Download citation
Download citation
link to html
This paper investigates the structural properties of 2,5-bis­(3-bromo­phenyl)­furan polymorphs, focusing on the halogen interactions and their influence on crystal mechanical properties. In this study, three different polymorphic modifications were obtained which crystallize in the orthorhombic system. Two of the polymorphs possess halogen interactions but only one exhibits elastic properties. Through X-ray diffraction, crystallographic analysis and computational modelling, intricate bromine-based halogen interactions and their impact on the packing arrangement and stability were revealed. The correlation between these interactions and crystal properties, including molecular arrangement and intermolecular forces, is explored. Understanding these relationships is vital for materials design and supramolecular chemistry, enabling the rational synthesis of tailored materials.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576723010609/ei5098sup1.cif
Contains datablocks alpha, beta, gamma

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576723010609/ei5098alphasup2.hkl
Contains datablock alpha

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576723010609/ei5098betasup3.hkl
Contains datablock beta

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576723010609/ei5098gammasup4.hkl
Contains datablock gamma

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576723010609/ei5098sup5.pdf
Supporting figures and tables

CCDC references: 2172059; 2172060; 2172061

Computing details top

(alpha) top
Crystal data top
C16H10Br2ODx = 1.863 Mg m3
Mr = 378.06Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 13880 reflections
a = 8.226 (3) Åθ = 2.9–29.1°
b = 13.408 (4) ŵ = 6.00 mm1
c = 12.222 (4) ÅT = 100 K
V = 1348.0 (8) Å3Rhombohedral, clear colourless
Z = 40.44 × 0.19 × 0.09 mm
F(000) = 736
Data collection top
Xcalibur, Atlas
diffractometer
3505 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 10.6249 pixels mm-1θmax = 29.5°, θmin = 2.9°
ω scansh = 1111
Absorption correction: multi-scan
CrysAlisPro 1.171.41.110a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1817
Tmin = 0.469, Tmax = 1.000l = 1516
27898 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0181P)2 + 0.3092P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.54 e Å3
3505 reflectionsΔρmin = 0.34 e Å3
172 parametersAbsolute structure: Flack x determined using 1401 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
1 restraintAbsolute structure parameter: 0.014 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.20026 (3)0.89190 (2)0.71508 (3)0.01983 (8)
Br10.44383 (3)0.33814 (2)0.56968 (3)0.02011 (8)
O10.6098 (2)0.70586 (15)0.43522 (17)0.0140 (4)
C70.5619 (3)0.3957 (2)0.4504 (3)0.0161 (7)
C160.4526 (3)0.8525 (2)0.5620 (3)0.0148 (6)
H160.4281980.7858580.5750780.018*
C140.4056 (4)1.0273 (2)0.6014 (3)0.0182 (7)
H140.3496511.0764030.6397250.022*
C20.7845 (4)0.7104 (2)0.2956 (3)0.0169 (7)
H20.8518400.6909050.2383090.020*
C90.7261 (4)0.3782 (3)0.2921 (3)0.0230 (7)
H90.7758680.3381670.2397410.028*
C80.6361 (4)0.3339 (2)0.3753 (3)0.0199 (7)
H80.6262970.2649180.3801110.024*
C50.6674 (4)0.5423 (2)0.3631 (3)0.0147 (6)
C60.5737 (3)0.4987 (2)0.4461 (2)0.0147 (6)
H60.5204880.5381840.4973480.018*
C150.3713 (4)0.9270 (2)0.6175 (3)0.0173 (7)
C30.7600 (4)0.8093 (3)0.3334 (3)0.0174 (7)
H30.8077390.8668870.3055740.021*
C110.5729 (4)0.8787 (2)0.4855 (3)0.0153 (6)
C10.6915 (3)0.6496 (2)0.3584 (3)0.0146 (6)
C100.7428 (4)0.4803 (2)0.2858 (3)0.0192 (7)
H100.8044470.5082400.2298950.023*
C130.5261 (4)1.0523 (3)0.5262 (3)0.0198 (7)
H130.5508141.1191080.5139220.024*
C120.6090 (4)0.9797 (2)0.4700 (3)0.0181 (7)
H120.6901070.9979150.4208570.022*
C40.6528 (3)0.8037 (2)0.4184 (3)0.0151 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.02329 (14)0.01841 (15)0.01781 (15)0.00139 (12)0.00313 (15)0.00050 (16)
Br10.02431 (14)0.01562 (14)0.02040 (16)0.00138 (12)0.00569 (15)0.00363 (16)
O10.0148 (10)0.0134 (11)0.0137 (12)0.0002 (9)0.0005 (8)0.0003 (9)
C70.0152 (15)0.0193 (17)0.0137 (17)0.0004 (12)0.0000 (12)0.0024 (13)
C160.0151 (12)0.0141 (14)0.0152 (16)0.0002 (11)0.0052 (13)0.0005 (15)
C140.0194 (14)0.0164 (16)0.0187 (18)0.0030 (13)0.0040 (12)0.0025 (13)
C20.0166 (15)0.0212 (17)0.0130 (17)0.0010 (12)0.0008 (12)0.0015 (14)
C90.0274 (18)0.0234 (18)0.0182 (19)0.0059 (15)0.0045 (14)0.0041 (16)
C80.0245 (16)0.0148 (16)0.0204 (19)0.0021 (13)0.0004 (14)0.0005 (14)
C50.0139 (14)0.0174 (16)0.0128 (16)0.0006 (12)0.0031 (12)0.0012 (13)
C60.0149 (14)0.0158 (16)0.0134 (17)0.0036 (12)0.0009 (11)0.0009 (13)
C150.0164 (15)0.0199 (17)0.0155 (16)0.0018 (13)0.0032 (12)0.0020 (14)
C30.0176 (15)0.0180 (16)0.0168 (18)0.0033 (13)0.0027 (12)0.0034 (13)
C110.0142 (14)0.0162 (16)0.0156 (17)0.0004 (12)0.0054 (12)0.0003 (13)
C10.0121 (13)0.0183 (16)0.0135 (16)0.0020 (12)0.0034 (12)0.0002 (13)
C100.0224 (16)0.0192 (17)0.0159 (17)0.0023 (14)0.0042 (13)0.0023 (14)
C130.0222 (16)0.0125 (16)0.0246 (18)0.0032 (13)0.0069 (13)0.0001 (13)
C120.0169 (15)0.0175 (17)0.0200 (18)0.0016 (13)0.0020 (12)0.0012 (13)
C40.0150 (14)0.0139 (15)0.0163 (17)0.0013 (12)0.0055 (12)0.0020 (13)
Geometric parameters (Å, º) top
Br2—C151.904 (3)C9—C81.391 (5)
Br1—C71.914 (3)C9—C101.378 (5)
O1—C11.379 (4)C8—H80.9300
O1—C41.374 (4)C5—C61.402 (4)
C7—C81.379 (5)C5—C11.453 (5)
C7—C61.385 (4)C5—C101.403 (4)
C16—H160.9300C6—H60.9300
C16—C151.380 (5)C3—H30.9300
C16—C111.406 (5)C3—C41.365 (5)
C14—H140.9300C11—C121.399 (5)
C14—C151.387 (5)C11—C41.456 (5)
C14—C131.393 (5)C10—H100.9300
C2—H20.9300C13—H130.9300
C2—C31.419 (5)C13—C121.373 (5)
C2—C11.357 (4)C12—H120.9300
C9—H90.9300
C4—O1—C1107.1 (2)C16—C15—Br2119.1 (2)
C8—C7—Br1119.3 (2)C16—C15—C14122.2 (3)
C8—C7—C6122.9 (3)C14—C15—Br2118.6 (2)
C6—C7—Br1117.8 (2)C2—C3—H3126.6
C15—C16—H16120.4C4—C3—C2106.7 (3)
C15—C16—C11119.1 (3)C4—C3—H3126.6
C11—C16—H16120.4C16—C11—C4121.3 (3)
C15—C14—H14120.9C12—C11—C16118.8 (3)
C15—C14—C13118.1 (3)C12—C11—C4119.8 (3)
C13—C14—H14120.9O1—C1—C5116.6 (3)
C3—C2—H2126.3C2—C1—O1109.4 (3)
C1—C2—H2126.3C2—C1—C5134.0 (3)
C1—C2—C3107.3 (3)C9—C10—C5120.5 (3)
C8—C9—H9119.4C9—C10—H10119.7
C10—C9—H9119.4C5—C10—H10119.7
C10—C9—C8121.2 (3)C14—C13—H13119.6
C7—C8—C9117.7 (3)C12—C13—C14120.8 (3)
C7—C8—H8121.1C12—C13—H13119.6
C9—C8—H8121.1C11—C12—H12119.6
C6—C5—C1121.1 (3)C13—C12—C11120.9 (3)
C6—C5—C10118.8 (3)C13—C12—H12119.6
C10—C5—C1120.0 (3)O1—C4—C11117.3 (3)
C7—C6—C5118.8 (3)C3—C4—O1109.5 (3)
C7—C6—H6120.6C3—C4—C11133.1 (3)
C5—C6—H6120.6
Br1—C7—C8—C9177.6 (2)C11—C16—C15—Br2176.6 (2)
Br1—C7—C6—C5176.3 (2)C11—C16—C15—C140.8 (5)
C16—C11—C12—C131.5 (5)C1—O1—C4—C30.4 (3)
C16—C11—C4—O12.1 (4)C1—O1—C4—C11176.0 (3)
C16—C11—C4—C3173.2 (3)C1—C2—C3—C40.2 (3)
C14—C13—C12—C110.9 (5)C1—C5—C6—C7176.5 (3)
C2—C3—C4—O10.1 (3)C1—C5—C10—C9177.4 (3)
C2—C3—C4—C11175.5 (3)C10—C9—C8—C71.0 (5)
C8—C7—C6—C51.1 (5)C10—C5—C6—C71.5 (4)
C8—C9—C10—C50.7 (5)C10—C5—C1—O1178.2 (3)
C6—C7—C8—C90.1 (5)C10—C5—C1—C24.7 (5)
C6—C5—C1—O13.8 (4)C13—C14—C15—Br2177.2 (2)
C6—C5—C1—C2173.3 (3)C13—C14—C15—C160.2 (5)
C6—C5—C10—C90.6 (5)C12—C11—C4—O1178.4 (3)
C15—C16—C11—C121.5 (5)C12—C11—C4—C33.1 (5)
C15—C16—C11—C4174.9 (3)C4—O1—C1—C20.5 (3)
C15—C14—C13—C120.2 (5)C4—O1—C1—C5178.3 (3)
C3—C2—C1—O10.5 (3)C4—C11—C12—C13174.9 (3)
C3—C2—C1—C5177.7 (3)
(beta) top
Crystal data top
C16H10Br2ODx = 1.868 Mg m3
Mr = 378.06Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 20762 reflections
a = 6.217 (3) Åθ = 2.9–29.2°
b = 30.110 (8) ŵ = 6.02 mm1
c = 7.180 (3) ÅT = 100 K
V = 1344.1 (9) Å3Plate, clear yellow
Z = 40.42 × 0.22 × 0.06 mm
F(000) = 736
Data collection top
Xcalibur, Atlas
diffractometer
1831 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 10.6249 pixels mm-1θmax = 29.5°, θmin = 2.7°
ω scansh = 88
Absorption correction: multi-scan
CrysAlisPro 1.171.41.122a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 4041
Tmin = 0.404, Tmax = 1.000l = 99
53049 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0362P)2 + 3.533P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
1831 reflectionsΔρmax = 0.73 e Å3
88 parametersΔρmin = 0.37 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18812 (5)0.46091 (2)0.58355 (5)0.02249 (13)
O10.3973 (5)0.2500000.4914 (4)0.0167 (6)
C60.5599 (5)0.41415 (10)0.4581 (4)0.0185 (6)
H60.6217120.4427430.4418750.022*
C70.3532 (5)0.40937 (10)0.5292 (4)0.0179 (6)
C80.2595 (5)0.36816 (10)0.5580 (4)0.0174 (6)
H80.1207650.3657980.6126190.021*
C30.3735 (5)0.33005 (10)0.5048 (4)0.0163 (6)
C40.5817 (5)0.33448 (10)0.4317 (4)0.0175 (6)
H40.6601870.3087880.3958910.021*
C50.6734 (5)0.37619 (11)0.4114 (4)0.0190 (6)
H50.8159550.3787380.3649410.023*
C10.2729 (5)0.28667 (10)0.5270 (4)0.0174 (6)
C20.0717 (5)0.27360 (10)0.5815 (4)0.0185 (6)
H20.0452900.2924250.6131730.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02405 (19)0.01690 (18)0.0265 (2)0.00374 (11)0.00224 (13)0.00014 (12)
O10.0159 (14)0.0169 (14)0.0173 (15)0.0000.0017 (12)0.000
C60.0181 (14)0.0206 (14)0.0169 (14)0.0034 (12)0.0028 (12)0.0015 (11)
C70.0214 (15)0.0183 (14)0.0140 (13)0.0045 (12)0.0017 (11)0.0014 (11)
C80.0187 (14)0.0211 (15)0.0125 (14)0.0005 (12)0.0024 (11)0.0012 (11)
C30.0181 (14)0.0197 (14)0.0111 (13)0.0014 (11)0.0029 (11)0.0010 (11)
C40.0179 (15)0.0214 (14)0.0131 (13)0.0011 (12)0.0019 (12)0.0010 (11)
C50.0171 (14)0.0253 (16)0.0147 (14)0.0009 (12)0.0006 (11)0.0007 (11)
C10.0201 (14)0.0189 (15)0.0133 (13)0.0028 (12)0.0023 (11)0.0005 (11)
C20.0191 (15)0.0206 (15)0.0158 (14)0.0023 (12)0.0001 (12)0.0010 (11)
Geometric parameters (Å, º) top
Br1—C71.901 (3)C3—C41.403 (4)
O1—C1i1.372 (3)C3—C11.457 (4)
O1—C11.372 (3)C4—H40.9500
C6—H60.9500C4—C51.387 (4)
C6—C71.390 (5)C5—H50.9500
C6—C51.384 (4)C1—C21.368 (5)
C7—C81.386 (4)C2—C2i1.421 (6)
C8—H80.9500C2—H20.9500
C8—C31.402 (4)
C1i—O1—C1107.2 (3)C3—C4—H4119.8
C7—C6—H6120.8C5—C4—C3120.3 (3)
C5—C6—H6120.8C5—C4—H4119.8
C5—C6—C7118.3 (3)C6—C5—C4120.8 (3)
C6—C7—Br1119.3 (2)C6—C5—H5119.6
C8—C7—Br1118.2 (2)C4—C5—H5119.6
C8—C7—C6122.4 (3)O1—C1—C3117.3 (3)
C7—C8—H8120.7C2—C1—O1109.7 (3)
C7—C8—C3118.6 (3)C2—C1—C3133.0 (3)
C3—C8—H8120.7C1—C2—C2i106.72 (18)
C8—C3—C4119.4 (3)C1—C2—H2126.6
C8—C3—C1119.2 (3)C2i—C2—H2126.6
C4—C3—C1121.5 (3)
Br1—C7—C8—C3175.1 (2)C3—C4—C5—C61.7 (5)
O1—C1—C2—C2i0.6 (3)C3—C1—C2—C2i178.1 (3)
C6—C7—C8—C33.2 (4)C4—C3—C1—O16.4 (4)
C7—C6—C5—C41.3 (5)C4—C3—C1—C2174.9 (3)
C7—C8—C3—C42.7 (4)C5—C6—C7—Br1177.0 (2)
C7—C8—C3—C1177.4 (3)C5—C6—C7—C81.2 (5)
C8—C3—C4—C50.3 (4)C1i—O1—C1—C3178.02 (18)
C8—C3—C1—O1173.5 (3)C1i—O1—C1—C20.9 (4)
C8—C3—C1—C25.2 (5)C1—C3—C4—C5179.8 (3)
Symmetry code: (i) x, y+1/2, z.
2,5-bis(3-bromophenyl)furan (gamma) top
Crystal data top
C16H10Br2ODx = 1.876 Mg m3
Mr = 378.06Melting point: 392 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
a = 3.9774 (1) ÅCell parameters from 9023 reflections
b = 10.7746 (2) Åθ = 2.9–75.1°
c = 31.2387 (5) ŵ = 7.57 mm1
V = 1338.73 (5) Å3T = 100 K
Z = 4Plate, clear yellowish colourless
F(000) = 7360.7 × 0.06 × 0.02 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix-Arc 150
diffractometer
2726 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source2648 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.0000 pixels mm-1θmax = 75.7°, θmin = 2.8°
ω scansh = 44
Absorption correction: multi-scan
CrysAlisPro 1.171.41.112a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1213
Tmin = 0.645, Tmax = 1.000l = 3938
11796 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0463P)2 + 1.5992P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.002
S = 1.10Δρmax = 0.58 e Å3
2726 reflectionsΔρmin = 0.90 e Å3
173 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.18 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.40547 (14)0.58305 (5)0.35180 (2)0.02617 (16)
Br20.52513 (14)0.64283 (6)0.75686 (2)0.03021 (17)
O10.6268 (9)0.4849 (3)0.55605 (10)0.0186 (7)
C160.8179 (13)0.4008 (4)0.63847 (15)0.0183 (10)
H160.8764900.3526280.6149240.022*
C10.4972 (14)0.5443 (4)0.52079 (15)0.0201 (10)
C60.7530 (14)0.3774 (4)0.47546 (17)0.0218 (11)
H60.8233990.3361130.5000330.026*
C80.7272 (14)0.3884 (4)0.39844 (17)0.0226 (11)
H80.7782770.3556540.3716690.027*
C100.4683 (13)0.5495 (4)0.44161 (14)0.0194 (10)
H100.3443850.6225030.4431860.023*
C120.5552 (13)0.5847 (4)0.66895 (14)0.0198 (9)
H120.4378430.6587070.6656500.024*
C50.5739 (13)0.4893 (4)0.47912 (15)0.0181 (10)
C40.5327 (13)0.5553 (4)0.59124 (14)0.0177 (10)
C90.5506 (14)0.4989 (4)0.40220 (15)0.0194 (10)
C110.6393 (13)0.5125 (4)0.63304 (15)0.0177 (9)
C20.3272 (13)0.6460 (5)0.53263 (16)0.0209 (10)
H20.2149050.7005400.5145180.025*
C140.8240 (14)0.4347 (5)0.71538 (16)0.0237 (11)
H140.8856560.4092130.7427190.028*
C130.6489 (14)0.5444 (5)0.70916 (16)0.0216 (10)
C150.9052 (15)0.3637 (5)0.67959 (17)0.0256 (11)
H151.0208780.2894910.6833140.031*
C70.8258 (14)0.3279 (5)0.43559 (17)0.0254 (12)
H70.9421060.2532270.4337010.031*
C30.3500 (13)0.6554 (5)0.57795 (16)0.0210 (10)
H30.2586370.7173050.5951150.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0252 (3)0.0325 (3)0.0208 (2)0.0013 (2)0.0021 (2)0.0012 (2)
Br20.0264 (3)0.0390 (3)0.0252 (3)0.0018 (2)0.0012 (2)0.0102 (2)
O10.0197 (18)0.0156 (15)0.0205 (16)0.0019 (13)0.0018 (14)0.0003 (12)
C160.015 (2)0.016 (2)0.024 (2)0.0002 (18)0.0032 (19)0.0020 (18)
C10.020 (3)0.020 (2)0.021 (2)0.005 (2)0.002 (2)0.0070 (17)
C60.020 (3)0.018 (2)0.028 (3)0.0001 (19)0.000 (2)0.0035 (19)
C80.021 (3)0.021 (2)0.026 (2)0.0039 (19)0.002 (2)0.0045 (19)
C100.017 (3)0.019 (2)0.022 (2)0.0041 (19)0.000 (2)0.0008 (17)
C120.016 (3)0.019 (2)0.024 (2)0.001 (2)0.0003 (19)0.0009 (19)
C50.013 (3)0.017 (2)0.025 (2)0.0033 (18)0.0017 (19)0.0005 (17)
C40.016 (3)0.016 (2)0.020 (2)0.0008 (18)0.002 (2)0.0035 (16)
C90.017 (3)0.019 (2)0.022 (2)0.0044 (19)0.0009 (19)0.0009 (18)
C110.013 (2)0.016 (2)0.023 (2)0.0015 (18)0.0020 (19)0.0016 (17)
C20.019 (3)0.022 (2)0.021 (2)0.001 (2)0.0000 (19)0.004 (2)
C140.023 (3)0.026 (3)0.022 (2)0.002 (2)0.005 (2)0.0018 (19)
C130.017 (3)0.024 (2)0.024 (2)0.0029 (19)0.000 (2)0.0030 (19)
C150.024 (3)0.022 (2)0.031 (3)0.001 (2)0.003 (2)0.001 (2)
C70.020 (3)0.021 (3)0.035 (3)0.001 (2)0.004 (2)0.002 (2)
C30.016 (3)0.021 (2)0.026 (2)0.001 (2)0.001 (2)0.001 (2)
Geometric parameters (Å, º) top
Br1—C91.906 (5)C10—C51.404 (6)
Br2—C131.894 (5)C10—C91.386 (6)
O1—C11.374 (5)C12—H120.9300
O1—C41.387 (5)C12—C111.405 (6)
C16—H160.9300C12—C131.380 (7)
C16—C111.408 (6)C4—C111.448 (6)
C16—C151.389 (7)C4—C31.365 (7)
C1—C51.462 (6)C2—H20.9300
C1—C21.340 (7)C2—C31.422 (7)
C6—H60.9300C14—H140.9300
C6—C51.405 (7)C14—C131.386 (7)
C6—C71.385 (8)C14—C151.393 (7)
C8—H80.9300C15—H150.9300
C8—C91.387 (7)C7—H70.9300
C8—C71.388 (8)C3—H30.9300
C10—H100.9300
C1—O1—C4106.2 (4)C8—C9—Br1119.5 (4)
C11—C16—H16120.5C10—C9—Br1118.4 (4)
C15—C16—H16120.5C10—C9—C8122.2 (5)
C15—C16—C11118.9 (4)C16—C11—C4121.9 (4)
O1—C1—C5116.5 (4)C12—C11—C16119.8 (4)
C2—C1—O1110.4 (4)C12—C11—C4118.3 (4)
C2—C1—C5133.0 (5)C1—C2—H2126.3
C5—C6—H6119.7C1—C2—C3107.5 (5)
C7—C6—H6119.7C3—C2—H2126.3
C7—C6—C5120.6 (5)C13—C14—H14120.9
C9—C8—H8120.8C13—C14—C15118.2 (5)
C9—C8—C7118.4 (5)C15—C14—H14120.9
C7—C8—H8120.8C12—C13—Br2118.1 (4)
C5—C10—H10120.3C12—C13—C14122.1 (5)
C9—C10—H10120.3C14—C13—Br2119.8 (4)
C9—C10—C5119.3 (5)C16—C15—C14121.8 (5)
C11—C12—H12120.4C16—C15—H15119.1
C13—C12—H12120.4C14—C15—H15119.1
C13—C12—C11119.2 (5)C6—C7—C8120.8 (5)
C6—C5—C1121.7 (4)C6—C7—H7119.6
C10—C5—C1119.6 (4)C8—C7—H7119.6
C10—C5—C6118.7 (4)C4—C3—C2106.3 (4)
O1—C4—C11117.5 (4)C4—C3—H3126.9
C3—C4—O1109.5 (4)C2—C3—H3126.9
C3—C4—C11133.0 (4)
O1—C1—C5—C63.8 (7)C11—C12—C13—Br2179.0 (4)
O1—C1—C5—C10175.9 (4)C11—C12—C13—C140.0 (8)
O1—C1—C2—C30.9 (6)C11—C4—C3—C2179.6 (5)
O1—C4—C11—C163.0 (7)C2—C1—C5—C6178.1 (6)
O1—C4—C11—C12178.1 (4)C2—C1—C5—C102.2 (9)
O1—C4—C3—C20.5 (6)C13—C12—C11—C160.2 (8)
C1—O1—C4—C11179.9 (4)C13—C12—C11—C4178.8 (5)
C1—O1—C4—C30.0 (5)C13—C14—C15—C160.6 (8)
C1—C2—C3—C40.9 (6)C15—C16—C11—C120.5 (8)
C5—C1—C2—C3177.3 (6)C15—C16—C11—C4178.4 (5)
C5—C6—C7—C80.8 (8)C15—C14—C13—Br2178.8 (4)
C5—C10—C9—Br1179.7 (4)C15—C14—C13—C120.2 (8)
C5—C10—C9—C81.8 (8)C7—C6—C5—C1179.3 (5)
C4—O1—C1—C5177.9 (4)C7—C6—C5—C100.4 (7)
C4—O1—C1—C20.6 (5)C7—C8—C9—Br1179.0 (4)
C9—C8—C7—C60.7 (8)C7—C8—C9—C100.6 (8)
C9—C10—C5—C1178.0 (5)C3—C4—C11—C16177.1 (5)
C9—C10—C5—C61.7 (7)C3—C4—C11—C121.8 (9)
C11—C16—C15—C140.7 (8)
 

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds