ/λ)max1)0.6590.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.145, 1.07 0.051, 0.182, 1.14
No. of reflections32913450
No. of parameters190191
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.190.43, 0.20

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1995), CAD-4 EXPRESS, JANA98 (Vaclav, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), WinGX (Farrugia, 1999), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
O14—C91.391 (2)N2—C31.391 (2)
O14—C151.368 (2)N2—C81.434 (2)
N2—C11.390 (2)
C9—O14—C15117.97 (13)O3—C3—C3A127.19 (17)
C1—N2—C3112.73 (14)N2—C8—C13120.34 (15)
O1—C1—N2123.52 (17)O14—C9—C8118.20 (15)
O1—C1—C7A127.90 (17)O14—C9—C10121.41 (15)
O3—C3—N2124.08 (17)O14—C15—O15122.45 (17)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3i0.962.563.517 (3)176
C12—H12···O15ii0.932.583.480 (3)162
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
O14—C111.415 (2)N2—C31.394 (2)
O14—C151.341 (2)N2—C81.434 (2)
N2—C11.390 (2)
C11—O14—C15118.19 (16)O3—C3—C3A128.12 (18)
C1—N2—C3112.17 (14)O14—C11—C10121.18 (16)
O1—C1—N2123.60 (17)O14—C11—C12116.95 (17)
O1—C1—C7A127.50 (16)O14—C15—O15123.2 (2)
O3—C3—N2123.76 (17)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i0.932.503.131 (2)125
C7A—H7A···Cg3ii0.982.653.611 (2)167
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds