Download citation
Download citation
link to html
Three anisole building blocks featuring bis­(hy­droxy­meth­yl) or bis­(bromo­meth­yl) pendants have been analyzed with regard to their mol­ecular structures and packing behaviour. The compounds are ethyl 3,5-bis­(hy­droxy­meth­yl)-4-meth­oxy­benzoate, C12H16O5, (I), [5-bromo-3-(hy­droxy­meth­yl)-2-meth­oxy­phen­yl]methanol [or 4-bromo-2,6-bis­(hy­droxy­meth­yl)anisole], C9H11BrO3, (II), and 5-bromo-1,3-bis­(bromo­meth­yl)-2-meth­oxy­benzene [or 4-bromo-2,6-bis­(bromo­meth­yl)anisole], C9H9Br3O, (III). A typical supra­molecular pattern involved C—H...π inter­actions generating mol­ecular stacks, while π–π inter­actions were only observed in the absence of bromine, indicating a striking influence on the distances between adjacent aromatic moieties. When comparing bis­(hy­droxy­meth­yl) compound (II) with bis­(bromo­meth­yl) compound (III), we found that the strong O—H...O hydrogen bonds in a zigzag arrangement in the first are replaced by C—H...Br inter­actions in the second without a change in the general packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618001997/eg3234sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001997/eg3234Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618001997/eg3234Isup5.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001997/eg3234IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618001997/eg3234IIsup6.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001997/eg3234IIIsup4.hkl
Contains datablock III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618001997/eg3234IIIsup7.cml
Supplementary material

CCDC references: 1821515; 1821514; 1821513

Computing details top

For all structures, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and SHELXLE (Hübschle et al., 2011).

Ethyl 3,5-bis(hydroxymethyl)-4-methoxybenzoate (I) top
Crystal data top
C12H16O5F(000) = 256
Mr = 240.25Dx = 1.357 Mg m3
Triclinic, P1Melting point: 340.15 K
a = 7.8601 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2489 (11) ÅCell parameters from 2183 reflections
c = 10.7883 (14) Åθ = 2.0–27.4°
α = 81.538 (11)°µ = 0.11 mm1
β = 72.352 (10)°T = 203 K
γ = 61.930 (9)°Piece, colorless
V = 588.15 (14) Å30.35 × 0.32 × 0.28 mm
Z = 2
Data collection top
Stoe IPDS 2
diffractometer
1705 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.052
Plane graphite monochromatorθmax = 25.5°, θmin = 2.0°
Detector resolution: 6.67 pixels mm-1h = 99
rotation method scansk = 99
4748 measured reflectionsl = 1313
2188 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.2206P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2188 reflectionsΔρmax = 0.23 e Å3
164 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were positioned geometrically and allowed to ride on their parent atoms, C–H = 0.95-0.98 %A and Uiso(H) = 1.2-1.5 Ueq (parent atom). Hydrogen atoms bonded to O were located via electron density. Individual reflections were considered as outliers and therefore omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6177 (2)0.0793 (2)0.74711 (15)0.0381 (4)
H1O0.725 (5)0.106 (4)0.714 (3)0.063 (9)*
O20.1535 (2)0.6048 (2)0.72607 (14)0.0332 (4)
O30.0670 (2)0.8314 (2)0.36301 (15)0.0375 (4)
H3O0.053 (5)0.906 (4)0.345 (3)0.068 (9)*
O40.7377 (2)0.0287 (2)0.27189 (14)0.0337 (4)
O50.5225 (2)0.2543 (2)0.17245 (13)0.0333 (4)
C10.4636 (3)0.2861 (3)0.39511 (18)0.0242 (4)
C20.5062 (3)0.2150 (3)0.51367 (19)0.0257 (4)
H20.60940.09410.51790.031*
C30.3986 (3)0.3202 (3)0.62487 (19)0.0263 (4)
C40.2463 (3)0.4967 (3)0.61648 (19)0.0253 (4)
C50.1989 (3)0.5687 (3)0.49936 (19)0.0255 (4)
C60.3094 (3)0.4616 (3)0.38892 (19)0.0256 (4)
H60.27970.50820.30810.031*
C70.4465 (3)0.2513 (3)0.7539 (2)0.0329 (5)
H7A0.46720.34320.78870.040*
H7B0.32980.24120.81590.040*
C80.0362 (4)0.6174 (4)0.7980 (3)0.0515 (7)
H8A0.07810.67740.88140.077*
H8B0.02700.49380.81390.077*
H8C0.13450.68970.74860.077*
C90.0352 (3)0.7610 (3)0.4921 (2)0.0324 (5)
H9A0.09620.75950.51930.039*
H9B0.03360.84180.55230.039*
C100.5892 (3)0.1750 (3)0.27619 (19)0.0270 (4)
C110.6403 (4)0.1645 (4)0.0483 (2)0.0429 (6)
H11A0.55090.18280.00570.051*
H11B0.71650.03080.06210.051*
C120.7810 (5)0.2422 (5)0.0196 (3)0.0652 (8)
H12A0.85730.18410.10490.098*
H12B0.87320.21880.03240.098*
H12C0.70520.37490.03120.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0355 (8)0.0385 (9)0.0355 (9)0.0116 (7)0.0154 (7)0.0076 (7)
O20.0290 (7)0.0382 (8)0.0299 (8)0.0135 (6)0.0024 (6)0.0106 (6)
O30.0285 (8)0.0354 (8)0.0375 (9)0.0061 (6)0.0116 (6)0.0070 (7)
O40.0285 (7)0.0314 (8)0.0322 (8)0.0042 (6)0.0094 (6)0.0047 (6)
O50.0330 (8)0.0359 (8)0.0234 (7)0.0083 (6)0.0095 (6)0.0007 (6)
C10.0228 (9)0.0250 (10)0.0248 (10)0.0111 (8)0.0062 (7)0.0002 (8)
C20.0222 (9)0.0250 (10)0.0279 (10)0.0086 (8)0.0081 (8)0.0011 (8)
C30.0260 (10)0.0297 (10)0.0263 (10)0.0146 (8)0.0089 (8)0.0019 (8)
C40.0226 (9)0.0289 (10)0.0259 (10)0.0138 (8)0.0032 (7)0.0036 (8)
C50.0236 (9)0.0237 (10)0.0300 (10)0.0104 (8)0.0086 (8)0.0001 (8)
C60.0261 (9)0.0264 (10)0.0262 (10)0.0123 (8)0.0103 (8)0.0030 (8)
C70.0321 (11)0.0362 (12)0.0266 (11)0.0115 (9)0.0097 (8)0.0014 (9)
C80.0346 (12)0.0760 (19)0.0401 (14)0.0267 (12)0.0064 (10)0.0185 (13)
C90.0298 (10)0.0266 (11)0.0337 (11)0.0083 (8)0.0071 (8)0.0013 (8)
C100.0244 (9)0.0300 (11)0.0264 (10)0.0121 (9)0.0069 (8)0.0004 (8)
C110.0477 (13)0.0480 (14)0.0236 (11)0.0126 (11)0.0083 (9)0.0084 (10)
C120.0626 (18)0.081 (2)0.0404 (15)0.0330 (16)0.0070 (13)0.0083 (14)
Geometric parameters (Å, º) top
O1—C71.415 (3)C5—C61.384 (3)
O1—H1O0.92 (3)C5—C91.511 (3)
O2—C41.379 (2)C6—H60.9500
O2—C81.419 (3)C7—H7A0.9900
O3—C91.423 (3)C7—H7B0.9900
O3—H3O0.91 (3)C8—H8A0.9800
O4—C101.216 (2)C8—H8B0.9800
O5—C101.332 (2)C8—H8C0.9800
O5—C111.447 (3)C9—H9A0.9900
C1—C61.393 (3)C9—H9B0.9900
C1—C21.395 (3)C11—C121.486 (4)
C1—C101.479 (3)C11—H11A0.9900
C2—C31.381 (3)C11—H11B0.9900
C2—H20.9500C12—H12A0.9800
C3—C41.396 (3)C12—H12B0.9800
C3—C71.512 (3)C12—H12C0.9800
C4—C51.395 (3)
C7—O1—H1O105 (2)O2—C8—H8A109.5
C4—O2—C8115.78 (17)O2—C8—H8B109.5
C9—O3—H3O110 (2)H8A—C8—H8B109.5
C10—O5—C11117.40 (16)O2—C8—H8C109.5
C6—C1—C2120.16 (17)H8A—C8—H8C109.5
C6—C1—C10120.83 (17)H8B—C8—H8C109.5
C2—C1—C10118.96 (17)O3—C9—C5110.39 (17)
C3—C2—C1120.11 (17)O3—C9—H9A109.6
C3—C2—H2119.9C5—C9—H9A109.6
C1—C2—H2119.9O3—C9—H9B109.6
C2—C3—C4118.91 (18)C5—C9—H9B109.6
C2—C3—C7121.67 (18)H9A—C9—H9B108.1
C4—C3—C7119.38 (17)O4—C10—O5123.23 (18)
O2—C4—C5120.26 (17)O4—C10—C1124.56 (18)
O2—C4—C3117.72 (18)O5—C10—C1112.21 (16)
C5—C4—C3121.82 (17)O5—C11—C12109.7 (2)
C6—C5—C4118.35 (17)O5—C11—H11A109.7
C6—C5—C9120.67 (18)C12—C11—H11A109.7
C4—C5—C9120.96 (18)O5—C11—H11B109.7
C5—C6—C1120.63 (18)C12—C11—H11B109.7
C5—C6—H6119.7H11A—C11—H11B108.2
C1—C6—H6119.7C11—C12—H12A109.5
O1—C7—C3114.12 (17)C11—C12—H12B109.5
O1—C7—H7A108.7H12A—C12—H12B109.5
C3—C7—H7A108.7C11—C12—H12C109.5
O1—C7—H7B108.7H12A—C12—H12C109.5
C3—C7—H7B108.7H12B—C12—H12C109.5
H7A—C7—H7B107.6
C6—C1—C2—C31.5 (3)C9—C5—C6—C1178.35 (18)
C10—C1—C2—C3176.25 (17)C2—C1—C6—C51.1 (3)
C1—C2—C3—C40.7 (3)C10—C1—C6—C5176.65 (17)
C1—C2—C3—C7177.19 (18)C2—C3—C7—O14.6 (3)
C8—O2—C4—C583.8 (2)C4—C3—C7—O1173.27 (18)
C8—O2—C4—C3101.3 (2)C6—C5—C9—O322.3 (3)
C2—C3—C4—O2174.23 (16)C4—C5—C9—O3155.81 (18)
C7—C3—C4—O23.7 (3)C11—O5—C10—O43.3 (3)
C2—C3—C4—C50.6 (3)C11—O5—C10—C1176.13 (17)
C7—C3—C4—C5178.51 (18)C6—C1—C10—O4172.68 (19)
O2—C4—C5—C6173.67 (17)C2—C1—C10—O45.1 (3)
C3—C4—C5—C61.0 (3)C6—C1—C10—O56.7 (3)
O2—C4—C5—C94.5 (3)C2—C1—C10—O5175.55 (17)
C3—C4—C5—C9179.19 (18)C10—O5—C11—C1293.5 (3)
C4—C5—C6—C10.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O3i0.92 (3)1.87 (3)2.788 (2)176 (3)
O3—H3O···O4ii0.91 (3)1.83 (3)2.725 (2)167 (3)
C9—H9B···O3iii0.992.653.555 (3)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z; (iii) x, y+2, z+1.
[5-Bromo-3-(hydroxymethyl)-2-methoxyphenyl]methanol (II) top
Crystal data top
C9H11BrO3Dx = 1.715 Mg m3
Mr = 247.09Melting point: 400.15 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
a = 13.1596 (7) ÅCell parameters from 5411 reflections
b = 16.2514 (9) Åθ = 2.0–27.2°
c = 4.4735 (2) ŵ = 4.27 mm1
V = 956.71 (9) Å3T = 173 K
Z = 4Piece, colorless
F(000) = 4960.45 × 0.27 × 0.15 mm
Data collection top
Stoe IPDS 2
diffractometer
1904 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1647 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.074
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.5°
rotation method scansh = 1316
Absorption correction: integration
(X-AREA; Stoe & Cie, 2002)
k = 2017
Tmin = 0.283, Tmax = 0.564l = 55
4183 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.123P)2 + 3.1968P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.190(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.82 e Å3
1904 reflectionsΔρmin = 1.22 e Å3
127 parametersAbsolute structure: Classical Flack (1983) method preferred over Parsons because s.u. lower; ??? Friedel pairs
1 restraintAbsolute structure parameter: 0.01 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were positioned geometrically and allowed to ride on their parent atoms, C–H = 0.95-0.98 %A and Uiso(H) = 1.2-1.5 Ueq (parent atom). Hydrogen atoms bonded to O were located via electron density. Individual reflections were considered as outliers and therefore omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.47945 (7)0.58610 (5)0.1742 (5)0.0274 (4)
O10.1690 (7)0.6471 (6)0.924 (2)0.0309 (18)
O20.2989 (7)0.8804 (5)0.7961 (19)0.0284 (18)
O30.5787 (7)0.9079 (5)0.424 (2)0.0248 (17)
C10.4222 (8)0.6800 (6)0.371 (2)0.019 (2)
C20.3384 (9)0.6688 (7)0.554 (3)0.023 (2)
H20.31110.61550.58700.028*
C30.2954 (7)0.7370 (6)0.689 (4)0.0215 (19)
C40.3399 (8)0.8139 (6)0.640 (3)0.019 (2)
C50.4253 (8)0.8240 (6)0.462 (2)0.021 (2)
C60.4652 (8)0.7551 (7)0.321 (3)0.023 (2)
H60.52200.76020.19150.027*
C70.2037 (9)0.7300 (8)0.889 (3)0.027 (2)
H7A0.22060.75291.08780.032*
H7B0.14790.76360.80400.032*
C80.2333 (12)0.9311 (9)0.627 (5)0.049 (5)
H8A0.21580.98010.74380.073*
H8B0.17130.90050.57870.073*
H8C0.26740.94770.44200.073*
C90.4713 (10)0.9082 (6)0.411 (4)0.029 (3)
H9A0.44980.92860.21200.035*
H9B0.44470.94670.56320.035*
H10.13 (2)0.608 (14)0.79 (5)0.10 (9)*
H30.591 (14)0.888 (10)0.27 (4)0.04 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0282 (6)0.0184 (5)0.0357 (6)0.0039 (3)0.0029 (8)0.0012 (7)
O10.029 (4)0.040 (5)0.024 (4)0.012 (4)0.008 (3)0.004 (4)
O20.030 (4)0.025 (4)0.030 (4)0.004 (4)0.002 (3)0.011 (3)
O30.021 (4)0.022 (4)0.031 (5)0.003 (3)0.003 (3)0.004 (3)
C10.014 (5)0.020 (5)0.022 (5)0.005 (4)0.000 (4)0.000 (4)
C20.029 (6)0.022 (5)0.020 (4)0.007 (4)0.002 (4)0.005 (4)
C30.021 (4)0.022 (4)0.021 (5)0.001 (3)0.001 (7)0.001 (5)
C40.020 (4)0.023 (4)0.015 (5)0.009 (4)0.001 (4)0.005 (4)
C50.020 (5)0.016 (5)0.026 (5)0.001 (4)0.002 (4)0.001 (4)
C60.019 (5)0.023 (5)0.026 (6)0.006 (4)0.005 (4)0.003 (5)
C70.021 (5)0.037 (6)0.023 (6)0.004 (5)0.006 (4)0.004 (4)
C80.035 (7)0.038 (6)0.074 (15)0.017 (6)0.002 (8)0.005 (8)
C90.032 (8)0.010 (5)0.046 (8)0.002 (4)0.001 (5)0.000 (4)
Geometric parameters (Å, º) top
Br1—C11.916 (11)C3—C71.506 (16)
O1—C71.431 (15)C4—C51.387 (15)
O1—H11.0 (2)C5—C61.388 (15)
O2—C41.396 (13)C5—C91.513 (14)
O2—C81.411 (19)C6—H60.9500
O3—C91.415 (17)C7—H7A0.9900
O3—H30.76 (16)C7—H7B0.9900
C1—C61.364 (15)C8—H8A0.9800
C1—C21.387 (15)C8—H8B0.9800
C2—C31.382 (17)C8—H8C0.9800
C2—H20.9500C9—H9A0.9900
C3—C41.397 (14)C9—H9B0.9900
C7—O1—H1132 (10)C5—C6—H6120.3
C4—O2—C8114.8 (11)O1—C7—C3113.1 (9)
C9—O3—H3101 (10)O1—C7—H7A109.0
C6—C1—C2123.0 (10)C3—C7—H7A109.0
C6—C1—Br1118.3 (8)O1—C7—H7B109.0
C2—C1—Br1118.7 (8)C3—C7—H7B109.0
C3—C2—C1118.6 (10)H7A—C7—H7B107.8
C3—C2—H2120.7O2—C8—H8A109.5
C1—C2—H2120.7O2—C8—H8B109.5
C2—C3—C4118.5 (11)H8A—C8—H8B109.5
C2—C3—C7121.7 (9)O2—C8—H8C109.5
C4—C3—C7119.8 (10)H8A—C8—H8C109.5
C5—C4—O2120.6 (9)H8B—C8—H8C109.5
C5—C4—C3122.4 (9)O3—C9—C5113.0 (9)
O2—C4—C3116.9 (10)O3—C9—H9A109.0
C4—C5—C6118.1 (10)C5—C9—H9A109.0
C4—C5—C9121.2 (10)O3—C9—H9B109.0
C6—C5—C9120.6 (11)C5—C9—H9B109.0
C1—C6—C5119.4 (10)H9A—C9—H9B107.8
C1—C6—H6120.3
C6—C1—C2—C31.2 (17)C2—C1—C6—C50.9 (17)
Br1—C1—C2—C3178.1 (10)Br1—C1—C6—C5179.8 (8)
C1—C2—C3—C41.6 (18)C4—C5—C6—C12.5 (17)
C1—C2—C3—C7179.4 (11)C9—C5—C6—C1179.9 (11)
C8—O2—C4—C583.0 (14)C2—C3—C7—O10.9 (17)
C8—O2—C4—C3101.3 (13)C4—C3—C7—O1178.1 (12)
C2—C3—C4—C50.0 (19)C4—C5—C9—O3137.6 (12)
C7—C3—C4—C5179.0 (11)C6—C5—C9—O345.0 (17)
C2—C3—C4—O2175.6 (11)C2—C3—C7—O10.9 (17)
C7—C3—C4—O23.5 (17)C4—C3—C7—O1178.1 (12)
O2—C4—C5—C6177.5 (10)C6—C5—C9—O345.0 (17)
C3—C4—C5—C62.1 (18)C4—C5—C9—O3137.6 (12)
O2—C4—C5—C95.1 (17)C3—C4—O2—C8101.3 (13)
C3—C4—C5—C9179.5 (12)C5—C4—O2—C883.0 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···Br1i0.983.113.773 (13)126
C8—H8B···Br1ii0.983.113.917 (19)140
O1—H1···O3ii1.0 (2)1.8 (2)2.687 (13)146 (20)
O3—H3···O1iii0.76 (16)1.95 (17)2.685 (13)160 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z; (iii) x+1/2, y+3/2, z1.
5-Bromo-1,3-bis(bromomethyl)-2-methoxybenzene (III) top
Crystal data top
C9H9Br3ODx = 2.259 Mg m3
Mr = 372.89Melting point: 358.15 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 33.315 (4) ÅCell parameters from 6186 reflections
b = 4.3913 (3) Åθ = 2.5–27.1°
c = 15.9655 (17) ŵ = 11.00 mm1
β = 110.142 (8)°T = 153 K
V = 2192.9 (4) Å3Piece, colorless
Z = 80.50 × 0.11 × 0.09 mm
F(000) = 1408
Data collection top
Stoe IPDS 2T
diffractometer
2197 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1834 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.087
Detector resolution: 6.67 pixels mm-1θmax = 26.2°, θmin = 2.6°
rotation method scansh = 3340
Absorption correction: integration
(X-AREA; Stoe & Cie, 2002)
k = 54
Tmin = 0.008, Tmax = 0.076l = 1919
5754 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0412P)2 + 2.9694P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2197 reflectionsΔρmax = 0.63 e Å3
119 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were positioned geometrically and allowed to ride on their parent atoms, C–H = 0.95-0.98 %A and Uiso(H) = 1.2-1.5 Ueq (parent atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.47987 (2)0.49550 (12)0.35631 (3)0.03202 (15)
Br20.29357 (2)0.25013 (12)0.15688 (3)0.03636 (16)
Br30.42282 (2)0.06192 (11)0.65117 (3)0.03003 (14)
O10.32003 (9)0.0508 (7)0.4161 (2)0.0277 (7)
C10.42990 (12)0.3516 (10)0.3754 (3)0.0221 (8)
C20.39000 (13)0.4533 (10)0.3190 (3)0.0244 (9)
H20.38800.58950.27150.029*
C30.35315 (12)0.3527 (10)0.3331 (3)0.0205 (8)
C40.35679 (12)0.1583 (9)0.4038 (3)0.0195 (8)
C50.39681 (13)0.0557 (9)0.4607 (3)0.0208 (8)
C60.43327 (12)0.1556 (10)0.4443 (3)0.0199 (8)
H60.46070.08680.48130.024*
C70.31004 (14)0.4628 (11)0.2722 (3)0.0295 (10)
H7A0.31120.68480.26250.035*
H7B0.28830.42500.30040.035*
C80.30694 (14)0.2317 (11)0.4772 (3)0.0296 (10)
H8A0.28050.14810.48170.044*
H8B0.30200.44190.45550.044*
H8C0.32940.22840.53610.044*
C90.40141 (14)0.1557 (11)0.5363 (3)0.0273 (9)
H9A0.42150.32120.53590.033*
H9B0.37330.24880.52910.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0210 (2)0.0455 (3)0.0322 (3)0.00607 (19)0.01262 (19)0.0037 (2)
Br20.0317 (2)0.0407 (3)0.0278 (3)0.0014 (2)0.00112 (19)0.0017 (2)
Br30.0344 (2)0.0322 (2)0.0236 (3)0.00105 (19)0.01019 (19)0.00098 (19)
O10.0219 (14)0.0262 (15)0.0382 (18)0.0063 (13)0.0143 (14)0.0061 (15)
C10.0188 (18)0.026 (2)0.022 (2)0.0070 (17)0.0084 (16)0.0090 (19)
C20.023 (2)0.026 (2)0.024 (2)0.0003 (17)0.0084 (17)0.0005 (18)
C30.0182 (17)0.0199 (19)0.022 (2)0.0008 (17)0.0051 (15)0.0056 (18)
C40.0204 (18)0.0167 (17)0.024 (2)0.0038 (16)0.0106 (16)0.0088 (18)
C50.025 (2)0.0151 (18)0.024 (2)0.0018 (16)0.0107 (17)0.0072 (17)
C60.0143 (16)0.025 (2)0.0174 (18)0.0029 (17)0.0021 (14)0.0061 (18)
C70.023 (2)0.030 (2)0.030 (2)0.0078 (19)0.0033 (19)0.000 (2)
C80.023 (2)0.035 (3)0.035 (2)0.0003 (19)0.0148 (19)0.000 (2)
C90.031 (2)0.021 (2)0.028 (2)0.0012 (19)0.0081 (18)0.001 (2)
Geometric parameters (Å, º) top
Br1—C11.901 (4)C4—C51.404 (6)
Br2—C71.966 (5)C5—C61.399 (6)
Br3—C91.971 (4)C5—C91.488 (6)
O1—C41.387 (5)C6—H60.9500
O1—C81.437 (5)C7—H7A0.9900
C1—C61.370 (6)C7—H7B0.9900
C1—C21.398 (6)C8—H8A0.9800
C2—C31.394 (6)C8—H8B0.9800
C2—H20.9500C8—H8C0.9800
C3—C41.387 (6)C9—H9A0.9900
C3—C71.510 (6)C9—H9B0.9900
C4—O1—C8113.4 (3)C3—C7—Br2110.4 (3)
C6—C1—C2121.0 (4)C3—C7—H7A109.6
C6—C1—Br1120.2 (3)Br2—C7—H7A109.6
C2—C1—Br1118.8 (3)C3—C7—H7B109.6
C3—C2—C1119.3 (4)Br2—C7—H7B109.6
C3—C2—H2120.3H7A—C7—H7B108.1
C1—C2—H2120.3O1—C8—H8A109.5
C4—C3—C2119.4 (4)O1—C8—H8B109.5
C4—C3—C7121.2 (4)H8A—C8—H8B109.5
C2—C3—C7119.3 (4)O1—C8—H8C109.5
C3—C4—O1119.3 (3)H8A—C8—H8C109.5
C3—C4—C5121.4 (4)H8B—C8—H8C109.5
O1—C4—C5119.2 (4)C5—C9—Br3110.8 (3)
C6—C5—C4118.1 (4)C5—C9—H9A109.5
C6—C5—C9119.6 (4)Br3—C9—H9A109.5
C4—C5—C9122.3 (4)C5—C9—H9B109.5
C1—C6—C5120.7 (4)Br3—C9—H9B109.5
C1—C6—H6119.6H9A—C9—H9B108.1
C5—C6—H6119.6
C6—C1—C2—C30.1 (7)O1—C4—C5—C6176.9 (3)
Br1—C1—C2—C3179.1 (3)C3—C4—C5—C9179.3 (4)
C1—C2—C3—C41.2 (6)O1—C4—C5—C92.4 (6)
C1—C2—C3—C7180.0 (4)C2—C1—C6—C51.0 (6)
C2—C3—C4—O1178.0 (4)Br1—C1—C6—C5178.0 (3)
C7—C3—C4—O13.3 (6)C4—C5—C6—C11.0 (6)
C2—C3—C4—C51.2 (6)C9—C5—C6—C1179.6 (4)
C7—C3—C4—C5179.9 (4)C4—C3—C7—Br2105.0 (4)
C8—O1—C4—C394.0 (4)C2—C3—C7—Br276.3 (5)
C8—O1—C4—C589.1 (4)C6—C5—C9—Br374.9 (4)
C3—C4—C5—C60.1 (6)C4—C5—C9—Br3105.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br3i0.952.993.863 (5)154
C7—H7A···Br2ii0.992.943.866 (5)155
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds