Download citation
Download citation
link to html
The thermo-physical properties of the nonlinear optical (NLO) crystal K3B6O10Br (KBB) were experimentally investigated, including specific heat, thermal conductivity, coefficient of thermal expansion and refractive index. The specific heat of KBB is lower than that of LiB3O5 and higher than that of other borate NLO crystals, such as β-BaB2O4, CsLiB6O10 and CsB3O5, and KBB manifests a high damage threshold because of its lower temperature gradient during laser pulse irradiation. The thermal expansion coefficients were obtained as αx = 5.09 × 10−6 K−1 and αz = 2.39 × 10−5 K−1, showing weaker anisotropy than those of commonly used NLO crystals. The temperature-dependent Sellmeier dispersion equations of the refractive indices were also obtained, and the phase-matching angles for second harmonic generation (SHG) at temperatures of 313, 343, 373, 403 and 433 K which were calculated from these equations are in good agreement with the experimental values. All results are indicative of the KBB crystal as a novel promising NLO crystal for high power SHG.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576716001126/ei5001sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576716001126/ei5001Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576716001126/ei5001sup3.pdf
Principle refractive indices of KBB crystal at different temperatures

CCDC reference: 1448410

Computing details top

Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

(I) top
Crystal data top
B6BrK3O10Dx = 2.670 Mg m3
Mr = 422.07Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3mCell parameters from 1535 reflections
a = 10.1252 (14) Åθ = 3.3–24.9°
c = 8.8687 (18) ŵ = 5.15 mm1
V = 787.4 (2) Å3T = 296 K
Z = 3Block
F(000) = 6060.1 × 0.08 × 0.07 mm
Data collection top
CCD area detector
diffractometer
338 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.0°, θmin = 3.3°
phi and ω scansh = 912
1495 measured reflectionsk = 128
340 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0091P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max < 0.001
wR(F2) = 0.045Δρmax = 0.34 e Å3
S = 1.18Δρmin = 0.56 e Å3
340 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
41 parametersExtinction coefficient: 0.399 (17)
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.030 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00000.00000.99502 (7)0.0214 (4)
K10.18026 (6)0.36051 (12)0.88304 (12)0.0157 (3)
O10.00000.00000.5512 (7)0.0057 (11)
O20.44484 (16)0.55516 (16)1.0558 (4)0.0108 (7)
O30.2327 (2)0.2336 (2)0.6246 (3)0.0115 (6)
B10.0871 (2)0.1741 (5)0.5452 (6)0.0072 (10)
B20.2997 (5)0.1499 (2)0.6611 (6)0.0073 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0199 (4)0.0199 (4)0.0243 (5)0.0100 (2)0.0000.000
K10.0136 (5)0.0188 (6)0.0165 (6)0.0094 (3)0.0021 (2)0.0043 (5)
O10.0062 (16)0.0062 (16)0.005 (2)0.0031 (8)0.0000.000
O20.0135 (11)0.0135 (11)0.0092 (14)0.0095 (14)0.0012 (6)0.0012 (6)
O30.0087 (12)0.0096 (12)0.0151 (11)0.0037 (10)0.0059 (8)0.0021 (8)
B10.0050 (16)0.006 (2)0.011 (3)0.0030 (11)0.0000 (9)0.0001 (17)
B20.006 (3)0.0111 (18)0.003 (2)0.0031 (13)0.002 (3)0.0011 (13)
Geometric parameters (Å, º) top
Br1—K1i3.3135 (12)O1—B11.528 (4)
Br1—K13.3135 (12)O1—B1i1.528 (4)
Br1—K1ii3.3135 (12)O1—B1ii1.528 (4)
Br1—K1iii3.3258 (13)O2—B2iii1.374 (6)
Br1—K1iv3.3258 (13)O2—B1xi1.449 (6)
Br1—K1v3.3258 (13)O2—K1xii2.851 (2)
K1—O3iii2.793 (2)O3—B21.364 (3)
K1—O3vi2.793 (2)O3—B11.465 (3)
K1—O3vii2.806 (3)O3—K1xiii2.793 (2)
K1—O32.806 (3)B1—O2xiv1.449 (6)
K1—O22.851 (2)B1—O3vii1.465 (3)
K1—O2viii2.851 (2)B2—O3xv1.364 (3)
K1—B2iii3.146 (3)B2—O2xiii1.374 (6)
K1—B2ix3.146 (3)B2—K1xiii3.146 (3)
K1—Br1x3.3258 (13)B2—K1xvi3.146 (3)
K1—B13.413 (5)B2—K1ii3.531 (3)
K1—B2i3.531 (3)
K1i—Br1—K1111.42 (2)O2—K1—B1139.33 (7)
K1i—Br1—K1ii111.42 (2)O2viii—K1—B1139.33 (7)
K1—Br1—K1ii111.42 (2)B2iii—K1—B1116.07 (9)
K1i—Br1—K1iii161.26 (4)B2ix—K1—B1116.07 (9)
K1—Br1—K1iii77.987 (9)Br1—K1—B178.83 (8)
K1ii—Br1—K1iii77.988 (9)Br1x—K1—B182.44 (8)
K1i—Br1—K1iv77.987 (9)O3iii—K1—B2i135.24 (8)
K1—Br1—K1iv161.26 (4)O3vi—K1—B2i57.51 (10)
K1ii—Br1—K1iv77.988 (9)O3vii—K1—B2i21.14 (9)
K1iii—Br1—K1iv88.70 (3)O3—K1—B2i66.84 (8)
K1i—Br1—K1v77.987 (9)O2—K1—B2i174.66 (9)
K1—Br1—K1v77.987 (9)O2viii—K1—B2i103.29 (10)
K1ii—Br1—K1v161.26 (4)B2iii—K1—B2i157.66 (16)
K1iii—Br1—K1v88.70 (3)B2ix—K1—B2i77.47 (3)
K1iv—Br1—K1v88.70 (3)Br1—K1—B2i70.61 (7)
O3iii—K1—O3vi150.64 (11)Br1x—K1—B2i95.35 (6)
O3iii—K1—O3vii124.33 (9)B1—K1—B2i42.28 (8)
O3vi—K1—O3vii75.79 (3)B1—O1—B1i119.88 (4)
O3iii—K1—O375.79 (3)B1—O1—B1ii119.88 (4)
O3vi—K1—O3124.33 (9)B1i—O1—B1ii119.88 (4)
O3vii—K1—O349.46 (9)B2iii—O2—B1xi130.6 (4)
O3iii—K1—O249.49 (7)B2iii—O2—K189.11 (18)
O3vi—K1—O2119.97 (8)B1xi—O2—K1116.73 (11)
O3vii—K1—O2157.68 (8)B2iii—O2—K1xii89.11 (18)
O3—K1—O2115.35 (7)B1xi—O2—K1xii116.73 (11)
O3iii—K1—O2viii119.97 (8)K1—O2—K1xii109.25 (12)
O3vi—K1—O2viii49.49 (7)B2—O3—B1124.8 (3)
O3vii—K1—O2viii115.35 (7)B2—O3—K1xiii91.8 (2)
O3—K1—O2viii157.68 (8)B1—O3—K1xiii128.1 (2)
O2—K1—O2viii72.88 (12)B2—O3—K1111.0 (3)
O3iii—K1—B2iii25.67 (8)B1—O3—K1101.46 (19)
O3vi—K1—B2iii144.32 (10)K1xiii—O3—K196.52 (6)
O3vii—K1—B2iii139.71 (10)O2xiv—B1—O3110.7 (2)
O3—K1—B2iii91.25 (11)O2xiv—B1—O3vii110.7 (2)
O2—K1—B2iii25.90 (11)O3—B1—O3vii106.5 (3)
O2viii—K1—B2iii98.78 (10)O2xiv—B1—O1109.2 (4)
O3iii—K1—B2ix144.32 (10)O3—B1—O1109.8 (3)
O3vi—K1—B2ix25.67 (8)O3vii—B1—O1109.8 (3)
O3vii—K1—B2ix91.24 (11)O2xiv—B1—K1134.2 (3)
O3—K1—B2ix139.71 (10)O3—B1—K153.67 (18)
O2—K1—B2ix98.78 (10)O3vii—B1—K153.67 (18)
O2viii—K1—B2ix25.90 (11)O1—B1—K1116.6 (4)
B2iii—K1—B2ix124.67 (17)O3xv—B2—O3121.0 (4)
O3iii—K1—Br181.07 (5)O3xv—B2—O2xiii119.3 (2)
O3vi—K1—Br181.07 (5)O3—B2—O2xiii119.3 (2)
O3vii—K1—Br182.32 (5)O3xv—B2—K1xiii145.6 (3)
O3—K1—Br182.32 (5)O3—B2—K1xiii62.55 (16)
O2—K1—Br1114.20 (6)O2xiii—B2—K1xiii64.99 (15)
O2viii—K1—Br1114.20 (6)O3xv—B2—K1xvi62.55 (16)
B2iii—K1—Br1103.42 (6)O3—B2—K1xvi145.6 (3)
B2ix—K1—Br1103.42 (6)O2xiii—B2—K1xvi64.99 (15)
O3iii—K1—Br1x102.20 (5)K1xiii—B2—K1xvi95.29 (13)
O3vi—K1—Br1x102.20 (5)O3xv—B2—K1ii47.9 (2)
O3vii—K1—Br1x80.67 (5)O3—B2—K1ii132.8 (3)
O3—K1—Br1x80.67 (5)O2xiii—B2—K1ii93.0 (2)
O2—K1—Br1x80.45 (6)K1xiii—B2—K1ii157.65 (16)
O2viii—K1—Br1x80.45 (6)K1xvi—B2—K1ii77.23 (3)
B2iii—K1—Br1x84.80 (8)O3xv—B2—K1132.8 (3)
B2ix—K1—Br1x84.80 (8)O3—B2—K147.9 (2)
Br1—K1—Br1x161.26 (4)O2xiii—B2—K193.0 (2)
O3iii—K1—B199.58 (6)K1xiii—B2—K177.23 (3)
O3vi—K1—B199.58 (6)K1xvi—B2—K1157.66 (16)
O3vii—K1—B124.87 (4)K1ii—B2—K1101.67 (13)
O3—K1—B124.87 (4)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) y+2/3, xy+1/3, z+1/3; (iv) x1/3, y2/3, z+1/3; (v) x+y1/3, x+1/3, z+1/3; (vi) x1/3, xy+1/3, z+1/3; (vii) x+y, y, z; (viii) x+y, x+1, z; (ix) x1/3, y+1/3, z+1/3; (x) x+1/3, y+2/3, z1/3; (xi) x+y+1/3, x+2/3, z+2/3; (xii) y+1, xy+1, z; (xiii) x+y+1/3, x+2/3, z1/3; (xiv) y+2/3, xy+1/3, z2/3; (xv) x, xy, z; (xvi) x+1/3, y1/3, z1/3.
 

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds