Download citation
Download citation
link to html
The distorted octa­hedral title complex, [VV(C3H7O)(C3H8O)2F2O], was synthesized via ligand exchange at [VVO(OiPr)3] with aqueous hydrogen fluoride in propan-2-ol and crystallized from (D)chloro­form at 238 K after a few weeks. Crystal structure determination shows two C1-symmetric moieties to be present in the asymmetric unit, forming infinite chains along [100] via hydrogen bonds. The compound provides the first crystal structure containing the [VF2O(OiPr)] motif.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113029776/eg3138sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113029776/eg3138Isup2.hkl
Contains datablock I

mol

MDL mol file https://doi.org/10.1107/S0108270113029776/eg3138Isup3.mol
Supplementary material

CCDC reference: 969480

Introduction top

The chemistry of precursors for inorganic materials has raised considerable inter­est during the past years, especially with respect to application in electrodes, optical coatings, and nanomaterials. The need for soluble or vaporizable compounds has made molecular metal complexes one of the preferred target–substance classes. Exact knowledge of precursor structure is vital to a deeper understanding of deposition, decomposition and optimization potential. Vanadium oxide fluorides – and corresponding lithium compounds – are promising candidates for application as electrode materials in lithium-ion batteries (Mäntymäki et al., 2012). This is based on the fact that theoretical calculations have predicted an increased redox potential through substitution of oxygen with fluorine (Koyama et al., 2000).

We herein describe [VVF2O(Oi-Pr)(i-PrOH)2], (I) (see Scheme; the mirror plane in case of a time-averaged solution structure with ligands freely rotating around the V–O axes is identical with the paper plane), that we serendipitously discovered when synthesizing vanadium–oxide-fluoride precursors from oxidotris(propan-2-olato)vanadium(V), [VO(OiPr)3]. Complex (I) is a propan-2-ol adduct of [VVF2O(OiPr)], a compound already described in the literature (Priebsch & Rehder, 1985). Although the latter is easily prepared, no crystal structure of [VF2O(OiPr)] or a compound containing this structure motf has been described so far. Roughly similar coordination environments around vanadium are, however, found in some polynuclear µ-pivalate or µ-methano­late complexes like (Et2H2N)[CrIII6(VIVO)2F8(OOCCMe3)15] (Larsen et al., 2003) and (nBu4N)2[VIV8O8(OMe)16(VIVOF4)] (Spandl et al., 2003).

Experimental top

Synthesis and crystallization top

All chemicals, except for [VO(OiPr)3] supplied by Strem Chemicals, were bought from Sigma–Aldrich and used without further purification.

[VO(OiPr)3] (1.70 g, 0.694 mol) was dissolved in propan-2-ol (20 ml). To the colorless solution, aqueous hydro­fluoric acid (40%, 0.3 ml, 0.7 mol) was added. The resulting yellow solution was stirred for 90 min at room temperature, the color turning to orange. The solvent was evaporated in a medium vacuum, leaving an orange liquid (ca 5 ml).

A sample for NMR spectroscopy was prepared from the product (I) (0.01 ml) and chloro­form-d (0.05 ml). After measurement, the sample was stored at 238 K in the dark and produced clear yellow needles after a few weeks.

NMR spectra were recorded on a Bruker ARV 400 at room temperature. Chemical shifts refer to SiMe4, CCl3F, and VOCl3 for 1H, 19F, and 51V, respectively. They were calibrated with respect to the residual proton signal for 1H (δ = 7.26) or an electronically stored frequency for the other nuclei. The 1H NMR signal for the hydroxyl protons was very broad; its integral suffers from problems of limit choice and thus seems too small.

1H NMR (400 MHz, CDCl3): δ 5.08 (s, 3H, CH), 3.06 (s, 1H, OH), 1.39–1.37 (m, 18H, CH3); 19F{1H} NMR (188 MHz, CDCl3): δ 43.6 (br m); 51V{1H} NMR (105 MHz, CDCl3): δ -640 (br m).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located on difference Fourier maps. C-bound H atoms were constrained using a riding model [C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl groups, and C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for methine groups]. Methyl groups were considered rigid but freely rotating. O-bound H atoms were refined with restrained 1,2- (O—H = 0.84 Å, final range: 0.778–0.805 Å) and 1,3-distances (C—H = 1.86 Å, final range: 1.848–1.897 Å), as well as constrained displacement parameters [Uiso(H) = 1.2Ueq(O)].

Results and discussion top

Experiments to synthesize precursors for the preparation of vanadium oxide fluorides were performed with [VO(OiPr)3]. It was reacted with different amounts of hydro­fluoric acid in organic solvents, giving air- and light-sensitive products. Single crystals of the title compound, (I), were obtained via reaction of [VO(OiPr)3] with aqueous hydro­fluoric acid in propan-2-ol (V–HF–H2O = 3:3:5). They formed by recrystallization from chloro­form-d in the refrigerator during a few weeks.

The electroneutral complex (I) crystallized in the triclinic space group P1 with two molecules in the asymmetric unit (Fig. 1). Coordinative V—O bond lengths (Table 2) fall in the common range for vanadium alcoholates, the bonds to the propan-2-olate ligands being by 0.4–0.5 Å shorter than those to the propan-2-ol ligands (Spandl et al., 2000). Furthermore, the trans effect caused by the strong oxide donor results in an elongation of the opposing bond to a propan-2-ol ligand compared to the other (0.07 Å for V1—O43 and 0.11 Å for V2–O73). The coordination angles (Table 3) differ notably from the ideal values of 90 (cis) and 180° (trans) for an undistorted o­cta­hedron. The continuous symmetry measure (CSM), which `qu­anti­fies the minimal distance movement that the points of an object have to undergo in order to be transformed into a shape of the desired symmetry' (Zabrodsky et al., 1992), corroborates this view: With S(Oh) = 0.84 and S(Oh) = 0.97 (moieties containing V1 and V2, respectively), the deviation is considerable for a complex of only monodentate ligands.

In the distorted o­cta­hedron, the propan-2-ol ligands adopt a cis configuration in plane with the oxide and propan-2-olate ligand. The fluoride ligands are trans-coordinated in apical positions with respect to this plane. In solution, this configuration would lead to an achiral molecule in the time average (see Scheme) because of the ligands freely rotating around the V—O axes. As this is not the case in the crystal, a considerable degree of chirality is found in the complex moieties as defined by continuous chirality measures (CCM): S(Cs) = 2.93 and S(Cs) = 3.99 for the moiety containing V1 and V2, respectively (Zabrodsky & Avnir, 1995). The two molecules in the asymmetric unit are of opposite chirality sense; an element of pseudosymmetry was not found. In addition, all organic ligands are twisted around the O—C axis with respect to the other moiety (Fig. 3), making the molecules pseudo-enanti­omorphic.

Each molecule takes part in four inter­molecular O—H···F hydrogen bonds: Two neighboring moieties – crystallographically identical to the central one – are each connected by donating and accepting one bond (Table 3). In this manner, infinite chains of (I) propagate along [100] (Fig. 3). These inter­act via van der Waals forces by means of the alkyl residues.

Related literature top

For related literature, see: Koyama et al. (2000); Larsen et al. (2003); Mäntymäki et al. (2012); Priebsch & Rehder (1985); Spandl et al. (2000, 2003); Zabrodsky & Avnir (1995); Zabrodsky et al. (1992).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008), PLATON/MOLFIT (Spek, 2009), PLATON/PLUTON (Spek, 2009) and CSM website (Zayit et al., 2011).

Figures top
[Figure 1] Fig. 1. View of the two molecules in the asymmetric unit, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn with an arbitrary radius.
[Figure 2] Fig. 2. Superposition of the two molecules in the asymmetric unit. The moiety containing V2 (grey) has been inverted. Atoms are drawn with arbitrary radii and C-bound H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Hydrogen bonds (dashed grey lines) forming infinite chains, viewed along [010] with the unit cell in black. [Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z+1.]
(OC-6–13)-Difluoridooxidobis(propan-2-ol)(propan-2-olato)vanadium(V) top
Crystal data top
[V(C3H7O)F2O(C3H8O)2]Z = 4
Mr = 284.21F(000) = 600
Triclinic, P1Dx = 1.299 Mg m3
a = 9.0943 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9151 (8) ÅCell parameters from 2615 reflections
c = 16.4279 (13) Åθ = 3.5–32.6°
α = 97.315 (7)°µ = 0.70 mm1
β = 97.690 (7)°T = 150 K
γ = 92.324 (7)°Coloumn, clear yellow
V = 1453.5 (2) Å30.89 × 0.20 × 0.14 mm
Data collection top
Agilent Xcalibur
diffractometer
5702 independent reflections
Radiation source: fine-focus sealed tube, Agilent Enhance4505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 16.3031 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 1111
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
k = 1211
Tmin = 0.727, Tmax = 0.920l = 1720
10818 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: difference Fourier map
wR(F2) = 0.107Heteroxyz
S = 1.05 w = 1/[σ2(Fo2) + (0.0393P)2]
where P = (Fo2 + 2Fc2)/3
5702 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.44 e Å3
8 restraintsΔρmin = 0.53 e Å3
Crystal data top
[V(C3H7O)F2O(C3H8O)2]γ = 92.324 (7)°
Mr = 284.21V = 1453.5 (2) Å3
Triclinic, P1Z = 4
a = 9.0943 (9) ÅMo Kα radiation
b = 9.9151 (8) ŵ = 0.70 mm1
c = 16.4279 (13) ÅT = 150 K
α = 97.315 (7)°0.89 × 0.20 × 0.14 mm
β = 97.690 (7)°
Data collection top
Agilent Xcalibur
diffractometer
5702 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
4505 reflections with I > 2σ(I)
Tmin = 0.727, Tmax = 0.920Rint = 0.045
10818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0528 restraints
wR(F2) = 0.107Heteroxyz
S = 1.05Δρmax = 0.44 e Å3
5702 reflectionsΔρmin = 0.53 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Oxygen-borne hydrogen atoms were refined with restrained 1,2- and 1,3- distances as given by the _restr_distance_[] items. Their Uiso were constrained to be 1.2 × Ueq of the bearing atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C300.8503 (4)0.3139 (4)0.0785 (2)0.0415 (9)
H30A0.95090.35270.05680.062*
H30B0.79220.38270.10380.062*
H30C0.85600.23520.12040.062*
C310.7763 (3)0.2691 (3)0.00849 (18)0.0251 (7)
H310.67400.22910.03090.030*
C320.7665 (4)0.3851 (4)0.0593 (2)0.0416 (9)
H32A0.72690.34970.10560.062*
H32B0.70040.45190.03770.062*
H32C0.86570.42880.07870.062*
C400.6679 (4)0.3120 (4)0.0916 (2)0.0432 (9)
H40A0.68610.33830.03580.065*
H40B0.70730.37960.13070.065*
H40C0.56080.30770.10820.065*
C410.7441 (3)0.1747 (3)0.09197 (17)0.0257 (7)
H410.85300.18140.07480.031*
C420.7232 (4)0.1247 (4)0.17588 (18)0.0363 (8)
H42A0.61710.11580.19350.054*
H42B0.76200.19010.21650.054*
H42C0.77690.03590.17200.054*
C500.5413 (4)0.2150 (5)0.2175 (2)0.0653 (15)
H50A0.47500.14360.20290.098*
H50B0.53310.23270.27410.098*
H50C0.51310.29850.17880.098*
C510.6989 (3)0.1691 (3)0.21226 (17)0.0265 (7)
H510.72840.08670.25400.032*
C520.8081 (4)0.2747 (4)0.2266 (2)0.0449 (10)
H52A0.77980.35620.18610.067*
H52B0.80890.29840.28270.067*
H52C0.90750.23900.22020.067*
O120.8434 (2)0.0957 (2)0.18653 (11)0.0262 (5)
O330.8619 (2)0.1671 (2)0.02944 (12)0.0215 (5)
H330.910 (3)0.128 (3)0.0003 (15)0.026*
O430.6905 (2)0.0755 (2)0.03202 (11)0.0239 (5)
H430.6025 (19)0.070 (3)0.0444 (16)0.029*
O530.7037 (2)0.1323 (2)0.13039 (11)0.0236 (5)
F100.95277 (16)0.05790 (17)0.07061 (9)0.0238 (4)
F110.60516 (15)0.09967 (18)0.07997 (10)0.0251 (4)
V10.78003 (5)0.01389 (5)0.09899 (3)0.01807 (13)
C600.7591 (4)0.2460 (5)0.4056 (2)0.0567 (12)
H60A0.83450.26590.45480.085*
H60B0.79660.18170.36400.085*
H60C0.66830.20600.42120.085*
C610.7257 (3)0.3742 (4)0.37068 (19)0.0321 (8)
H610.82040.41410.35660.039*
C620.6148 (4)0.3516 (4)0.2929 (2)0.0488 (11)
H62A0.52050.31320.30530.073*
H62B0.65300.28830.25100.073*
H62C0.59850.43870.27180.073*
C700.9422 (3)0.5670 (4)0.73560 (19)0.0399 (9)
H70A1.01570.49880.72730.060*
H70B0.90760.56300.78930.060*
H70C0.98780.65790.73460.060*
C710.8115 (3)0.5382 (3)0.66699 (17)0.0241 (7)
H710.73830.60880.67730.029*
C720.7339 (4)0.4012 (4)0.6657 (2)0.0515 (10)
H72A0.65290.38590.61920.077*
H72B0.69340.39810.71780.077*
H72C0.80490.33020.65930.077*
C800.9360 (4)1.0323 (4)0.6110 (3)0.0494 (10)
H80A0.94451.01630.66900.074*
H80B0.92711.12970.60780.074*
H80C1.02461.00210.58760.074*
C810.7993 (3)0.9530 (3)0.5622 (2)0.0296 (7)
H810.78870.97260.50360.036*
C820.6575 (3)0.9858 (4)0.5978 (2)0.0423 (9)
H82A0.57400.92880.56530.063*
H82B0.63911.08200.59560.063*
H82C0.66780.96780.65550.063*
O220.6793 (2)0.7502 (2)0.41889 (12)0.0336 (6)
O630.6726 (2)0.4712 (3)0.43103 (14)0.0372 (6)
H630.593 (2)0.442 (3)0.4392 (19)0.045*
O730.8580 (2)0.5506 (2)0.58798 (12)0.0260 (5)
H730.918 (3)0.496 (3)0.5773 (17)0.031*
O830.8222 (2)0.8103 (2)0.56364 (11)0.0240 (5)
F200.92143 (16)0.62287 (18)0.44693 (9)0.0250 (4)
F210.58303 (16)0.63762 (18)0.53906 (10)0.0277 (4)
V20.75177 (5)0.67038 (5)0.49047 (3)0.02055 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C300.050 (2)0.034 (2)0.050 (2)0.0146 (17)0.0211 (17)0.0222 (18)
C310.0236 (15)0.0228 (19)0.0315 (17)0.0078 (13)0.0063 (13)0.0088 (14)
C320.055 (2)0.023 (2)0.049 (2)0.0054 (17)0.0167 (18)0.0049 (17)
C400.055 (2)0.024 (2)0.054 (2)0.0129 (17)0.0149 (18)0.0065 (18)
C410.0205 (15)0.029 (2)0.0268 (16)0.0079 (13)0.0045 (12)0.0036 (14)
C420.0443 (19)0.035 (2)0.0290 (18)0.0025 (16)0.0118 (15)0.0013 (16)
C500.035 (2)0.116 (5)0.057 (3)0.001 (2)0.0141 (18)0.051 (3)
C510.0301 (16)0.030 (2)0.0209 (15)0.0016 (14)0.0077 (13)0.0069 (14)
C520.058 (2)0.045 (3)0.0355 (19)0.0183 (19)0.0110 (17)0.0109 (18)
O120.0270 (11)0.0274 (14)0.0234 (11)0.0014 (9)0.0009 (8)0.0033 (9)
O330.0172 (10)0.0195 (12)0.0314 (11)0.0052 (8)0.0092 (8)0.0093 (9)
O430.0151 (10)0.0339 (14)0.0212 (10)0.0052 (9)0.0018 (8)0.0024 (9)
O530.0284 (11)0.0240 (13)0.0199 (10)0.0013 (9)0.0071 (8)0.0057 (9)
F100.0195 (8)0.0253 (11)0.0294 (9)0.0065 (7)0.0067 (7)0.0095 (8)
F110.0165 (8)0.0263 (11)0.0337 (9)0.0043 (7)0.0069 (7)0.0036 (8)
V10.0152 (2)0.0193 (3)0.0207 (3)0.00082 (19)0.00436 (19)0.0043 (2)
C600.052 (2)0.059 (3)0.056 (2)0.019 (2)0.004 (2)0.002 (2)
C610.0216 (15)0.033 (2)0.0394 (19)0.0045 (14)0.0168 (14)0.0148 (16)
C620.051 (2)0.060 (3)0.0324 (19)0.012 (2)0.0068 (17)0.0066 (19)
C700.0351 (18)0.055 (3)0.0322 (18)0.0092 (17)0.0117 (15)0.0058 (17)
C710.0263 (15)0.0231 (18)0.0259 (16)0.0037 (13)0.0123 (13)0.0050 (13)
C720.054 (2)0.040 (3)0.064 (3)0.0123 (19)0.025 (2)0.013 (2)
C800.042 (2)0.024 (2)0.078 (3)0.0068 (16)0.0098 (19)0.006 (2)
C810.0373 (18)0.0179 (19)0.0348 (18)0.0023 (14)0.0090 (14)0.0038 (14)
C820.040 (2)0.028 (2)0.060 (2)0.0085 (16)0.0119 (17)0.0023 (18)
O220.0333 (12)0.0422 (16)0.0239 (11)0.0092 (11)0.0013 (9)0.0001 (10)
O630.0235 (11)0.0395 (16)0.0441 (13)0.0110 (10)0.0187 (10)0.0225 (11)
O730.0278 (11)0.0255 (14)0.0296 (11)0.0101 (9)0.0160 (9)0.0071 (10)
O830.0247 (10)0.0200 (13)0.0275 (11)0.0000 (9)0.0064 (8)0.0011 (9)
F200.0202 (8)0.0280 (11)0.0276 (9)0.0011 (7)0.0092 (7)0.0012 (8)
F210.0203 (8)0.0297 (11)0.0320 (9)0.0023 (7)0.0116 (7)0.0073 (8)
V20.0173 (2)0.0216 (3)0.0223 (3)0.0003 (2)0.0054 (2)0.0014 (2)
Geometric parameters (Å, º) top
C30—C311.512 (4)C60—C611.486 (5)
C30—H30A0.9800C60—H60A0.9800
C30—H30B0.9800C60—H60B0.9800
C30—H30C0.9800C60—H60C0.9800
C31—O331.453 (3)C61—O631.437 (3)
C31—C321.510 (4)C61—C621.505 (4)
C31—H311.0000C61—H611.0000
C32—H32A0.9800C62—H62A0.9800
C32—H32B0.9800C62—H62B0.9800
C32—H32C0.9800C62—H62C0.9800
C40—C411.503 (5)C70—C711.515 (4)
C40—H40A0.9800C70—H70A0.9800
C40—H40B0.9800C70—H70B0.9800
C40—H40C0.9800C70—H70C0.9800
C41—O431.448 (3)C71—O731.436 (3)
C41—C421.514 (4)C71—C721.502 (5)
C41—H411.0000C71—H711.0000
C42—H42A0.9800C72—H72A0.9800
C42—H42B0.9800C72—H72B0.9800
C42—H42C0.9800C72—H72C0.9800
C50—C511.503 (4)C80—C811.516 (4)
C50—H50A0.9800C80—H80A0.9800
C50—H50B0.9800C80—H80B0.9800
C50—H50C0.9800C80—H80C0.9800
C51—O531.443 (3)C81—O831.441 (4)
C51—C521.492 (4)C81—C821.515 (4)
C51—H511.0000C81—H811.0000
C52—H52A0.9800C82—H82A0.9800
C52—H52B0.9800C82—H82B0.9800
C52—H52C0.9800C82—H82C0.9800
O12—V11.581 (2)O22—V21.586 (2)
O33—V12.178 (2)O63—V22.139 (2)
O33—H330.778 (16)O63—H630.805 (17)
O43—V12.2513 (19)O73—V22.253 (2)
O43—H430.804 (16)O73—H730.800 (17)
O53—V11.747 (2)O83—V21.754 (2)
F10—V11.8423 (14)F20—V21.8391 (14)
F11—V11.8424 (15)F21—V21.8578 (15)
C31—C30—H30A109.5C61—C60—H60A109.5
C31—C30—H30B109.5C61—C60—H60B109.5
H30A—C30—H30B109.5H60A—C60—H60B109.5
C31—C30—H30C109.5C61—C60—H60C109.5
H30A—C30—H30C109.5H60A—C60—H60C109.5
H30B—C30—H30C109.5H60B—C60—H60C109.5
O33—C31—C32106.8 (2)O63—C61—C60110.6 (3)
O33—C31—C30109.9 (2)O63—C61—C62109.6 (3)
C32—C31—C30112.4 (3)C60—C61—C62112.8 (3)
O33—C31—H31109.2O63—C61—H61107.9
C32—C31—H31109.2C60—C61—H61107.9
C30—C31—H31109.2C62—C61—H61107.9
C31—C32—H32A109.5C61—C62—H62A109.5
C31—C32—H32B109.5C61—C62—H62B109.5
H32A—C32—H32B109.5H62A—C62—H62B109.5
C31—C32—H32C109.5C61—C62—H62C109.5
H32A—C32—H32C109.5H62A—C62—H62C109.5
H32B—C32—H32C109.5H62B—C62—H62C109.5
C41—C40—H40A109.5C71—C70—H70A109.5
C41—C40—H40B109.5C71—C70—H70B109.5
H40A—C40—H40B109.5H70A—C70—H70B109.5
C41—C40—H40C109.5C71—C70—H70C109.5
H40A—C40—H40C109.5H70A—C70—H70C109.5
H40B—C40—H40C109.5H70B—C70—H70C109.5
O43—C41—C40109.7 (2)O73—C71—C72110.5 (3)
O43—C41—C42109.0 (3)O73—C71—C70110.6 (2)
C40—C41—C42113.7 (3)C72—C71—C70112.5 (3)
O43—C41—H41108.1O73—C71—H71107.7
C40—C41—H41108.1C72—C71—H71107.7
C42—C41—H41108.1C70—C71—H71107.7
C41—C42—H42A109.5C71—C72—H72A109.5
C41—C42—H42B109.5C71—C72—H72B109.5
H42A—C42—H42B109.5H72A—C72—H72B109.5
C41—C42—H42C109.5C71—C72—H72C109.5
H42A—C42—H42C109.5H72A—C72—H72C109.5
H42B—C42—H42C109.5H72B—C72—H72C109.5
C51—C50—H50A109.5C81—C80—H80A109.5
C51—C50—H50B109.5C81—C80—H80B109.5
H50A—C50—H50B109.5H80A—C80—H80B109.5
C51—C50—H50C109.5C81—C80—H80C109.5
H50A—C50—H50C109.5H80A—C80—H80C109.5
H50B—C50—H50C109.5H80B—C80—H80C109.5
O53—C51—C52108.4 (2)O83—C81—C80107.4 (3)
O53—C51—C50107.8 (2)O83—C81—C82108.7 (3)
C52—C51—C50114.0 (3)C80—C81—C82113.2 (3)
O53—C51—H51108.9O83—C81—H81109.2
C52—C51—H51108.9C80—C81—H81109.2
C50—C51—H51108.9C82—C81—H81109.2
C51—C52—H52A109.5C81—C82—H82A109.5
C51—C52—H52B109.5C81—C82—H82B109.5
H52A—C52—H52B109.5H82A—C82—H82B109.5
C51—C52—H52C109.5C81—C82—H82C109.5
H52A—C52—H52C109.5H82A—C82—H82C109.5
H52B—C52—H52C109.5H82B—C82—H82C109.5
C31—O33—V1126.82 (15)C61—O63—V2133.84 (18)
C31—O33—H33113 (2)C61—O63—H63108 (2)
V1—O33—H33105 (2)V2—O63—H63118 (2)
C41—O43—V1133.21 (16)C71—O73—V2126.96 (15)
C41—O43—H43109 (2)C71—O73—H73111 (2)
V1—O43—H43114.6 (19)V2—O73—H73121 (2)
C51—O53—V1130.57 (19)C81—O83—V2129.26 (19)
O12—V1—O5399.80 (10)O22—V2—O8398.83 (11)
O12—V1—F1099.20 (9)O22—V2—F2098.47 (9)
O53—V1—F1097.45 (8)O83—V2—F20100.51 (8)
O12—V1—F1198.62 (9)O22—V2—F2198.67 (9)
O53—V1—F1197.01 (8)O83—V2—F2195.14 (8)
F10—V1—F11154.73 (7)F20—V2—F21154.66 (8)
O12—V1—O3394.30 (10)O22—V2—O6396.21 (11)
O53—V1—O33165.77 (9)O83—V2—O63164.06 (10)
F10—V1—O3378.23 (7)F20—V2—O6382.38 (7)
F11—V1—O3382.71 (7)F21—V2—O6377.34 (7)
O12—V1—O43172.37 (10)O22—V2—O73177.56 (9)
O53—V1—O4387.31 (9)O83—V2—O7383.05 (9)
F10—V1—O4382.49 (7)F20—V2—O7379.61 (7)
F11—V1—O4377.61 (7)F21—V2—O7382.67 (7)
O33—V1—O4378.72 (8)O63—V2—O7382.07 (9)
C32—C31—O33—V181.7 (3)C60—C61—O63—V2118.6 (3)
C30—C31—O33—V1156.1 (2)C62—C61—O63—V2116.6 (3)
C40—C41—O43—V198.4 (3)C72—C71—O73—V2104.5 (3)
C42—C41—O43—V1136.6 (2)C70—C71—O73—V2130.3 (2)
C52—C51—O53—V1105.7 (3)C80—C81—O83—V2151.4 (2)
C50—C51—O53—V1130.4 (3)C82—C81—O83—V285.8 (3)
C51—O53—V1—O120.1 (2)C81—O83—V2—O228.3 (2)
C51—O53—V1—F10100.8 (2)C81—O83—V2—F20108.7 (2)
C51—O53—V1—F11100.0 (2)C81—O83—V2—F2191.4 (2)
C51—O53—V1—O33172.1 (3)C81—O83—V2—O63152.2 (3)
C51—O53—V1—O43177.1 (2)C81—O83—V2—O73173.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O33—H33···F10i0.78 (2)1.90 (2)2.674 (2)171 (3)
O43—H43···F11ii0.80 (2)1.90 (2)2.690 (2)168 (3)
O63—H63···F21iii0.81 (2)1.85 (2)2.655 (3)175 (4)
O73—H73···F20iv0.80 (2)1.97 (2)2.765 (2)175 (3)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[V(C3H7O)F2O(C3H8O)2]
Mr284.21
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.0943 (9), 9.9151 (8), 16.4279 (13)
α, β, γ (°)97.315 (7), 97.690 (7), 92.324 (7)
V3)1453.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.89 × 0.20 × 0.14
Data collection
DiffractometerAgilent Xcalibur
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.727, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
10818, 5702, 4505
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.107, 1.05
No. of reflections5702
No. of parameters313
No. of restraints8
H-atom treatmentHeteroxyz
Δρmax, Δρmin (e Å3)0.44, 0.53

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008), PLATON/MOLFIT (Spek, 2009), PLATON/PLUTON (Spek, 2009) and CSM website (Zayit et al., 2011).

Selected geometric parameters (Å, º) top
O12—V11.581 (2)O22—V21.586 (2)
O33—V12.178 (2)O63—V22.139 (2)
O43—V12.2513 (19)O73—V22.253 (2)
O53—V11.747 (2)O83—V21.754 (2)
F10—V11.8423 (14)F20—V21.8391 (14)
F11—V11.8424 (15)F21—V21.8578 (15)
O12—V1—O5399.80 (10)O22—V2—O8398.83 (11)
O12—V1—F1099.20 (9)O22—V2—F2098.47 (9)
O53—V1—F1097.45 (8)O83—V2—F20100.51 (8)
O12—V1—F1198.62 (9)O22—V2—F2198.67 (9)
O53—V1—F1197.01 (8)O83—V2—F2195.14 (8)
F10—V1—F11154.73 (7)F20—V2—F21154.66 (8)
O12—V1—O3394.30 (10)O22—V2—O6396.21 (11)
O53—V1—O33165.77 (9)O83—V2—O63164.06 (10)
F10—V1—O3378.23 (7)F20—V2—O6382.38 (7)
F11—V1—O3382.71 (7)F21—V2—O6377.34 (7)
O12—V1—O43172.37 (10)O22—V2—O73177.56 (9)
O53—V1—O4387.31 (9)O83—V2—O7383.05 (9)
F10—V1—O4382.49 (7)F20—V2—O7379.61 (7)
F11—V1—O4377.61 (7)F21—V2—O7382.67 (7)
O33—V1—O4378.72 (8)O63—V2—O7382.07 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O33—H33···F10i0.778 (16)1.903 (17)2.674 (2)171 (3)
O43—H43···F11ii0.804 (16)1.900 (18)2.690 (2)168 (3)
O63—H63···F21iii0.805 (17)1.852 (18)2.655 (3)175 (4)
O73—H73···F20iv0.800 (17)1.967 (17)2.765 (2)175 (3)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds