Download citation
Download citation
link to html
The Cr4O4 hetero-cubane-centered octa­chromium(III) cluster [Cr8(PhCO2)16O4] crystallizes from fluoro­benzene–aceto­nitrile as dodeca-μ2-benzoato-tetra­benzoatotetra-μ4-oxido-octa­chromium(III) acetonitrile tetra­solvate dihydrate, [Cr8(C7H5O2)16O4]·4C2H3N·2H2O, (I). Crystals produced by this method are significantly more stable than the originally published dichloro­methane penta­solvate, [Cr8(PhCO2)16O4]·5CH2Cl2 [Atkinson et al. (1999). Chem. Commun. pp. 285–286], leading to a significantly higher quality structure and allowing the production of large quanti­ties of high-quality nondeuterated and deuterated material suitable for inelastic neutron scattering (INS) measurements. Compound (I) reveals a higher symmetry structure in which the cluster sits on a twofold rotation axis, and is based on an asymmetric unit containing four crystallographically independent Cr positions, two oxide ligands, eight benzoate ligands, two acetonitrile solvent mol­ecules and one disordered water mol­ecule. All the Cr atoms are six-coordinate, with an octa­hedral geometry for the inner cubane and a more highly distorted coordination environment in the outer positions. Despite the higher symmetry, the coordination geometries observed in (I) are largely similar to the dichloro­methane penta­solvate structure, indicating that crystal-packing effects have little influence on the mol­ecular structure of [Cr8(PhCO2)16O4]. Close structural analysis reveals that the high magnetic anisotropy observed in the INS measurements is a consequence of the distorted coordination geometry of the four outer Cr atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110032683/eg3055sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110032683/eg3055Isup2.hkl
Contains datablock I

CCDC reference: 796064

Comment top

The chemistry of metal carboxylates is exceptionally structurally rich, giving rise to a wide range of clusters (e.g. Affronte et al., 2007; Engelhardt et al., 2008; Sessoli et al.., 1993; Tasiopoulos et al., 2004) and network structures (e.g. Cornia et al., 1999; Fielden et al., 2009; Moushi et al., 2006; Wang et al., 2004) as a consequence of the range of coodination modes offered by the CO2- group. As carboxylate bridging modes frequently give rise to strong magnetic interactions between metal centres, discrete and infinite three-dimensional metal carboxylates are intensively investigated for their magnetic properties. One such cluster is the {Cr8} heterocubane [Cr8O4(O2CPh)16], which has recently been the subject of detailed inelastic neutron scattering (INS) measurements (Vaknin et al., 2010).

The {Cr8} cubane-type cluster was originally published in 1999 (Atkinson et al., 1999) and was synthesized by heating the triangular [Cr3O(O2CPh)6(H2O)2(OH)] precursor at 648–673 K under inert gas. Crystallization was originally achieved as [Cr8(PhCO2)16O4].5CH2Cl2 [Cambridge Structural Database (CSD; Allen, 2002) refcode HIPGIW; Reference?] from CH2Cl2/nPrOH. While we could produce single crystals on a small scale using this technique, we were unable to produce polycrystalline material on the >5 g scale needed for INS. Furthermore, the included dichloromethane solvent is easily lost under ambient conditions, producing degraded crystals in which the cluster is apparently vulnerable to hydrolysis by atmospheric water. These issues mandated a search for an alternative crystallization method, and we identified the PhF/MeCN solvent system as a more readily scalable method that produces higher quality crystals which exhibit no hydrolysis under ambient conditions. These allowed room-temperature determination of a crystal structure of the acetonitrile–water solvate {Cr8} cubane, [Cr8(PhCO2)16O4].4CH3CN.2H2O, (I), with the adventitious water molecules thought to result from the acetonitrile (Fisher, circa 0.3% H2O). This structure is significantly higher in quality than the published structure of [Cr8(PhCO2)16O4].5CH2Cl2 obtained at 150 K (R1 = 0.0496 versus 0.1025, Rint = 0.052 versus 0.0832, θmax = 26.38 versus 25.11).

Compound (I) crystallizes in the space group C2/c, and as such the cluster adopts a higher symmetry than seen in [Cr8(PhCO2)16O4].5CH2Cl2 (P21/c). The asymmetric unit (Fig. 1a) contains only a half rather than a complete {Cr8} cubane cluster, e.g. four six-coordinate Cr atoms, two terminal and six bridging benzoate ligands, two oxo ligands and half of the solvent molecules (omitted from the figure for clarity). None of these atoms are located on special positions. The complete µ4-oxo bridged {Cr8O4} core (Figs. 1b and 1c), with terminal and bridging benzoate ligands, is generated from the asymmetric unit by a twofold rotation axis passing through the centre of the cubane and the faces described by Cr1/Cr1i/O1/O1i and Cr2/Cr2i/O13/O13i [symmetry code: (i) 2 - x, y, 1/2 - z Please check added symop]. In the crystal structure of (I), the {Cr8} cubane packs in rows running parallel to the crystallographic b axis. As in [Cr8(PhCO2)16O4].5CH2Cl2 (HIPGIW), there is no evidence for strong intermolecular interactions (e.g. hydrogen bonds) or other important intermolecular contacts.

Coordination bond lengths and angles for (I) are listed in Table 1, with the higher quality data obtained resulting in consistently lower standard uncertainties than seen in HIPGIW. The absence of potentially distorting intermolecular interactions in either structure means that the differences between their coordination bond lengths and angles are small, although the lower-symmetry structure has a wider range of Cr—O bond distances and O—Cr—O angles than seen in compound (I) (Table 2). As the crystals of (I) seem to be stable, these slight crystal-packing-induced differences may account for the small differences in magnetic susceptibility between (I) and [Cr8(PhCO2)16O4].5CH2Cl2 (Luban et al., 2003; Vaknin et al., 2010).

More significantly, INS measurements on compound (I) have indicated that this material must have a high zero-field splitting (ZFS), as the magnetic energy spectrum cannot be accurately described by an isotropic model (Vaknin et al., 2010). This was not apparent from the previously obtained 2–290 K magnetic susceptibility data, and prompted us to re-examine the structures of both compound (I) and [Cr8(PhCO2)16O4].5CH2Cl2 to elucidate if slight geometric differences in the CrO6 environments could possibly account for significant differences in ZFS. In compound (I), the coordination environments of the central four Cr atoms (Cr1/Cr2 and their symmetry-generated positions Cr1i/Cr2i) show only relatively small deviations from octahedral, with Cr—O bond distances varying only ±2% from the 1.979 (2) Å average and cis O—Cr—O deviating less than ±10% from the ideal 90° (see Tables 1 and 2). In HIPGIW, these inner Cr (Cr1–Cr4) environments show a slightly higher variation of ±3% from an average Cr—O distance of 1.984 (8) Å, and a very slightly larger deviation of the angles from 90°. However, the outer Cr atoms of both structures [Cr3/Cr4/Cr3i/Cr4i in (I) and Cr5–Cr8 in HIPGIW] show significant distortion in their angles due to restrictions imposed by the κ2-chelating coordination mode of the terminal benzoate ligands (see Fig. 2). These two environments both have one very small O—Cr—O angle (ϕ in Fig. 2, circa 65°) and one that is rather wide (θ, circa 108°). For both structures, the average outer Cr—O bond distances are little different from those of the inner Cr atoms, although the variation [±3% in (I) and ±4% in HIPGIW] is slightly larger. Therefore, it seems likely that the magnetic anisotropy apparent in the INS measurements is a consequence of the highly distorted coordination bond angles of the outer Cr atoms, which are apparent in both structures.

In order to probe the effects of this distortion on the resulting ZFS, we have carried out point-charge electrostatic model (PCEM) calculations of the individual outer CrO6 polyhedra of both structures using the computational framework CONDON (Schilder & Lueken, 2004) and the standard ligand field and spin orbit-coupling parameter sets. The resulting eigenvalues for the corresponding individual Cr atoms indeed show a clear splitting compared with a regular Oh-symmetric CrO6 octahedron. Importantly, the differences in the eigenvalues of the resulting 28 Kramers doublets (stemming from the 4F ground term of Cr3+) for the outer CrO6 octahedra in (I) and for those in HIPGIW are very small and amount to 0.01–2.4%. For example, the splitting between the lowest |±3/2> doublet and the first excited |±1/2> doublet results in values of 14.02 cm-1 for Cr3 in (I) and 13.81 cm-1 for Cr5 in HIPGIW. This confirms that compound (I), within the resolution of INS measurements, represents a magnetochemically virtually identical equivalent to HIPGIW, despite small geometric differences.

Related literature top

For related literature, see: Affronte et al. (2007); Allen (2002); Atkinson et al. (1999); Cornia et al. (1999); Engelhardt et al. (2008); Fielden et al. (2009); Luban et al. (2003); Moushi et al. (2006); Schilder & Lueken (2004); Sessoli et al. (1993); Tasiopoulos et al. (2004); Vaknin et al. (2010); Wang et al. (2004).

Experimental top

Benzoic acid (21.74 g, 0.178 mol) and KOH (10.99 g, 0.196 mol) were dissolved in water (500 ml) with heating to 353 K, resulting in a solution with pH \sim 5.3. The pH was adjusted to ~8.0 by addition of aqueous KOH, before a solution of Cr(NO3)3.9H2O (20.01 g, 0.05 mol) in water (30 ml) was added, resulting in instantaneous production of a pale-blue precipitate. After heating and stirring for a further 30 min this was recovered by filtration, washed with water (4 × 50 ml) and methanol (3 × 50 ml) and air-dried to yield the pale-blue intermediate [Cr3O(O2CPh)6(H2O)2(OH)] (yield 15.87 g, 0.0167 mol, 100%). The amorphous precipitate was heated under a constant stream of argon at 648 K for 1 h, producing dark-green crude [Cr8O4(O2CPh)16] (yield 12.96 g). The crude material was dissolved in fluorobenzene (125 ml), filtered and crystallized in a PFTE flask by the addition of acetonitrile (1500 ml), yielding compound (I) as a mixture of dark-green single crystals and microcrystalline powder (yield 5.76 g, 0.0022 mol, 35%). Spectroscopic analysis: FTIR (KBr disc, ν, cm-1): 3424 (m), 3066 (m), 3030 (w), 2933 (vw), 1965 (vw), 1921 (vw), 1821 (vw), 1611 (vs), 1572 (vs), 1543 (m), 1498 (s), 1423 (vs), 1311 (w), 1180 (m), 1159 (w), 1070 (w), 937 (vw), 876 (m), 830 (vw), 811 (vw), 716 (s), 685 (s), 634 (m), 559 (s), 516 (m).

Refinement top

All carbon-bound H atoms were placed in geometrically idealized positions, with C—H = 0.93 (aromatic) or 0.96 Å (methyl), and constrained to ride or ride and rotate on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and Uiso(H) = 1.5Ueq(C) for idealized methyl H atoms. The H atoms on the solvent water molecule O19A/O19B could not be located and are not included in the structural model. A relatively high Ueq(max)/Ueq(min) ratio is observed for the C atoms of the chromium benzoate cluster; this is a consequence of slight disorder and has not been restrained. The solvent water molecule O19A/O19B is disordered over two positions; refinement indicates that their occupancies are equal.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. (a) The asymmetric unit of (I), showing the numbering scheme for Cr and O atoms. For clarity, a ball-and-stick representation is used, and H atoms, solvent molecules and labels for C atoms have been omitted. (b) The complete structure of (I), with displacement ellipsoids drawn at the 30% probability level, omitting solvent molecules, H atoms and phenyl groups. (c) The {Cr8O4} core in (I), with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) 2 - x, y, 1/2 - z.]
[Figure 2] Fig. 2. Ball-and-stick representation of the distorted coordination environment of one of the outer Cr positions (Cr3) of (I), showing the large and small O—Cr—O angles θ and ϕ.
dodeca-µ2-benzoato-tetrabenzoatotetra-µ4-oxido-octachromium(III) acetonitrile tetrasolvate dihydrate top
Crystal data top
[Cr8(C7H5O2)16O4]·4C2H3N·2H2OF(000) = 5360
Mr = 2618.01Dx = 1.424 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.406 (5) ÅCell parameters from 959 reflections
b = 18.970 (4) Åθ = 2.7–27.0°
c = 27.592 (6) ŵ = 0.77 mm1
β = 94.730 (4)°T = 293 K
V = 12210 (4) Å3Prism, green
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
12440 independent reflections
Radiation source: fine-focus sealed tube8093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 26.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2928
Tmin = 0.86, Tmax = 1k = 2323
50439 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0686P)2 + 15.0742P]
where P = (Fo2 + 2Fc2)/3
12440 reflections(Δ/σ)max = 0.041
778 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cr8(C7H5O2)16O4]·4C2H3N·2H2OV = 12210 (4) Å3
Mr = 2618.01Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.406 (5) ŵ = 0.77 mm1
b = 18.970 (4) ÅT = 293 K
c = 27.592 (6) Å0.20 × 0.20 × 0.10 mm
β = 94.730 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
12440 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
8093 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 1Rint = 0.052
50439 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0686P)2 + 15.0742P]
where P = (Fo2 + 2Fc2)/3
12440 reflectionsΔρmax = 0.52 e Å3
778 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr11.01687 (2)0.77893 (3)0.199324 (18)0.03029 (14)
Cr20.93862 (2)0.66736 (3)0.230580 (19)0.03052 (14)
Cr30.88054 (2)0.84035 (3)0.21915 (2)0.03442 (14)
Cr41.02990 (2)0.60978 (3)0.15071 (2)0.03646 (15)
C11.13729 (16)0.79785 (18)0.17843 (13)0.0380 (8)
C21.18155 (16)0.7886 (2)0.14307 (14)0.0462 (9)
C31.1661 (2)0.7647 (3)0.09722 (16)0.0708 (14)
H31.12770.75650.08750.085*
C41.2074 (3)0.7529 (4)0.0652 (2)0.106 (2)
H41.19670.73640.03400.127*
C51.2634 (3)0.7650 (4)0.0789 (2)0.109 (2)
H51.29100.75740.05710.130*
C61.2790 (2)0.7880 (4)0.1238 (2)0.095 (2)
H61.31760.79580.13310.114*
C71.23851 (19)0.8003 (3)0.15673 (17)0.0640 (12)
H71.24980.81650.18790.077*
C80.95442 (15)0.93159 (18)0.28384 (13)0.0370 (8)
C90.96580 (16)1.00314 (18)0.30461 (14)0.0428 (9)
C101.0071 (2)1.0115 (2)0.34255 (17)0.0637 (12)
H101.02780.97250.35460.076*
C111.0184 (2)1.0771 (3)0.3631 (2)0.0799 (15)
H111.04621.08200.38900.096*
C120.9888 (3)1.1341 (3)0.3452 (2)0.0801 (16)
H120.99521.17790.35980.096*
C130.9503 (3)1.1276 (2)0.3064 (2)0.0882 (18)
H130.93151.16740.29350.106*
C140.9384 (2)1.0612 (2)0.28532 (19)0.0692 (13)
H140.91191.05700.25840.083*
C150.78425 (16)0.84009 (19)0.18501 (13)0.0398 (8)
C160.72424 (16)0.8405 (2)0.16411 (14)0.0454 (9)
C170.69565 (17)0.7785 (2)0.15252 (16)0.0567 (11)
H170.71430.73550.15760.068*
C180.6389 (2)0.7803 (3)0.13324 (18)0.0733 (14)
H180.61950.73850.12570.088*
C190.6118 (2)0.8431 (4)0.12532 (19)0.0809 (17)
H190.57380.84380.11250.097*
C200.6400 (2)0.9059 (3)0.1360 (2)0.0799 (16)
H200.62130.94870.13020.096*
C210.69601 (19)0.9044 (2)0.15537 (17)0.0621 (12)
H210.71520.94650.16270.074*
C220.85351 (15)0.62956 (18)0.29728 (13)0.0375 (8)
C230.79107 (16)0.6240 (2)0.30381 (15)0.0449 (9)
C240.75195 (17)0.6493 (3)0.26789 (17)0.0599 (11)
H240.76470.66960.24010.072*
C250.6938 (2)0.6446 (3)0.2731 (2)0.0812 (16)
H250.66740.66090.24850.097*
C260.6753 (2)0.6158 (3)0.3144 (2)0.0899 (18)
H260.63630.61360.31830.108*
C270.7134 (2)0.5904 (3)0.3500 (2)0.0861 (17)
H270.70020.57010.37770.103*
C280.77209 (19)0.5947 (3)0.34526 (18)0.0639 (12)
H280.79820.57790.36980.077*
C290.90575 (16)0.64700 (18)0.12744 (13)0.0388 (8)
C300.86178 (17)0.6528 (2)0.08576 (14)0.0473 (9)
C310.8077 (2)0.6743 (3)0.09292 (17)0.0737 (15)
H310.79860.68620.12400.088*
C320.7666 (3)0.6788 (4)0.0546 (2)0.111 (2)
H320.72990.69420.05980.133*
C330.7794 (3)0.6605 (4)0.0087 (2)0.107 (2)
H330.75130.66250.01710.128*
C340.8332 (3)0.6395 (4)0.00121 (18)0.099 (2)
H340.84220.62820.03000.118*
C350.8749 (2)0.6348 (3)0.03966 (17)0.0736 (14)
H350.91160.61960.03440.088*
C360.96117 (17)0.51555 (19)0.20542 (14)0.0430 (9)
C370.94165 (18)0.44154 (19)0.20981 (15)0.0485 (9)
C380.8938 (2)0.4258 (2)0.23267 (17)0.0641 (12)
H380.87240.46150.24550.077*
C390.8772 (3)0.3552 (3)0.2366 (2)0.0885 (17)
H390.84460.34390.25220.106*
C400.9085 (3)0.3036 (3)0.2180 (2)0.099 (2)
H400.89640.25700.21990.119*
C410.9569 (3)0.3183 (3)0.1967 (3)0.100 (2)
H410.97880.28190.18520.120*
C420.9739 (2)0.3879 (2)0.1920 (2)0.0725 (14)
H421.00690.39840.17680.087*
C431.05469 (16)0.6122 (2)0.06948 (14)0.0471 (9)
C441.0660 (2)0.6146 (3)0.01782 (16)0.0598 (12)
C451.0682 (3)0.5520 (3)0.0081 (2)0.099 (2)
H451.06300.50910.00710.119*
C461.0780 (4)0.5543 (4)0.0563 (2)0.133 (3)
H461.07800.51270.07420.160*
C471.0878 (3)0.6164 (4)0.0781 (2)0.120 (3)
H471.09630.61680.11050.144*
C481.0852 (3)0.6793 (4)0.05333 (18)0.0927 (19)
H481.09100.72200.06880.111*
C491.0740 (2)0.6777 (3)0.00514 (17)0.0719 (14)
H491.07170.71960.01200.086*
C500.93220 (15)0.82409 (18)0.12342 (13)0.0377 (8)
C510.92037 (17)0.8377 (2)0.07059 (14)0.0480 (9)
C520.8803 (2)0.8878 (3)0.05438 (17)0.0723 (14)
H520.85980.91240.07640.087*
C530.8713 (3)0.9009 (4)0.0050 (2)0.101 (2)
H530.84410.93420.00620.121*
C540.9013 (3)0.8659 (4)0.0276 (2)0.101 (2)
H540.89560.87630.06050.121*
C550.9400 (3)0.8156 (4)0.01175 (18)0.0940 (19)
H550.95970.79040.03400.113*
C560.9500 (2)0.8019 (3)0.03738 (15)0.0669 (13)
H560.97700.76820.04810.080*
C570.0693 (6)0.9270 (8)0.0597 (6)0.249 (7)
H57A0.03950.96100.05200.374*
H57B0.10150.94980.07690.374*
H57C0.05520.89050.07960.374*
C580.0874 (7)0.8959 (8)0.0140 (7)0.186 (6)
C590.7737 (6)0.0101 (5)0.3013 (4)0.194 (5)
H59A0.78340.05840.30860.292*
H59B0.78600.00200.27000.292*
H59C0.73300.00410.30100.292*
C600.8016 (6)0.0344 (8)0.3375 (4)0.191 (5)
N10.1027 (7)0.8693 (8)0.0212 (5)0.232 (6)
N20.8215 (6)0.0714 (10)0.3642 (4)0.320 (10)
O10.94494 (9)0.77335 (11)0.23444 (8)0.0308 (5)
O20.81283 (10)0.78308 (12)0.19001 (9)0.0416 (6)
O30.91989 (11)0.92542 (12)0.24653 (9)0.0426 (6)
O40.80947 (11)0.89664 (13)0.19926 (9)0.0453 (6)
O50.84785 (10)0.82774 (13)0.28193 (9)0.0428 (6)
O60.90187 (11)0.85525 (13)0.15241 (9)0.0422 (6)
O71.01974 (10)0.88152 (12)0.19441 (9)0.0406 (6)
O80.97333 (10)0.78230 (12)0.13563 (8)0.0367 (5)
O91.08763 (10)0.77542 (12)0.16609 (8)0.0382 (5)
O100.86657 (9)0.66482 (12)0.26108 (9)0.0372 (5)
O110.93298 (10)0.56365 (12)0.22536 (9)0.0385 (6)
O121.00629 (12)0.52565 (13)0.18368 (10)0.0496 (7)
O131.01469 (9)0.67374 (11)0.20460 (8)0.0290 (5)
O140.89439 (10)0.67265 (12)0.16753 (8)0.0355 (5)
O151.11180 (11)0.59952 (14)0.17226 (10)0.0474 (6)
O160.95178 (11)0.61621 (14)0.11958 (9)0.0486 (7)
O171.05126 (12)0.66902 (14)0.09392 (9)0.0487 (6)
O181.04730 (11)0.55481 (14)0.09109 (10)0.0494 (7)
O19A0.7408 (8)0.0411 (10)0.9580 (14)0.27 (2)0.48 (3)
O19B0.7363 (8)0.0357 (15)1.0235 (13)0.318 (19)0.52 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0286 (3)0.0296 (3)0.0326 (3)0.0007 (2)0.0022 (2)0.0011 (2)
Cr20.0267 (3)0.0288 (3)0.0363 (3)0.0007 (2)0.0040 (2)0.0016 (2)
Cr30.0310 (3)0.0324 (3)0.0394 (3)0.0037 (2)0.0002 (2)0.0002 (2)
Cr40.0331 (3)0.0350 (3)0.0422 (3)0.0000 (2)0.0086 (2)0.0070 (2)
C10.037 (2)0.0329 (18)0.044 (2)0.0019 (15)0.0052 (17)0.0077 (16)
C20.038 (2)0.055 (2)0.047 (2)0.0044 (18)0.0116 (17)0.0072 (18)
C30.053 (3)0.106 (4)0.055 (3)0.019 (3)0.014 (2)0.010 (3)
C40.082 (4)0.178 (7)0.061 (3)0.022 (4)0.032 (3)0.027 (4)
C50.067 (4)0.190 (7)0.074 (4)0.014 (4)0.038 (3)0.016 (4)
C60.046 (3)0.156 (6)0.085 (4)0.010 (3)0.021 (3)0.001 (4)
C70.046 (3)0.092 (3)0.055 (3)0.004 (2)0.013 (2)0.006 (2)
C80.0327 (19)0.0369 (19)0.042 (2)0.0010 (15)0.0070 (16)0.0008 (16)
C90.043 (2)0.0337 (19)0.052 (2)0.0015 (16)0.0082 (18)0.0035 (16)
C100.076 (3)0.043 (2)0.069 (3)0.001 (2)0.017 (2)0.005 (2)
C110.094 (4)0.060 (3)0.081 (4)0.011 (3)0.018 (3)0.017 (3)
C120.100 (4)0.043 (3)0.096 (4)0.009 (3)0.000 (3)0.021 (3)
C130.107 (5)0.037 (3)0.116 (5)0.018 (3)0.015 (4)0.006 (3)
C140.074 (3)0.040 (2)0.091 (4)0.007 (2)0.013 (3)0.003 (2)
C150.040 (2)0.041 (2)0.0384 (19)0.0057 (17)0.0036 (16)0.0004 (16)
C160.036 (2)0.055 (2)0.044 (2)0.0060 (18)0.0012 (17)0.0012 (18)
C170.042 (2)0.068 (3)0.061 (3)0.001 (2)0.004 (2)0.012 (2)
C180.049 (3)0.092 (4)0.078 (3)0.005 (3)0.002 (2)0.021 (3)
C190.039 (3)0.131 (5)0.071 (3)0.016 (3)0.009 (2)0.012 (3)
C200.055 (3)0.097 (4)0.085 (4)0.032 (3)0.008 (3)0.004 (3)
C210.050 (3)0.060 (3)0.074 (3)0.015 (2)0.004 (2)0.004 (2)
C220.0297 (19)0.0367 (18)0.047 (2)0.0020 (15)0.0077 (16)0.0092 (16)
C230.033 (2)0.045 (2)0.058 (2)0.0059 (16)0.0128 (18)0.0095 (18)
C240.034 (2)0.081 (3)0.065 (3)0.002 (2)0.004 (2)0.008 (2)
C250.036 (3)0.116 (5)0.091 (4)0.001 (3)0.003 (3)0.014 (3)
C260.039 (3)0.121 (5)0.112 (5)0.010 (3)0.021 (3)0.019 (4)
C270.061 (3)0.111 (5)0.092 (4)0.014 (3)0.035 (3)0.011 (3)
C280.049 (3)0.075 (3)0.071 (3)0.004 (2)0.020 (2)0.007 (2)
C290.038 (2)0.0362 (19)0.043 (2)0.0055 (16)0.0037 (16)0.0038 (16)
C300.046 (2)0.051 (2)0.044 (2)0.0021 (18)0.0004 (18)0.0062 (17)
C310.060 (3)0.105 (4)0.054 (3)0.023 (3)0.010 (2)0.020 (3)
C320.077 (4)0.170 (7)0.081 (4)0.050 (4)0.031 (3)0.028 (4)
C330.098 (5)0.145 (6)0.070 (4)0.022 (4)0.039 (4)0.008 (4)
C340.107 (5)0.150 (6)0.038 (3)0.006 (4)0.002 (3)0.012 (3)
C350.065 (3)0.104 (4)0.051 (3)0.007 (3)0.004 (2)0.016 (3)
C360.042 (2)0.038 (2)0.049 (2)0.0030 (17)0.0012 (18)0.0006 (17)
C370.058 (3)0.0352 (19)0.052 (2)0.0044 (18)0.0010 (19)0.0016 (17)
C380.063 (3)0.055 (3)0.076 (3)0.015 (2)0.013 (2)0.004 (2)
C390.099 (4)0.075 (4)0.093 (4)0.037 (3)0.018 (3)0.000 (3)
C400.145 (6)0.047 (3)0.103 (5)0.039 (4)0.005 (4)0.008 (3)
C410.134 (6)0.034 (3)0.132 (5)0.001 (3)0.008 (5)0.014 (3)
C420.078 (4)0.044 (2)0.096 (4)0.001 (2)0.011 (3)0.011 (2)
C430.039 (2)0.050 (2)0.053 (2)0.0036 (18)0.0083 (18)0.012 (2)
C440.059 (3)0.073 (3)0.050 (2)0.017 (2)0.016 (2)0.017 (2)
C450.139 (6)0.092 (4)0.073 (4)0.040 (4)0.050 (4)0.037 (3)
C460.201 (9)0.129 (6)0.080 (4)0.072 (6)0.068 (5)0.051 (4)
C470.164 (7)0.146 (7)0.054 (3)0.055 (6)0.034 (4)0.028 (4)
C480.108 (5)0.122 (5)0.050 (3)0.032 (4)0.015 (3)0.005 (3)
C490.074 (3)0.086 (4)0.057 (3)0.011 (3)0.013 (2)0.010 (3)
C500.035 (2)0.0378 (19)0.0392 (19)0.0084 (16)0.0016 (16)0.0014 (15)
C510.047 (2)0.055 (2)0.041 (2)0.0070 (19)0.0042 (17)0.0056 (18)
C520.067 (3)0.092 (4)0.055 (3)0.020 (3)0.007 (2)0.015 (3)
C530.102 (5)0.131 (5)0.067 (4)0.034 (4)0.016 (3)0.033 (4)
C540.117 (5)0.135 (6)0.047 (3)0.011 (4)0.013 (3)0.017 (3)
C550.126 (5)0.115 (5)0.039 (3)0.018 (4)0.003 (3)0.001 (3)
C560.082 (3)0.075 (3)0.044 (2)0.010 (3)0.001 (2)0.001 (2)
C570.249 (17)0.231 (16)0.282 (19)0.051 (12)0.101 (15)0.027 (14)
C580.170 (12)0.170 (13)0.216 (17)0.033 (10)0.002 (12)0.032 (12)
C590.302 (15)0.096 (6)0.178 (10)0.038 (8)0.027 (10)0.015 (6)
C600.183 (11)0.271 (16)0.120 (8)0.026 (10)0.024 (8)0.037 (9)
N10.258 (15)0.244 (15)0.186 (12)0.025 (11)0.022 (11)0.032 (10)
N20.242 (13)0.54 (3)0.178 (11)0.069 (14)0.024 (9)0.192 (14)
O10.0290 (12)0.0291 (11)0.0348 (12)0.0005 (9)0.0051 (10)0.0022 (9)
O20.0358 (14)0.0373 (13)0.0510 (15)0.0042 (11)0.0014 (11)0.0007 (11)
O30.0418 (15)0.0352 (13)0.0497 (15)0.0020 (11)0.0020 (12)0.0002 (11)
O40.0397 (15)0.0371 (14)0.0580 (16)0.0066 (11)0.0027 (12)0.0008 (12)
O50.0370 (14)0.0499 (15)0.0424 (14)0.0108 (12)0.0086 (11)0.0024 (12)
O60.0417 (15)0.0445 (14)0.0402 (14)0.0056 (11)0.0025 (12)0.0053 (11)
O70.0433 (15)0.0322 (13)0.0455 (14)0.0028 (11)0.0006 (11)0.0041 (11)
O80.0383 (14)0.0381 (13)0.0333 (12)0.0007 (11)0.0007 (10)0.0015 (10)
O90.0321 (14)0.0449 (14)0.0383 (13)0.0017 (11)0.0070 (10)0.0001 (11)
O100.0266 (12)0.0415 (13)0.0442 (14)0.0028 (10)0.0068 (10)0.0001 (11)
O110.0367 (14)0.0278 (12)0.0518 (15)0.0025 (10)0.0082 (11)0.0044 (10)
O120.0541 (17)0.0367 (14)0.0599 (17)0.0001 (12)0.0151 (14)0.0059 (12)
O130.0269 (12)0.0263 (11)0.0340 (12)0.0005 (9)0.0031 (9)0.0007 (9)
O140.0342 (13)0.0359 (12)0.0361 (13)0.0011 (10)0.0014 (10)0.0047 (10)
O150.0357 (15)0.0515 (15)0.0558 (16)0.0049 (12)0.0086 (12)0.0114 (13)
O160.0396 (15)0.0543 (16)0.0517 (16)0.0012 (12)0.0032 (12)0.0205 (13)
O170.0557 (17)0.0471 (15)0.0450 (15)0.0033 (13)0.0138 (12)0.0076 (12)
O180.0484 (16)0.0472 (16)0.0541 (16)0.0022 (13)0.0141 (13)0.0135 (13)
O19A0.198 (18)0.163 (17)0.45 (5)0.067 (13)0.01 (2)0.10 (2)
O19B0.182 (16)0.36 (3)0.42 (4)0.097 (16)0.064 (18)0.27 (3)
Geometric parameters (Å, º) top
Cr1—O71.952 (2)C25—H250.9300
Cr1—O81.959 (2)C26—C271.358 (8)
Cr1—O91.959 (2)C26—H260.9300
Cr1—O1i1.970 (2)C27—C281.393 (7)
Cr1—O132.002 (2)C27—H270.9300
Cr1—O12.013 (2)C28—H280.9300
Cr1—Cr1i2.9678 (12)C29—O141.257 (4)
Cr1—Cr22.9729 (8)C29—O161.260 (4)
Cr2—O101.946 (2)C29—C301.483 (5)
Cr2—O141.952 (2)C30—C311.359 (6)
Cr2—O111.976 (2)C30—C351.375 (6)
Cr2—O131.977 (2)C31—C321.373 (7)
Cr2—O12.018 (2)C31—H310.9300
Cr2—O13i2.021 (2)C32—C331.370 (9)
Cr3—O51.965 (2)C32—H320.9300
Cr3—O61.968 (2)C33—C341.352 (8)
Cr3—O31.977 (3)C33—H330.9300
Cr3—O11.990 (2)C34—C351.384 (7)
Cr3—O42.014 (2)C34—H340.9300
Cr3—O22.032 (2)C35—H350.9300
Cr3—C152.370 (4)C36—O121.271 (4)
Cr4—O121.940 (3)C36—O111.277 (4)
Cr4—O161.959 (3)C36—C371.484 (5)
Cr4—O151.969 (3)C37—C381.362 (6)
Cr4—O131.974 (2)C37—C421.381 (6)
Cr4—O182.018 (2)C38—C391.401 (7)
Cr4—O172.024 (3)C38—H380.9300
Cr4—C432.362 (4)C39—C401.349 (9)
C1—O5i1.255 (4)C39—H390.9300
C1—O91.258 (4)C40—C411.349 (9)
C1—C21.491 (5)C40—H400.9300
C2—C31.363 (6)C41—C421.388 (7)
C2—C71.373 (6)C41—H410.9300
C3—C41.380 (7)C42—H420.9300
C3—H30.9300C43—O181.261 (5)
C4—C51.353 (8)C43—O171.277 (4)
C4—H40.9300C43—C441.472 (6)
C5—C61.335 (8)C44—C491.373 (7)
C5—H50.9300C44—C451.389 (7)
C6—C71.387 (7)C45—C461.369 (8)
C6—H60.9300C45—H450.9300
C7—H70.9300C46—C471.352 (10)
C8—O7i1.252 (4)C46—H460.9300
C8—O31.261 (4)C47—C481.379 (9)
C8—C91.489 (5)C47—H470.9300
C9—C141.361 (6)C48—C491.377 (7)
C9—C101.375 (6)C48—H480.9300
C10—C111.384 (6)C49—H490.9300
C10—H100.9300C50—O61.260 (4)
C11—C121.355 (7)C50—O81.271 (4)
C11—H110.9300C50—C511.484 (5)
C12—C131.347 (7)C51—C561.372 (6)
C12—H120.9300C51—C521.384 (6)
C13—C141.407 (6)C52—C531.385 (7)
C13—H130.9300C52—H520.9300
C14—H140.9300C53—C541.358 (9)
C15—O41.271 (4)C53—H530.9300
C15—O21.273 (4)C54—C551.362 (8)
C15—C161.474 (5)C54—H540.9300
C16—C171.379 (6)C55—C561.381 (6)
C16—C211.391 (6)C55—H550.9300
C17—C181.389 (6)C56—H560.9300
C17—H170.9300C57—C581.484 (18)
C18—C191.359 (7)C57—H57A0.9600
C18—H180.9300C57—H57B0.9600
C19—C201.382 (8)C57—H57C0.9600
C19—H190.9300C58—N11.178 (17)
C20—C211.375 (6)C59—C601.424 (15)
C20—H200.9300C59—H59A0.9600
C21—H210.9300C59—H59B0.9600
C22—O15i1.256 (4)C59—H59C0.9600
C22—O101.261 (4)C60—N21.094 (14)
C22—C231.491 (5)O1—Cr1i1.970 (2)
C23—C281.378 (6)O5—C1i1.255 (4)
C23—C241.379 (6)O7—C8i1.252 (4)
C24—C251.383 (6)O13—Cr2i2.021 (2)
C24—H240.9300O15—C22i1.256 (4)
C25—C261.368 (8)O19A—O19B1.82 (3)
O7—Cr1—O885.61 (10)C20—C21—C16120.6 (5)
O7—Cr1—O988.06 (10)C20—C21—H21119.7
O8—Cr1—O988.77 (10)C16—C21—H21119.7
O7—Cr1—O1i95.89 (9)O15i—C22—O10125.8 (3)
O8—Cr1—O1i175.51 (9)O15i—C22—C23118.2 (3)
O9—Cr1—O1i95.51 (9)O10—C22—C23115.9 (3)
O7—Cr1—O13179.47 (10)C28—C23—C24119.8 (4)
O8—Cr1—O1394.78 (9)C28—C23—C22121.0 (4)
O9—Cr1—O1391.58 (9)C24—C23—C22119.2 (4)
O1i—Cr1—O1383.76 (9)C23—C24—C25120.3 (5)
O7—Cr1—O196.94 (10)C23—C24—H24119.9
O8—Cr1—O192.28 (9)C25—C24—H24119.9
O9—Cr1—O1174.95 (9)C26—C25—C24119.6 (5)
O1i—Cr1—O183.35 (9)C26—C25—H25120.2
O13—Cr1—O183.41 (9)C24—C25—H25120.2
O7—Cr1—Cr1i94.52 (7)C27—C26—C25120.8 (5)
O8—Cr1—Cr1i133.34 (8)C27—C26—H26119.6
O9—Cr1—Cr1i137.89 (7)C25—C26—H26119.6
O1i—Cr1—Cr1i42.39 (6)C26—C27—C28120.3 (5)
O13—Cr1—Cr1i85.48 (6)C26—C27—H27119.9
O1—Cr1—Cr1i41.28 (6)C28—C27—H27119.9
O7—Cr1—Cr2139.06 (8)C23—C28—C27119.3 (5)
O8—Cr1—Cr289.78 (7)C23—C28—H28120.4
O9—Cr1—Cr2132.56 (7)C27—C28—H28120.4
O1i—Cr1—Cr286.32 (6)O14—C29—O16125.2 (3)
O13—Cr1—Cr241.34 (6)O14—C29—C30118.1 (3)
O1—Cr1—Cr242.55 (6)O16—C29—C30116.7 (3)
Cr1i—Cr1—Cr260.560 (17)C31—C30—C35119.3 (4)
O10—Cr2—O1488.39 (10)C31—C30—C29120.3 (4)
O10—Cr2—O1187.24 (10)C35—C30—C29120.4 (4)
O14—Cr2—O1187.64 (10)C30—C31—C32120.6 (5)
O10—Cr2—O13175.22 (9)C30—C31—H31119.7
O14—Cr2—O1395.79 (9)C32—C31—H31119.7
O11—Cr2—O1395.24 (9)C33—C32—C31120.2 (6)
O10—Cr2—O193.68 (9)C33—C32—H32119.9
O14—Cr2—O191.55 (9)C31—C32—H32119.9
O11—Cr2—O1178.76 (10)C34—C33—C32119.6 (5)
O13—Cr2—O183.91 (8)C34—C33—H33120.2
O10—Cr2—O13i92.49 (9)C32—C33—H33120.2
O14—Cr2—O13i173.58 (9)C33—C34—C35120.5 (5)
O11—Cr2—O13i98.75 (9)C33—C34—H34119.7
O13—Cr2—O13i83.10 (9)C35—C34—H34119.7
O1—Cr2—O13i82.05 (8)C30—C35—C34119.8 (5)
O10—Cr2—Cr1136.01 (7)C30—C35—H35120.1
O14—Cr2—Cr189.94 (7)C34—C35—H35120.1
O11—Cr2—Cr1136.61 (7)O12—C36—O11125.1 (3)
O13—Cr2—Cr141.97 (6)O12—C36—C37117.0 (3)
O1—Cr2—Cr142.42 (6)O11—C36—C37117.9 (3)
O13i—Cr2—Cr185.01 (6)C38—C37—C42119.8 (4)
O5—Cr3—O6171.77 (10)C38—C37—C36121.0 (4)
O5—Cr3—O388.02 (11)C42—C37—C36119.2 (4)
O6—Cr3—O395.40 (11)C37—C38—C39119.3 (5)
O5—Cr3—O194.50 (9)C37—C38—H38120.3
O6—Cr3—O192.52 (10)C39—C38—H38120.3
O3—Cr3—O196.85 (10)C40—C39—C38120.1 (5)
O5—Cr3—O486.10 (11)C40—C39—H39119.9
O6—Cr3—O486.36 (11)C38—C39—H39119.9
O3—Cr3—O491.12 (10)C39—C40—C41121.2 (5)
O1—Cr3—O4172.01 (10)C39—C40—H40119.4
O5—Cr3—O286.34 (11)C41—C40—H40119.4
O6—Cr3—O287.49 (10)C40—C41—C42119.6 (6)
O3—Cr3—O2155.68 (10)C40—C41—H41120.2
O1—Cr3—O2107.15 (9)C42—C41—H41120.2
O4—Cr3—O264.91 (10)C37—C42—C41120.0 (5)
O5—Cr3—C1585.61 (11)C37—C42—H42120.0
O6—Cr3—C1586.26 (11)C41—C42—H42120.0
O3—Cr3—C15123.46 (11)O18—C43—O17117.5 (4)
O1—Cr3—C15139.62 (11)O18—C43—C44121.8 (4)
O4—Cr3—C1532.44 (11)O17—C43—C44120.7 (4)
O2—Cr3—C1532.48 (11)O18—C43—Cr458.68 (19)
O12—Cr4—O1687.99 (12)O17—C43—Cr458.96 (19)
O12—Cr4—O1594.87 (12)C44—C43—Cr4176.1 (3)
O16—Cr4—O15171.40 (11)C49—C44—C45119.6 (5)
O12—Cr4—O1394.39 (10)C49—C44—C43121.0 (4)
O16—Cr4—O1394.15 (9)C45—C44—C43119.4 (5)
O15—Cr4—O1393.72 (10)C46—C45—C44119.4 (6)
O12—Cr4—O1892.38 (11)C46—C45—H45120.3
O16—Cr4—O1885.32 (11)C44—C45—H45120.3
O15—Cr4—O1886.45 (11)C47—C46—C45120.5 (6)
O13—Cr4—O18173.19 (10)C47—C46—H46119.7
O12—Cr4—O17156.61 (11)C45—C46—H46119.7
O16—Cr4—O1784.67 (12)C46—C47—C48121.1 (6)
O15—Cr4—O1789.56 (11)C46—C47—H47119.4
O13—Cr4—O17108.25 (10)C48—C47—H47119.4
O18—Cr4—O1764.93 (11)C49—C48—C47118.6 (6)
O12—Cr4—C43124.26 (13)C49—C48—H48120.7
O16—Cr4—C4382.88 (12)C47—C48—H48120.7
O15—Cr4—C4388.81 (12)C44—C49—C48120.6 (5)
O13—Cr4—C43140.93 (12)C44—C49—H49119.7
O18—Cr4—C4332.26 (12)C48—C49—H49119.7
O17—Cr4—C4332.71 (12)O6—C50—O8125.4 (3)
O5i—C1—O9124.9 (3)O6—C50—C51118.2 (3)
O5i—C1—C2117.8 (3)O8—C50—C51116.4 (3)
O9—C1—C2117.3 (3)C56—C51—C52119.3 (4)
C3—C2—C7119.0 (4)C56—C51—C50120.5 (4)
C3—C2—C1120.1 (4)C52—C51—C50120.2 (4)
C7—C2—C1120.8 (4)C51—C52—C53119.1 (5)
C2—C3—C4120.2 (5)C51—C52—H52120.5
C2—C3—H3119.9C53—C52—H52120.5
C4—C3—H3119.9C54—C53—C52121.2 (5)
C5—C4—C3120.4 (5)C54—C53—H53119.4
C5—C4—H4119.8C52—C53—H53119.4
C3—C4—H4119.8C53—C54—C55119.9 (5)
C6—C5—C4120.0 (5)C53—C54—H54120.1
C6—C5—H5120.0C55—C54—H54120.1
C4—C5—H5120.0C54—C55—C56120.0 (5)
C5—C6—C7120.9 (5)C54—C55—H55120.0
C5—C6—H6119.6C56—C55—H55120.0
C7—C6—H6119.6C51—C56—C55120.6 (5)
C2—C7—C6119.6 (5)C51—C56—H56119.7
C2—C7—H7120.2C55—C56—H56119.7
C6—C7—H7120.2C58—C57—H57A109.5
O7i—C8—O3124.9 (3)C58—C57—H57B109.5
O7i—C8—C9116.3 (3)H57A—C57—H57B109.5
O3—C8—C9118.8 (3)C58—C57—H57C109.5
C14—C9—C10119.0 (4)H57A—C57—H57C109.5
C14—C9—C8121.6 (4)H57B—C57—H57C109.5
C10—C9—C8119.4 (3)N1—C58—C57177.6 (19)
C9—C10—C11120.9 (4)C60—C59—H59A109.5
C9—C10—H10119.5C60—C59—H59B109.5
C11—C10—H10119.5H59A—C59—H59B109.5
C12—C11—C10119.6 (5)C60—C59—H59C109.5
C12—C11—H11120.2H59A—C59—H59C109.5
C10—C11—H11120.2H59B—C59—H59C109.5
C13—C12—C11120.3 (4)N2—C60—C59176 (2)
C13—C12—H12119.8Cr1i—O1—Cr3116.12 (10)
C11—C12—H12119.8Cr1i—O1—Cr196.33 (9)
C12—C13—C14120.5 (5)Cr3—O1—Cr1120.87 (11)
C12—C13—H13119.7Cr1i—O1—Cr297.37 (9)
C14—C13—H13119.7Cr3—O1—Cr2125.03 (11)
C9—C14—C13119.5 (5)Cr1—O1—Cr295.03 (9)
C9—C14—H14120.3C15—O2—Cr388.5 (2)
C13—C14—H14120.3C8—O3—Cr3129.4 (2)
O4—C15—O2117.2 (3)C15—O4—Cr389.4 (2)
O4—C15—C16121.3 (3)C1i—O5—Cr3136.3 (2)
O2—C15—C16121.5 (3)C50—O6—Cr3136.6 (2)
O4—C15—Cr358.20 (18)C8i—O7—Cr1137.8 (2)
O2—C15—Cr358.99 (18)C50—O8—Cr1125.8 (2)
C16—C15—Cr3179.4 (3)C1—O9—Cr1131.3 (2)
C17—C16—C21119.3 (4)C22—O10—Cr2129.1 (2)
C17—C16—C15121.0 (4)C36—O11—Cr2135.1 (2)
C21—C16—C15119.8 (4)C36—O12—Cr4128.7 (2)
C16—C17—C18119.8 (4)Cr4—O13—Cr2117.33 (10)
C16—C17—H17120.1Cr4—O13—Cr1123.42 (11)
C18—C17—H17120.1Cr2—O13—Cr196.69 (9)
C19—C18—C17120.2 (5)Cr4—O13—Cr2i120.78 (10)
C19—C18—H18119.9Cr2—O13—Cr2i96.48 (9)
C17—C18—H18119.9Cr1—O13—Cr2i96.25 (9)
C18—C19—C20120.9 (5)C29—O14—Cr2129.0 (2)
C18—C19—H19119.6C22i—O15—Cr4135.8 (2)
C20—C19—H19119.6C29—O16—Cr4137.2 (2)
C21—C20—C19119.2 (5)C43—O17—Cr488.3 (2)
C21—C20—H20120.4C43—O18—Cr489.1 (2)
C19—C20—H20120.4
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cr8(C7H5O2)16O4]·4C2H3N·2H2O
Mr2618.01
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)23.406 (5), 18.970 (4), 27.592 (6)
β (°) 94.730 (4)
V3)12210 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.86, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
50439, 12440, 8093
Rint0.052
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.147, 1.06
No. of reflections12440
No. of parameters778
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0686P)2 + 15.0742P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.52, 0.37

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cr1—O71.952 (2)Cr3—O51.965 (2)
Cr1—O81.959 (2)Cr3—O61.968 (2)
Cr1—O91.959 (2)Cr3—O31.977 (3)
Cr1—O1i1.970 (2)Cr3—O11.990 (2)
Cr1—O132.002 (2)Cr3—O42.014 (2)
Cr1—O12.013 (2)Cr3—O22.032 (2)
Cr2—O101.946 (2)Cr4—O121.940 (3)
Cr2—O141.952 (2)Cr4—O161.959 (3)
Cr2—O111.976 (2)Cr4—O151.969 (3)
Cr2—O131.977 (2)Cr4—O131.974 (2)
Cr2—O12.018 (2)Cr4—O182.018 (2)
Cr2—O13i2.021 (2)Cr4—O172.024 (3)
O7—Cr1—O885.61 (10)O5—Cr3—O388.02 (11)
O7—Cr1—O988.06 (10)O6—Cr3—O395.40 (11)
O8—Cr1—O988.77 (10)O5—Cr3—O194.50 (9)
O7—Cr1—O1i95.89 (9)O6—Cr3—O192.52 (10)
O9—Cr1—O1i95.51 (9)O3—Cr3—O196.85 (10)
O8—Cr1—O1394.78 (9)O5—Cr3—O486.10 (11)
O9—Cr1—O1391.58 (9)O6—Cr3—O486.36 (11)
O1i—Cr1—O1383.76 (9)O3—Cr3—O491.12 (10)
O7—Cr1—O196.94 (10)O5—Cr3—O286.34 (11)
O8—Cr1—O192.28 (9)O6—Cr3—O287.49 (10)
O1i—Cr1—O183.35 (9)O1—Cr3—O2107.15 (9)
O13—Cr1—O183.41 (9)O4—Cr3—O264.91 (10)
O10—Cr2—O1488.39 (10)O12—Cr4—O1687.99 (12)
O10—Cr2—O1187.24 (10)O12—Cr4—O1594.87 (12)
O14—Cr2—O1187.64 (10)O12—Cr4—O1394.39 (10)
O14—Cr2—O1395.79 (9)O16—Cr4—O1394.15 (9)
O11—Cr2—O1395.24 (9)O15—Cr4—O1393.72 (10)
O10—Cr2—O193.68 (9)O12—Cr4—O1892.38 (11)
O14—Cr2—O191.55 (9)O16—Cr4—O1885.32 (11)
O13—Cr2—O183.91 (8)O15—Cr4—O1886.45 (11)
O10—Cr2—O13i92.49 (9)O16—Cr4—O1784.67 (12)
O11—Cr2—O13i98.75 (9)O15—Cr4—O1789.56 (11)
O13—Cr2—O13i83.10 (9)O13—Cr4—O17108.25 (10)
O1—Cr2—O13i82.05 (8)O18—Cr4—O1764.93 (11)
Symmetry code: (i) x+2, y, z+1/2.
Comparison of mean coordinate bond lengths (Å) and ranges for coordinate bond lengths and angles (°) in (I) and [Cr8(PhCO2)16O4].5CH2Cl2 (CSD refcode HIPGIW) top
Cubane Cr positionsOuter Cr positions
Compound (I)Cr1Mean = 1.976 (2) ÅCr3Mean = 1.991 (2)
1.952 (2)–2.013 (2)1.965 (2)–2.032 (2)
83.35 (9)–96.9 (1)64.9 (1)–107.15 (9)
Cr2Mean = 1.982 (2)Cr4Mean = 1.981 (2)
1.946 (2)–2.021 (2)1.940 (3)–2.024 (3)
82.05 (8)–98.75 (9)64.9 (1)–108.3 (1)
CSD–HIPGIWCr1Mean = 1.989 (8)Cr5Mean = 1.987 (8)
1.968 (8)–2.022 (7)1.956 (8)–2.023 (8)
82.8 (3)–96.9 (3)65.1 (3)–106.4 (3)
Cr2Mean = 1.983 (8)Cr6Mean = 1.992 (9)
1.960 (7)–2.017 (8)1.959 (9)–2.055 (9)
82.9 (3)–97.4 (3)64.9 (3)–109.0 (3)
Cr3Mean = 1.986 (8)Cr7Mean = 1.988 (8)
1.952 (8)–2.039 (8)1.953 (7)–2.045 (9)
81.7 (3)–99.1 (3)64.8 (3)–105.3 (3)
Cr4Mean = 1.979 (8)Cr8Mean = 1.980 (9)
1.928 (7)–2.038 (8)1.939 (8)–2.044 (9)
82.5 (3)–97.8 (3)64.8 (4)–109.4 (3)
Only cis O—Cr—O angles (ideally 90°) are reported. [Reference for HIPGIW?]
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds