Download citation
Download citation
link to html
Bis(hinokitiolato)copper(II), Cu(hino)2, exhibits both anti­bacterial and anti­viral properties, and has been previously shown to exist in two modifications. A third modification has now been confirmed, namely tetra­kis(μ2-3-isopropyl-7-oxocyclo­hepta-1,3,5-trien-1-olato)bis­(3-isopropyl-7-oxocyclohepta-1,3,5-trien-1-olato)tricopper(II)–bis­(μ2-3-isopropyl-7-oxocyclo­hepta-1,3,5-trien-1-olato)bis­[(3-isopropyl-7-oxocyclohepta-1,3,5-trien-1-olato)copper(II)] (1/1), [Cu(C10H11O2)2]3·[Cu(C10H11O2)2]2, where 3-isopropyl-7-oxocyclo­hepta-1,3,5-trien-1-olate is the systematic name for the hinokitiolate anion. This new modification is composed of discrete [cis-Cu(hino)2]2[trans-Cu(hino)2] trimers and [cis-Cu(hino)2]2 dimers. The Cu atoms are bridged by μ2-O atoms from the hinokitiolate ligands to give distorted square-pyramidal and distorted octa­hedral CuII coordination environments. Hence, the CuII environments are CuO5/CuO6/CuO5 for the trimer and CuO5/CuO5 for the dimer. Each trimer and dimer has crystallographically imposed inversion symmetry. The trimer has never been observed before, the dimer has been seen only once before, and the combination of the two together in the same lattice is unprecedented. The CuO5 cores exhibit four strong basal Cu—O bonds [1.915 (2)–1.931 (2) Å] and one weak apical Cu—O bond [2.652 (2)–2.658 (2) Å]. The CuO6 core exhibits four strong equatorial Cu—O bonds [1.922 (2)–1.929 (2) Å] and two very weak axial Cu—O bonds [2.911 (3) Å]. The bite angles for the chelating hinokitiolate ligands range from 83.13 (11) to 83.90 (10)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110015581/eg3045sup1.cif
Contains datablocks global, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110015581/eg3045IIIsup2.hkl
Contains datablock III

CCDC reference: 782520

Comment top

Hinokitiol (β-thujaplicin) and metal complexes of the hinokitiolate anion have been known for 74 years (Nozoe, 1936). The former is a natural product and of interest for its broad range of biological activities, e.g. antitumor, antibacterial, antifungal and insecticidal properties (Inamori et al., 1993, 2000; Arima et al., 2003; Morita et al., 2003), while the latter metal complexes exhibit antiviral and antimicrobial properties (Miyamoto et al., 1998; Nomiya et al., 2009). Among these compounds, the Cu complex reported by Nozoe in 1936 is arguably the most structurally intriguing. In 2002, initial insights into the `unusual structural chemistry of CuII hinokitiol' [also referred to as bis(hinokitiolato)copper(II) or Cu(hino)2] were provided by Molloy and co-workers, who found that Cu(hino)2 could be crystallized in two modifications (Barret et al., 2002). Modification (I) turned out to be monomeric trans-Cu(hino)2, while modification (II) is composed of monomers and dimers, i.e. [cis-Cu(hino)2]2.[trans-Cu(hino)2]2. trans-Cu(hino)2. Subsequent studies have further revealed that (I) is polymorphic (Barret et al., 2002; Nomiya et al., 2004; Arvanitis et al., 2004; Ho et al., 2009). A third modification, (III), has been discovered and is reported here. This new modification is composed of dimers and trimers, i.e. [cis-Cu(hino)2]2[trans-Cu(hino)2]. [cis-Cu(hino)2]2. Views of the trimer and dimer are given in Figs. 1 and 2, respectively, and selected bond distances and bond valences are summarized in Table 1.

Trimeric CuII hinokitiol has never been observed before and therefore constitutes the most notable feature of this study. As shown in Fig. 1, the trimer consists of a single planar trans-Cu(hino)2 moiety sandwiched between two visibly twisted cis-Cu(hino)2 moieties. Atom Cu1 is situated at Wyckoff position 1h [space group P1 (No. 2)], requiring that the trimer possess crystallographically imposed inversion symmetry. Atoms Cu1, O1, O2, O1i and O2i are also required by symmetry to be exactly coplanar [symmetry code: (i) -x + 1, -y + 1, -z + 1.] In contrast, atoms Cu2, O3, O4, O5 and O6 in the nonplanar cis moieties exhibit displacements of -0.109 (1), 0.168 (1), -0.111 (1), -0.114 (1) and 0.166 (1) Å, respectively, from the least-squares plane defined by those atoms. The end-to-end distances for the Cu(hino)2 moieties (excluding the isopropyl groups) are 11.358 (7) and 11.274 (6) Å for C4···C4i and C14···C24, respectively. The shortening of the C14···C24 distance is consistent with the cis moieties being slightly bowed in addition to being twisted. Four of the six hinokitiolate ligands participate in asymmetric µ2-O bridges to yield the final trimeric structure, with atom Cu1 having a distorted octahedral CuO6 coordination geometry and atom Cu2 having a distorted CuO5 square-pyramidal coordination environment. The twisting and bowing of the cis moieties help to facilitate the bridge bonding, and to alleviate steric repulsions between the C21–C27 and C21i–C27i cycloheptatriene rings and atoms H8 and H8i of the central trans moiety, respectively.

The dimeric CuII hinokitiol component in (III), while less novel than the cis,trans,cis trimer, is nevertheless also unusual, having been observed only once before, i.e. in modification (II). The cis,cis dimers in (II) and (III) are quite synonymous, but the Cu atoms in both dimers are probably better described as five-coordinate with square-pyramidal environments, rather than `four-coordinate and in a square-planar environment' (Barret et al., 2002). In both (II) and (III), the cis,cis dimers possess crystallographically imposed inversion symmetry. For (III), the dimer is centered on Wyckoff position 1a, i.e. the midpoint between atoms Cu3 and Cu3ii in Fig. 2 [symmetry code: (ii) -x, -y, -z + 2]. Atom Cu3 is 0.105 (1) Å above the least-squares plane defined by atoms O7–O10 and displaced towards atom O9ii. The C34···C44 end-to-end distance is 11.166 (6) Å, indicating that the cis moieties in the dimer are even more bowed than those in the trimer. In contrast, atom Cu1 in (II) is coplanar with atoms O1–O4. The displacements from the least-squares plane defined by these five atoms are -0.103 (1), -0.088 (2), 0.145 (2), 0.141 (2) and -0.095 (2) Å, respectively. The cis moieties in (II) are, however, also bowed, with the C5···C15 end-to-end distance being 11.176 (5) Å. These observations are more consistent with CuO5 cores and covalent bonding, rather than CuO4 cores and a fifth axial intermolecular interaction.

A bond-valence analysis (Brown, 2002, 2009) of the CuOx bonding in the cis,trans,cis trimer and cis,cis dimer is given in Table 1. The CuO6 values in (III) are compared with those for bis(tropolonato)copper(II) [Cu(trop)2], which is most often viewed as a square-planar CuO4 monomer (Robertson, 1951; Macintyre et al., 1966; Berg et al., 1978). The latter view has, however, been challenged by a subsequent claim that Cu(trop)2 `exists as a sandwich-type dimer' (Hasegawa et al., 1997); a claim reiterated in a recent review article (Vigato et al., 2009). Suffice to say that it is crystallographically impossible for discrete dimers to exist in that 1997 determination. Cu(trop)2 is either a solid-state monomer or, as entertained below, possibly a solid-state polymer with CuO6 bonding. Finally, the CuO5 values for (III) are compared with those for (II). For completeness, the trans,trans dimer values for (II) are also provided.

The CuO6 equatorial bonds in the trans moiety of the trimer are in the range 1.922 (2)–1.929 (2) Å and are noticably longer than the range of 1.900 (2)–1.918 (2) Å observed in the trans-Cu(hino)2 monomer, (I). This lengthening of the Cu—O bonds is consistent with oligomerization; the Cu—O bonds in the trans,trans dimer in (II) also experience a similar lengthening [1.915 (2)–1.939 (2) Å]. The CuO6 axial bonds in (III) are long at 2.911 (3) Å, while those in Cu(trop)2 are even longer at 3.144 (2) Å. The comparable literature values for CuO6 equatorial and axial bonds are 1.908 (2)–1.948 (6) and 2.797 (2)–2.948 (2) Å, respectively (Table 2). The CuO6 average bond valence, bond-valence sum, s/s' and distortion index ΔR are 0.355, 2.128, 0.101–1.462 and 0.191, respectively, for (III), and 0.358, 2.150, 0.053–1.475 and 0.266, respectively, for Cu(trop)2, while the literature s/s' and ΔR values are 0.07–1.50 and 0.048–0.146, respectively, for Jahn–Teller distorted CuO6 octahedra (Brown, 2006). All of the numerical values for (III) are in excellent agreement with the presence of a Jahn–Teller elongated CuO6 octahedron. Cu(trop)2, on the other hand, is at or beyond the limits of such a description. While axial bonds beyond 3 Å do potentially exist (see Table 2), Cu(trop)2 is probably better described as a square-planar CuO4 monomer.

The CuO5 basal bonds in the cis moieties in both the trimer and dimer in (III) are in the range 1.915 (3)–1.931 (3) Å and are comparable with the range of 1.919 (2)–1.933 (2) Å observed in the cis,cis dimer in (II). The CuO5 apical bonds in (III) are 2.658 (3) and 2.652 (3) Å for the trimer and dimer, respectively, but only 2.476 (2) Å in the cis,cis dimer in (II). The comparable literature values for CuO5 basal and apical bonds are 1.898 (3)–1.962 (3) and 2.392 (3)–2.878 (3) Å, respectively (Table 2). The CuO5 average bond valence, bond-valence sum, s/s' and distortion index ΔR are 0.429, 2.157, 0.167–1.226 and 0.077, respectively, for (III), and 0.431, 2.154, 0.267–1.205 and 0.048, respectively, for (II). All of these values are in excellent agreement with the cis moieties in (III) having distorted CuO5 square-pyramidal coordination geometries.

The trimers form hydrogen-bonded ribbons in the solid state via the two interactions C5—H5···O5iii [C5—H5 = 0.95, H5···O5iii = 2.40 and C5···O5iii = 3.328 (4) Å, and C5—H5···O5iii = 165.2°; symmetry code: (iii) -x, -y +1, -z + 1] and C6—H6···O3iii [C6—H6 = 0.95, H6···O3iii = 2.43 and C6···O3iii = 3.302 (4) Å, and C6—H6···O3iii = 153.2°]. Chains of dimers are present, but there are no dimer···dimer hydrogen-bonding, ππ stacking or Cu···π interactions involved. The closest dimer···dimer contact is Cu3···C34iv = 3.399 (4) Å [symmetry code: (iv) -x + 1, -y, -z + 2]. Finally, the ribbons of trimers and chains of dimers are linked via the two interactions C24—H2···O8v4 [C24—H24 = 0.95, H24···O8v = 2.52 and C24···O8v = 3.446 (5) Å, and C24—H24···O8v = 164.3°; symmetry code: (v) x, y + 1, z] and C45—H45···O3 [C45—H45 = 0.95, H45···O3 = 2.58 and C45···O3 = 3.397 (5) Å, and C45—H45···O3 = 145.0°].

In summary, structural details have been presented for a third modification of the bioactive substance CuII hinokitiol. This new modification, (III), is [cis-Cu(hino)2]2[trans-Cu(hino)2]. [cis-Cu(hino)2]2, containing a previously undocumented cis,trans,cis trimer. The results from a bond-valence analysis are consistent with the central CuII atom having a Jahn–Teller distorted octahedral environment. The `unusual structural chemistry of CuII hinokitiol' now encompasses six crystalline forms, i.e. modification (I) with four forms, (II) with one form and (III) with one form. The trans:cis ratios are 1:0, 3:2 and 1:4 for modifications (I)–(III), respectively, making (III) the most cis-enriched modification so far uncovered.

Related literature top

For related literature, see: Arima et al. (2003); Arvanitis et al. (2004); Barret et al. (2002); Berg et al. (1978); Brown (2002, 2006, 2009); Hasegawa et al. (1997); Ho et al. (2009); Inamori et al. (1993, 2000); Macintyre et al. (1966); Miyamoto et al. (1998); Morita et al. (2003); Nomiya et al. (2004, 2009); Nozoe (1936); Robertson (1951); Vigato et al. (2009).

Experimental top

Modification (III) was isolated from a mixture of assorted crystals of Cu(hino)2, prepared as described by Arvanitis et al. (2004).

Refinement top

All H atoms were allowed to ride on their respective C atoms, with C—H = 0.95, 1.00 and 0.98 Å for the cycloheptatriene, methine and methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for the cycloheptatriene and methine H atoms, or 1.5Ueq(C) for the methyl H atoms. Bond-valence parameters for Cu and O were taken from bvparm2009.cif and the calculations made with the bond-valence calculator Valence 2.0 distributed by Brown (https://www.ccp14.ac.uk/ccp/web-mirrors/i_d_brown).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Version 2.02; Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cis,trans,cis trimer in modification (III). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. The cis,cis dimer in modification (III). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (ii) -x, -y, -z + 2.]
tetrakis(µ2-3-isopropyl-7-oxocyclohepta-1,3,5-trien-1-olato)-1:2κ3O1,O7:O7;1:2κ3O1:O1,O7;2:3κ3O1,O7:O1;2:3κ3O7:O1,O7-bis(3-isopropyl-7-oxocyclohepta-1,3,5-trienolato)-1κ2O1,O7;3κ2O1,O7-tricopper(II)–bis(µ-3-isopropyl-7-oxocyclohepta-1,3,5-trien-1-olato)-κ3O1,O7:O7;κ3O7:O1,O7-bis[(3-isopropyl-7-oxocyclohepta-1,3,5-trien-1-olato-κ2O,O')copper(II)] (1/1) top
Crystal data top
[Cu(C10H11O2)2]3·[Cu(C10H11O2)2]2Z = 1
Mr = 1949.58F(000) = 1015
Triclinic, P1Dx = 1.427 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6263 (2) ÅCell parameters from 10341 reflections
b = 12.8911 (4) Åθ = 1.1–27.5°
c = 19.4499 (6) ŵ = 1.22 mm1
α = 72.847 (2)°T = 200 K
β = 79.812 (2)°Blade, grey-green
γ = 88.897 (2)°0.30 × 0.15 × 0.03 mm
V = 2268.50 (11) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
10341 independent reflections
Radiation source: fine-focus sealed tube6392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω scans; 500 1.0° rotationsθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.710, Tmax = 0.970k = 1616
34847 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0699P)2 + 1.131P]
where P = (Fo2 + 2Fc2)/3
10341 reflections(Δ/σ)max = 0.001
575 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Cu(C10H11O2)2]3·[Cu(C10H11O2)2]2γ = 88.897 (2)°
Mr = 1949.58V = 2268.50 (11) Å3
Triclinic, P1Z = 1
a = 9.6263 (2) ÅMo Kα radiation
b = 12.8911 (4) ŵ = 1.22 mm1
c = 19.4499 (6) ÅT = 200 K
α = 72.847 (2)°0.30 × 0.15 × 0.03 mm
β = 79.812 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
10341 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
6392 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.970Rint = 0.074
34847 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.01Δρmax = 1.10 e Å3
10341 reflectionsΔρmin = 0.61 e Å3
575 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.02947 (16)
O10.5639 (2)0.3990 (2)0.44608 (14)0.0333 (6)
O20.3363 (2)0.5060 (2)0.45516 (13)0.0299 (6)
C10.4668 (3)0.3743 (3)0.41359 (19)0.0287 (8)
C20.4920 (3)0.2927 (3)0.38036 (19)0.0301 (8)
H20.58140.26120.38430.036*
C30.4123 (3)0.2473 (3)0.3421 (2)0.0302 (8)
C40.2791 (4)0.2791 (3)0.3277 (2)0.0345 (9)
H40.23820.24030.30120.041*
C50.1976 (4)0.3597 (3)0.3465 (2)0.0344 (9)
H50.10970.36860.33000.041*
C60.2231 (3)0.4289 (3)0.38510 (19)0.0308 (8)
H60.15130.47920.39010.037*
C70.3393 (3)0.4364 (3)0.41824 (19)0.0281 (8)
C80.4801 (4)0.1531 (3)0.3183 (2)0.0390 (10)
H80.58250.17380.29980.047*
C90.4727 (5)0.0519 (4)0.3841 (3)0.0562 (12)
H9A0.51790.06820.42130.084*
H9B0.52170.00690.36850.084*
H9C0.37360.02950.40470.084*
C100.4235 (5)0.1278 (4)0.2567 (3)0.0560 (13)
H10A0.41560.19550.21820.084*
H10B0.33020.09130.27570.084*
H10C0.48820.08020.23640.084*
Cu20.22722 (4)0.48975 (4)0.65615 (2)0.03157 (14)
O30.0913 (2)0.4638 (2)0.60138 (14)0.0322 (6)
O40.3175 (2)0.3681 (2)0.63143 (14)0.0345 (6)
O50.1353 (2)0.6115 (2)0.67941 (14)0.0340 (6)
O60.3252 (3)0.4905 (2)0.73454 (15)0.0379 (6)
C110.1100 (3)0.3752 (3)0.58307 (19)0.0275 (8)
C120.0092 (3)0.3390 (3)0.55120 (19)0.0286 (8)
H120.06710.38650.54360.034*
C130.0023 (4)0.2475 (3)0.52832 (19)0.0309 (8)
C140.0985 (4)0.1678 (3)0.5284 (2)0.0358 (9)
H140.07490.11000.51110.043*
C150.2275 (4)0.1625 (3)0.5504 (2)0.0367 (9)
H150.28200.10310.54320.044*
C160.2913 (4)0.2288 (3)0.5811 (2)0.0333 (9)
H160.38280.20850.59100.040*
C170.2414 (3)0.3206 (3)0.59971 (19)0.0282 (8)
C180.1398 (4)0.2369 (3)0.5019 (2)0.0368 (9)
H180.15550.30920.46760.044*
C190.1406 (4)0.1529 (4)0.4602 (3)0.0507 (12)
H19A0.05910.16740.42010.076*
H19B0.22790.15780.44020.076*
H19C0.13510.07980.49350.076*
C200.2628 (4)0.2133 (4)0.5661 (3)0.0507 (12)
H20A0.35070.20610.54890.076*
H20B0.26940.27310.58800.076*
H20C0.24730.14550.60280.076*
C210.1803 (3)0.6385 (3)0.7315 (2)0.0308 (8)
C220.1265 (4)0.7295 (3)0.7500 (2)0.0362 (9)
H220.05560.76360.72360.043*
C230.1570 (4)0.7805 (3)0.8004 (2)0.0384 (9)
C240.2505 (4)0.7446 (4)0.8484 (2)0.0459 (11)
H240.25890.78810.87940.055*
C250.3332 (4)0.6542 (4)0.8575 (2)0.0471 (11)
H250.38800.64440.89490.057*
C260.3496 (4)0.5761 (4)0.8216 (2)0.0427 (10)
H260.41260.52060.83840.051*
C270.2870 (4)0.5664 (3)0.7638 (2)0.0326 (9)
C280.0827 (5)0.8858 (4)0.8015 (2)0.0514 (12)
H280.12500.91580.83540.062*
C290.1104 (8)0.9702 (5)0.7277 (3)0.098 (2)
H29A0.21200.97640.70820.147*
H29B0.07721.04040.73260.147*
H29C0.06000.94850.69420.147*
C300.0744 (5)0.8652 (4)0.8333 (3)0.0662 (15)
H30A0.08640.81220.88200.099*
H30B0.12070.83670.80130.099*
H30C0.11700.93340.83700.099*
Cu30.17278 (4)0.02271 (4)0.96179 (2)0.03381 (14)
O70.2242 (2)0.0406 (2)1.05561 (13)0.0335 (6)
O80.3207 (3)0.0632 (2)0.93001 (14)0.0373 (6)
O90.0403 (2)0.1228 (2)0.99115 (13)0.0345 (6)
O100.1364 (3)0.0970 (2)0.86581 (14)0.0372 (6)
C310.3330 (3)0.0999 (3)1.0536 (2)0.0290 (8)
C320.3849 (3)0.1480 (3)1.1183 (2)0.0318 (8)
H320.32890.13551.16030.038*
C330.5010 (4)0.2099 (3)1.1334 (2)0.0324 (8)
C340.6006 (4)0.2409 (3)1.0828 (2)0.0392 (9)
H340.67500.28271.10190.047*
C350.6061 (4)0.2193 (4)1.0081 (2)0.0427 (10)
H350.68560.24680.98340.051*
C360.5140 (4)0.1639 (4)0.9638 (2)0.0406 (10)
H360.53840.16220.91400.049*
C370.3914 (4)0.1103 (3)0.9806 (2)0.0312 (8)
C380.5224 (4)0.2463 (3)1.2125 (2)0.0351 (9)
H380.61460.28341.21380.042*
C390.5314 (4)0.1503 (4)1.2427 (2)0.0442 (10)
H39A0.59990.09551.20870.066*
H39B0.56160.17551.29030.066*
H39C0.43840.11841.24860.066*
C400.4074 (4)0.3286 (4)1.2609 (2)0.0490 (11)
H40A0.40180.38861.24000.073*
H40B0.31650.29311.26370.073*
H40C0.43000.35681.31010.073*
C410.0096 (3)0.1981 (3)0.9356 (2)0.0313 (8)
C420.0669 (4)0.2856 (3)0.9480 (2)0.0348 (9)
H420.08950.28190.99830.042*
C430.1172 (4)0.3774 (3)0.9021 (2)0.0371 (9)
C440.1036 (4)0.4003 (4)0.8260 (2)0.0444 (10)
H440.14510.46540.80220.053*
C450.0390 (4)0.3424 (4)0.7811 (2)0.0432 (10)
H450.04610.37200.73110.052*
C460.0350 (4)0.2477 (3)0.7972 (2)0.0401 (10)
H460.07390.22420.75620.048*
C470.0613 (4)0.1813 (3)0.8643 (2)0.0336 (9)
C480.1910 (4)0.4585 (3)0.9382 (2)0.0446 (10)
H480.20070.42530.99230.053*
C490.1021 (6)0.5623 (5)0.9176 (4)0.098 (2)
H49A0.13810.60500.95070.147*
H49B0.10680.60450.86720.147*
H49C0.00380.54450.92160.147*
C500.3371 (5)0.4816 (6)0.9216 (4)0.0860 (19)
H50A0.39180.41310.93430.129*
H50B0.33100.51930.86940.129*
H50C0.38390.52760.95030.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0273 (3)0.0325 (4)0.0344 (4)0.0024 (2)0.0074 (2)0.0177 (3)
O10.0275 (12)0.0393 (16)0.0420 (16)0.0054 (11)0.0106 (11)0.0233 (13)
O20.0287 (12)0.0315 (15)0.0338 (14)0.0008 (10)0.0077 (10)0.0152 (12)
C10.0291 (17)0.028 (2)0.0279 (19)0.0013 (14)0.0057 (14)0.0068 (17)
C20.0265 (17)0.032 (2)0.034 (2)0.0021 (15)0.0060 (14)0.0132 (18)
C30.0317 (18)0.028 (2)0.032 (2)0.0004 (15)0.0026 (15)0.0127 (17)
C40.0332 (18)0.039 (2)0.040 (2)0.0015 (16)0.0091 (16)0.0235 (19)
C50.0296 (18)0.039 (2)0.038 (2)0.0017 (16)0.0124 (15)0.0134 (19)
C60.0252 (16)0.035 (2)0.034 (2)0.0051 (15)0.0065 (14)0.0123 (18)
C70.0269 (17)0.031 (2)0.0266 (19)0.0006 (14)0.0031 (14)0.0093 (17)
C80.0352 (19)0.036 (2)0.051 (3)0.0029 (17)0.0059 (17)0.023 (2)
C90.068 (3)0.035 (3)0.070 (3)0.009 (2)0.018 (2)0.020 (3)
C100.060 (3)0.060 (3)0.069 (3)0.009 (2)0.015 (2)0.048 (3)
Cu20.0298 (2)0.0332 (3)0.0385 (3)0.00492 (18)0.01134 (18)0.0183 (2)
O30.0310 (12)0.0341 (16)0.0378 (15)0.0040 (11)0.0120 (10)0.0169 (13)
O40.0311 (12)0.0371 (16)0.0425 (16)0.0066 (11)0.0140 (11)0.0190 (13)
O50.0325 (12)0.0412 (16)0.0372 (15)0.0074 (11)0.0128 (11)0.0220 (13)
O60.0401 (14)0.0381 (17)0.0444 (16)0.0105 (12)0.0178 (12)0.0202 (14)
C110.0269 (16)0.030 (2)0.0253 (19)0.0020 (14)0.0027 (14)0.0093 (17)
C120.0265 (17)0.028 (2)0.032 (2)0.0042 (14)0.0049 (14)0.0099 (17)
C130.0331 (18)0.032 (2)0.028 (2)0.0010 (15)0.0052 (15)0.0086 (17)
C140.042 (2)0.029 (2)0.042 (2)0.0022 (16)0.0129 (17)0.0162 (19)
C150.045 (2)0.032 (2)0.040 (2)0.0127 (17)0.0148 (17)0.0164 (19)
C160.0309 (18)0.034 (2)0.039 (2)0.0064 (15)0.0089 (15)0.0160 (19)
C170.0288 (17)0.031 (2)0.0249 (19)0.0002 (15)0.0055 (14)0.0085 (16)
C180.039 (2)0.032 (2)0.046 (2)0.0029 (16)0.0170 (17)0.017 (2)
C190.047 (2)0.053 (3)0.068 (3)0.006 (2)0.026 (2)0.034 (3)
C200.035 (2)0.046 (3)0.075 (3)0.0046 (18)0.006 (2)0.027 (3)
C210.0298 (17)0.034 (2)0.030 (2)0.0003 (15)0.0029 (14)0.0138 (18)
C220.0347 (19)0.039 (2)0.038 (2)0.0035 (16)0.0078 (16)0.0156 (19)
C230.042 (2)0.038 (2)0.037 (2)0.0084 (17)0.0044 (17)0.020 (2)
C240.048 (2)0.060 (3)0.037 (2)0.008 (2)0.0030 (18)0.028 (2)
C250.053 (2)0.056 (3)0.037 (2)0.001 (2)0.0152 (19)0.017 (2)
C260.044 (2)0.050 (3)0.039 (2)0.0015 (19)0.0151 (18)0.016 (2)
C270.0323 (18)0.035 (2)0.033 (2)0.0024 (16)0.0050 (15)0.0135 (18)
C280.069 (3)0.046 (3)0.049 (3)0.000 (2)0.010 (2)0.029 (2)
C290.166 (6)0.038 (3)0.074 (4)0.015 (4)0.009 (4)0.011 (3)
C300.060 (3)0.058 (3)0.091 (4)0.017 (2)0.008 (3)0.043 (3)
Cu30.0364 (2)0.0356 (3)0.0318 (3)0.00532 (19)0.01016 (19)0.0115 (2)
O70.0332 (13)0.0394 (16)0.0320 (14)0.0098 (11)0.0093 (10)0.0153 (13)
O80.0449 (14)0.0406 (17)0.0310 (14)0.0067 (12)0.0116 (11)0.0154 (13)
O90.0394 (14)0.0362 (16)0.0272 (14)0.0047 (11)0.0100 (11)0.0061 (12)
O100.0437 (14)0.0400 (17)0.0290 (14)0.0053 (12)0.0083 (11)0.0112 (13)
C310.0288 (17)0.025 (2)0.035 (2)0.0009 (14)0.0080 (15)0.0114 (17)
C320.0329 (18)0.037 (2)0.0269 (19)0.0026 (16)0.0055 (15)0.0112 (17)
C330.0306 (18)0.029 (2)0.040 (2)0.0010 (15)0.0059 (15)0.0138 (18)
C340.035 (2)0.038 (2)0.046 (3)0.0081 (17)0.0101 (17)0.013 (2)
C350.0336 (19)0.055 (3)0.042 (2)0.0085 (18)0.0007 (17)0.022 (2)
C360.037 (2)0.053 (3)0.036 (2)0.0055 (18)0.0072 (17)0.020 (2)
C370.0327 (18)0.032 (2)0.032 (2)0.0041 (15)0.0066 (15)0.0135 (18)
C380.0344 (19)0.035 (2)0.036 (2)0.0102 (16)0.0115 (16)0.0086 (18)
C390.049 (2)0.048 (3)0.042 (2)0.0075 (19)0.0164 (19)0.018 (2)
C400.052 (2)0.049 (3)0.041 (2)0.000 (2)0.0111 (19)0.005 (2)
C410.0298 (17)0.035 (2)0.031 (2)0.0041 (15)0.0064 (15)0.0108 (18)
C420.0363 (19)0.035 (2)0.033 (2)0.0027 (16)0.0049 (16)0.0093 (18)
C430.0303 (18)0.034 (2)0.044 (2)0.0014 (16)0.0056 (16)0.0063 (19)
C440.045 (2)0.034 (2)0.049 (3)0.0001 (18)0.0080 (19)0.005 (2)
C450.047 (2)0.050 (3)0.029 (2)0.001 (2)0.0104 (17)0.003 (2)
C460.044 (2)0.043 (3)0.033 (2)0.0013 (18)0.0064 (17)0.011 (2)
C470.0324 (18)0.034 (2)0.036 (2)0.0011 (16)0.0102 (15)0.0111 (18)
C480.043 (2)0.037 (3)0.049 (3)0.0045 (18)0.0025 (18)0.009 (2)
C490.082 (4)0.069 (4)0.152 (7)0.011 (3)0.019 (4)0.067 (5)
C500.052 (3)0.109 (5)0.109 (5)0.028 (3)0.015 (3)0.052 (4)
Geometric parameters (Å, º) top
Cu1—O2i1.922 (2)C25—C261.379 (6)
Cu1—O21.922 (2)C25—H250.9500
Cu1—O11.929 (2)C26—C271.402 (5)
Cu1—O1i1.929 (2)C26—H260.9500
O1—C11.309 (4)C28—C291.506 (7)
O2—C71.301 (4)C28—C301.526 (6)
C1—C21.385 (5)C28—H281.0000
C1—C71.457 (5)C29—H29A0.9800
C2—C31.401 (5)C29—H29B0.9800
C2—H20.9500C29—H29C0.9800
C3—C41.390 (5)C30—H30A0.9800
C3—C81.519 (5)C30—H30B0.9800
C4—C51.386 (5)C30—H30C0.9800
C4—H40.9500Cu3—O81.915 (3)
C5—C61.374 (5)Cu3—O71.915 (2)
C5—H50.9500Cu3—O101.921 (3)
C6—C71.405 (5)Cu3—O91.931 (3)
C6—H60.9500O7—C311.286 (4)
C8—C101.520 (5)O8—C371.293 (4)
C8—C91.527 (6)O9—C411.297 (4)
C8—H81.0000O10—C471.290 (5)
C9—H9A0.9800C31—C321.402 (5)
C9—H9B0.9800C31—C371.475 (5)
C9—H9C0.9800C32—C331.384 (5)
C10—H10A0.9800C32—H320.9500
C10—H10B0.9800C33—C341.390 (5)
C10—H10C0.9800C33—C381.521 (5)
Cu2—O51.917 (3)C34—C351.387 (6)
Cu2—O31.918 (2)C34—H340.9500
Cu2—O41.921 (3)C35—C361.386 (5)
Cu2—O61.931 (2)C35—H350.9500
O3—C111.294 (4)C36—C371.393 (5)
O4—C171.301 (4)C36—H360.9500
O5—C211.305 (4)C38—C401.524 (5)
O6—C271.287 (4)C38—C391.529 (6)
C11—C121.395 (5)C38—H381.0000
C11—C171.474 (5)C39—H39A0.9800
C12—C131.391 (5)C39—H39B0.9800
C12—H120.9500C39—H39C0.9800
C13—C141.399 (5)C40—H40A0.9800
C13—C181.524 (5)C40—H40B0.9800
C14—C151.377 (5)C40—H40C0.9800
C14—H140.9500C41—C421.392 (5)
C15—C161.385 (5)C41—C471.465 (5)
C15—H150.9500C42—C431.393 (5)
C16—C171.390 (5)C42—H420.9500
C16—H160.9500C43—C441.402 (6)
C18—C201.524 (6)C43—C481.524 (6)
C18—C191.534 (5)C44—C451.372 (6)
C18—H181.0000C44—H440.9500
C19—H19A0.9800C45—C461.384 (6)
C19—H19B0.9800C45—H450.9500
C19—H19C0.9800C46—C471.396 (5)
C20—H20A0.9800C46—H460.9500
C20—H20B0.9800C48—C501.504 (6)
C20—H20C0.9800C48—C491.513 (7)
C21—C221.391 (5)C48—H481.0000
C21—C271.470 (5)C49—H49A0.9800
C22—C231.402 (5)C49—H49B0.9800
C22—H220.9500C49—H49C0.9800
C23—C241.387 (6)C50—H50A0.9800
C23—C281.527 (6)C50—H50B0.9800
C24—C251.383 (6)C50—H50C0.9800
C24—H240.9500
O2i—Cu1—O2180.000 (1)C25—C26—H26115.2
O2i—Cu1—O196.10 (10)C27—C26—H26115.2
O2—Cu1—O183.90 (10)O6—C27—C26119.3 (4)
O2i—Cu1—O1i83.90 (10)O6—C27—C21115.5 (3)
O2—Cu1—O1i96.10 (10)C26—C27—C21125.2 (4)
O1—Cu1—O1i180.00 (12)C29—C28—C30112.8 (5)
C1—O1—Cu1112.5 (2)C29—C28—C23112.0 (4)
C7—O2—Cu1112.3 (2)C30—C28—C23111.7 (4)
O1—C1—C2118.7 (3)C29—C28—H28106.6
O1—C1—C7114.6 (3)C30—C28—H28106.6
C2—C1—C7126.7 (3)C23—C28—H28106.6
C1—C2—C3133.0 (3)C28—C29—H29A109.5
C1—C2—H2113.5C28—C29—H29B109.5
C3—C2—H2113.5H29A—C29—H29B109.5
C4—C3—C2125.3 (3)C28—C29—H29C109.5
C4—C3—C8119.9 (3)H29A—C29—H29C109.5
C2—C3—C8114.7 (3)H29B—C29—H29C109.5
C5—C4—C3129.0 (3)C28—C30—H30A109.5
C5—C4—H4115.5C28—C30—H30B109.5
C3—C4—H4115.5H30A—C30—H30B109.5
C6—C5—C4130.6 (3)C28—C30—H30C109.5
C6—C5—H5114.7H30A—C30—H30C109.5
C4—C5—H5114.7H30B—C30—H30C109.5
C5—C6—C7129.7 (3)O8—Cu3—O783.64 (10)
C5—C6—H6115.2O8—Cu3—O1095.74 (11)
C7—C6—H6115.2O7—Cu3—O10174.19 (11)
O2—C7—C6118.3 (3)O8—Cu3—O9173.28 (11)
O2—C7—C1116.1 (3)O7—Cu3—O996.45 (10)
C6—C7—C1125.6 (3)O10—Cu3—O983.49 (11)
C3—C8—C10115.2 (3)C31—O7—Cu3113.4 (2)
C3—C8—C9110.3 (3)C37—O8—Cu3112.9 (2)
C10—C8—C9110.8 (4)C41—O9—Cu3112.2 (2)
C3—C8—H8106.7C47—O10—Cu3112.9 (2)
C10—C8—H8106.7O7—C31—C32119.2 (3)
C9—C8—H8106.7O7—C31—C37114.7 (3)
C8—C9—H9A109.5C32—C31—C37126.1 (3)
C8—C9—H9B109.5C33—C32—C31133.1 (4)
H9A—C9—H9B109.5C33—C32—H32113.4
C8—C9—H9C109.5C31—C32—H32113.4
H9A—C9—H9C109.5C32—C33—C34126.0 (4)
H9B—C9—H9C109.5C32—C33—C38117.0 (3)
C8—C10—H10A109.5C34—C33—C38117.0 (3)
C8—C10—H10B109.5C35—C34—C33128.8 (4)
H10A—C10—H10B109.5C35—C34—H34115.6
C8—C10—H10C109.5C33—C34—H34115.6
H10A—C10—H10C109.5C36—C35—C34130.3 (4)
H10B—C10—H10C109.5C36—C35—H35114.9
O5—Cu2—O395.59 (10)C34—C35—H35114.9
O5—Cu2—O4178.97 (10)C35—C36—C37130.4 (4)
O3—Cu2—O483.44 (10)C35—C36—H36114.8
O5—Cu2—O683.13 (11)C37—C36—H36114.8
O3—Cu2—O6163.45 (11)O8—C37—C36120.0 (3)
O4—Cu2—O697.90 (11)O8—C37—C31114.8 (3)
C11—O3—Cu2113.6 (2)C36—C37—C31125.2 (3)
C17—O4—Cu2112.9 (2)C33—C38—C40111.4 (3)
C21—O5—Cu2114.1 (2)C33—C38—C39112.0 (3)
C27—O6—Cu2113.4 (2)C40—C38—C39110.7 (3)
O3—C11—C12119.8 (3)C33—C38—H38107.5
O3—C11—C17114.2 (3)C40—C38—H38107.5
C12—C11—C17126.0 (3)C39—C38—H38107.5
C13—C12—C11132.9 (3)C38—C39—H39A109.5
C13—C12—H12113.5C38—C39—H39B109.5
C11—C12—H12113.5H39A—C39—H39B109.5
C12—C13—C14126.0 (3)C38—C39—H39C109.5
C12—C13—C18114.5 (3)H39A—C39—H39C109.5
C14—C13—C18119.6 (3)H39B—C39—H39C109.5
C15—C14—C13128.3 (4)C38—C40—H40A109.5
C15—C14—H14115.8C38—C40—H40B109.5
C13—C14—H14115.8H40A—C40—H40B109.5
C14—C15—C16131.0 (4)C38—C40—H40C109.5
C14—C15—H15114.5H40A—C40—H40C109.5
C16—C15—H15114.5H40B—C40—H40C109.5
C15—C16—C17129.6 (3)O9—C41—C42118.8 (3)
C15—C16—H16115.2O9—C41—C47114.9 (3)
C17—C16—H16115.2C42—C41—C47126.3 (4)
O4—C17—C16119.2 (3)C41—C42—C43133.3 (4)
O4—C17—C11115.0 (3)C41—C42—H42113.4
C16—C17—C11125.8 (3)C43—C42—H42113.4
C20—C18—C13109.9 (3)C42—C43—C44125.0 (4)
C20—C18—C19110.2 (3)C42—C43—C48116.5 (4)
C13—C18—C19115.1 (3)C44—C43—C48118.4 (4)
C20—C18—H18107.1C45—C44—C43129.4 (4)
C13—C18—H18107.1C45—C44—H44115.3
C19—C18—H18107.1C43—C44—H44115.3
C18—C19—H19A109.5C44—C45—C46130.2 (4)
C18—C19—H19B109.5C44—C45—H45114.9
H19A—C19—H19B109.5C46—C45—H45114.9
C18—C19—H19C109.5C45—C46—C47130.1 (4)
H19A—C19—H19C109.5C45—C46—H46114.9
H19B—C19—H19C109.5C47—C46—H46114.9
C18—C20—H20A109.5O10—C47—C46119.2 (4)
C18—C20—H20B109.5O10—C47—C41115.4 (3)
H20A—C20—H20B109.5C46—C47—C41125.5 (4)
C18—C20—H20C109.5C50—C48—C49111.1 (5)
H20A—C20—H20C109.5C50—C48—C43112.6 (4)
H20B—C20—H20C109.5C49—C48—C43110.8 (3)
O5—C21—C22118.9 (3)C50—C48—H48107.4
O5—C21—C27113.9 (3)C49—C48—H48107.4
C22—C21—C27127.2 (3)C43—C48—H48107.4
C21—C22—C23132.1 (4)C48—C49—H49A109.5
C21—C22—H22113.9C48—C49—H49B109.5
C23—C22—H22113.9H49A—C49—H49B109.5
C24—C23—C22125.8 (4)C48—C49—H49C109.5
C24—C23—C28117.1 (4)H49A—C49—H49C109.5
C22—C23—C28117.1 (4)H49B—C49—H49C109.5
C25—C24—C23129.0 (4)C48—C50—H50A109.5
C25—C24—H24115.5C48—C50—H50B109.5
C23—C24—H24115.5H50A—C50—H50B109.5
C26—C25—C24131.0 (4)C48—C50—H50C109.5
C26—C25—H25114.5H50A—C50—H50C109.5
C24—C25—H25114.5H50B—C50—H50C109.5
C25—C26—C27129.6 (4)
O2i—Cu1—O1—C1173.1 (2)C23—C24—C25—C261.6 (8)
O2—Cu1—O1—C16.9 (2)C24—C25—C26—C270.8 (8)
O1—Cu1—O2—C75.9 (2)Cu2—O6—C27—C26179.9 (3)
O1i—Cu1—O2—C7174.1 (2)Cu2—O6—C27—C211.3 (4)
Cu1—O1—C1—C2172.2 (3)C25—C26—C27—O6175.0 (4)
Cu1—O1—C1—C76.5 (4)C25—C26—C27—C213.7 (7)
O1—C1—C2—C3179.8 (4)O5—C21—C27—O62.8 (5)
C7—C1—C2—C31.3 (7)C22—C21—C27—O6176.5 (3)
C1—C2—C3—C40.9 (7)O5—C21—C27—C26178.4 (3)
C1—C2—C3—C8176.7 (4)C22—C21—C27—C262.3 (6)
C2—C3—C4—C50.2 (7)C24—C23—C28—C29122.3 (5)
C8—C3—C4—C5177.8 (4)C22—C23—C28—C2956.8 (6)
C3—C4—C5—C61.2 (7)C24—C23—C28—C30110.1 (4)
C4—C5—C6—C71.5 (7)C22—C23—C28—C3070.8 (5)
Cu1—O2—C7—C6177.4 (2)O8—Cu3—O7—C315.0 (2)
Cu1—O2—C7—C14.0 (4)O9—Cu3—O7—C31168.2 (2)
C5—C6—C7—O2176.7 (4)O7—Cu3—O8—C377.0 (2)
C5—C6—C7—C14.8 (6)O10—Cu3—O8—C37167.2 (2)
O1—C1—C7—O21.6 (5)O7—Cu3—O9—C41164.3 (2)
C2—C1—C7—O2176.9 (3)O10—Cu3—O9—C419.8 (2)
O1—C1—C7—C6176.8 (3)O8—Cu3—O10—C47165.3 (2)
C2—C1—C7—C64.6 (6)O9—Cu3—O10—C478.0 (2)
C4—C3—C8—C1022.0 (5)Cu3—O7—C31—C32177.8 (3)
C2—C3—C8—C10160.3 (4)Cu3—O7—C31—C372.3 (4)
C4—C3—C8—C9104.4 (4)O7—C31—C32—C33176.2 (4)
C2—C3—C8—C973.4 (4)C37—C31—C32—C333.9 (7)
O5—Cu2—O3—C11172.0 (2)C31—C32—C33—C340.2 (7)
O4—Cu2—O3—C118.3 (2)C31—C32—C33—C38179.1 (4)
O6—Cu2—O3—C1187.3 (4)C32—C33—C34—C350.9 (7)
O3—Cu2—O4—C177.6 (2)C38—C33—C34—C35179.8 (4)
O6—Cu2—O4—C17155.8 (2)C33—C34—C35—C361.7 (8)
O3—Cu2—O5—C21165.2 (2)C34—C35—C36—C372.6 (8)
O6—Cu2—O5—C211.8 (2)Cu3—O8—C37—C36171.5 (3)
O5—Cu2—O6—C270.1 (2)Cu3—O8—C37—C317.5 (4)
O3—Cu2—O6—C2786.6 (5)C35—C36—C37—O8179.9 (4)
O4—Cu2—O6—C27179.8 (2)C35—C36—C37—C311.1 (7)
Cu2—O3—C11—C12172.0 (3)O7—C31—C37—O83.5 (5)
Cu2—O3—C11—C177.4 (4)C32—C31—C37—O8176.4 (3)
O3—C11—C12—C13177.7 (4)O7—C31—C37—C36175.4 (3)
C17—C11—C12—C131.6 (6)C32—C31—C37—C364.7 (6)
C11—C12—C13—C144.4 (7)C32—C33—C38—C4068.0 (4)
C11—C12—C13—C18175.0 (4)C34—C33—C38—C40112.6 (4)
C12—C13—C14—C150.1 (7)C32—C33—C38—C3956.5 (4)
C18—C13—C14—C15179.6 (4)C34—C33—C38—C39122.8 (4)
C13—C14—C15—C163.5 (8)Cu3—O9—C41—C42170.1 (2)
C14—C15—C16—C170.9 (7)Cu3—O9—C41—C479.8 (3)
Cu2—O4—C17—C16177.7 (3)O9—C41—C42—C43179.4 (4)
Cu2—O4—C17—C115.6 (4)C47—C41—C42—C430.8 (6)
C15—C16—C17—O4176.9 (4)C41—C42—C43—C442.7 (6)
C15—C16—C17—C116.7 (6)C41—C42—C43—C48176.6 (4)
O3—C11—C17—O41.2 (4)C42—C43—C44—C451.3 (6)
C12—C11—C17—O4178.1 (3)C48—C43—C44—C45178.0 (4)
O3—C11—C17—C16175.3 (3)C43—C44—C45—C462.6 (7)
C12—C11—C17—C165.4 (6)C44—C45—C46—C472.5 (7)
C12—C13—C18—C2068.6 (4)Cu3—O10—C47—C46175.5 (3)
C14—C13—C18—C20110.9 (4)Cu3—O10—C47—C414.9 (4)
C12—C13—C18—C19166.3 (4)C45—C46—C47—O10178.6 (4)
C14—C13—C18—C1914.2 (5)C45—C46—C47—C411.8 (6)
Cu2—O5—C21—C22176.5 (3)O9—C41—C47—O103.3 (4)
Cu2—O5—C21—C272.9 (4)C42—C41—C47—O10176.5 (3)
O5—C21—C22—C23177.2 (4)O9—C41—C47—C46176.2 (3)
C27—C21—C22—C232.1 (7)C42—C41—C47—C463.9 (6)
C21—C22—C23—C243.5 (7)C42—C43—C48—C50124.8 (4)
C21—C22—C23—C28175.5 (4)C44—C43—C48—C5055.8 (5)
C22—C23—C24—C250.5 (7)C42—C43—C48—C49110.1 (5)
C28—C23—C24—C25178.4 (4)C44—C43—C48—C4969.3 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C10H11O2)2]3·[Cu(C10H11O2)2]2
Mr1949.58
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.6263 (2), 12.8911 (4), 19.4499 (6)
α, β, γ (°)72.847 (2), 79.812 (2), 88.897 (2)
V3)2268.50 (11)
Z1
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.30 × 0.15 × 0.03
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.710, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
34847, 10341, 6392
Rint0.074
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.149, 1.01
No. of reflections10341
No. of parameters575
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.61

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXTL (Sheldrick, 2008), ORTEP-3 (Version 2.02; Farrugia, 1997).

Selected bond distances (Å) and bond valences (s). top
CuOxBondLengthss/s'
CuO6Cu1—O11.929 (2)0.5091.434
In (III), trimeraCu1—O21.922 (2)0.5191.462
Cu1—O1i1.929 (2)0.5091.434
Cu1—O2i1.922 (2)0.5191.462
Cu1—O42.911 (3)0.0360.101
Cu1—O4i2.911 (3)0.0360.101
CuO5Cu2—O31.918 (2)0.5241.221
In (III), trimeraCu2—O41.921 (3)0.5201.212
Cu2—O51.917 (3)0.5261.226
Cu2—O61.931 (2)0.5061.179
Cu2—O1i2.658 (3)0.0710.166
CuO5Cu3—O71.915 (2)0.5281.225
In (III), dimeraCu3—O81.915 (3)0.5281.225
Cu3—O91.931 (3)0.5061.174
Cu3—O101.921 (3)0.5201.206
Cu3—O9ii2.652 (3)0.0720.167
CuO6Cu1—O11.915 (2)0.5281.475
In Cu(trop)2bCu1—O21.915 (3)0.5281.475
Cu1—O1iii1.915 (2)0.5281.475
Cu1—O2iii1.915 (2)0.5281.475
Cu1—O1iv3.144 (2)0.0190.053
Cu1—O1v3.144 (2)0.0190.053
CuO5Cu1—O11.919 (2)0.5231.205
In (II), dimercCu1—O21.920 (2)0.5211.200
Cu1—O31.932 (2)0.5051.164
Cu1—O41.933 (2)0.5031.159
Cu1—O4vi2.476 (2)0.1160.267
CuO5Cu2—O51.915 (2)0.5281.219
In (II), dimerdCu2—O61.921 (2)0.5201.201
Cu2—O71.939 (2)0.4951.143
Cu2—O81.922 (2)0.5191.199
Cu2—O8vii2.512 (2)0.1050.242
References: (a) this work; (b) Hasegawa et al. (1997) (trop is the tropolonate anion); (c) Barret et al. (2002) (cis,cis dimer); (d) Barret et al. (2002) (trans,trans dimer). Note: the average bond valence s' is defined as (Σs)/N, where N corresponds to the coordination number (e.g. 5 or 6) for the Cu atom in question. Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y, -z + 2; (iii) -x + 2, -y, -z + 2; (iv) x, y, z - 1; (v) -x + 2, -y, -z + 3; (vi) -x + 1, -y, -z; (vii) -x + 1, -y, -z + 1.
Cu—O bond lengths (Å) in selected α- and β-diketonate and dicarboxylate complexes. top
ComplexCuOxCu—O(basal/equatorial)Cu—O(apical/axial)
[Cu2(L1)2]2+51.910 (3)-1.962 (3)2.878 (3)
[Cu2(L2)2]2+61.921 (4)-1.944 (3)3.001 (4)a
Cu2(L3)451.898 (3)-1.933 (3)2.545 (3)b
Cu2(L4)451.918 (4)-1.955 (4)2.416 (4)
Cu4(L4)4(OEt)451.934 (5)-1.952 (4)2.561 (4)
Cu4(L5)4(OMe)451.898 (6)-1.923 (5)2.925 (6)a
[Cu4(L6)8(H2O)2]8-61.908 (2)-1.940 (2)2.797 (2)-2.948 (2)
[Cun(L6)2n]2n-51.912 (9)-1.942 (8)2.798 (3)
Cu6(L7)6(OMe)651.918 (6)-1.952 (5)2.843 (7)
61.923 (6)-1.948 (6)3.019 (7)a
Cu6(L8)6(OMe)651.915 (2)-1.932 (2)2.392 (2)-2.418 (2)
61.923 (2)-1.927 (2)3.020 (2)a
Notes: (a) potential apical or axial bonds; (b) the published 2.242 (3) Å value is a literature error. L1 = 1-(2-{4,10-dimethyl-7-[2-(3-oxido-2-oxo-1-pyridyl)acetyl]-1,7,10-triaza-4-azoniacyclododec-1-yl}-2-oxoethyl}-2-oxopyridin-3-olate (Ambrosi et al., 2005); L2 = 1-[2-(methyl{2-[methyl(2-{methyl[2-(3-oxido-2-oxo-1-pyridyl)acetyl]amino}ethyl)ammonio]ethyl}amino)-2-oxoethyl]-2-oxopyridin-3-olate (Ambrosi et al., 2005); L3 = o-vanillinate (Lin et al., 2006); L4 = 3,5-di-tert-butyl-o-semiquinate (Thompson & Calabrese, 1986; Bencini et al., 2003); L5 = 2,2,6,6-tetramethyl-3,5-heptanedionate (Watson & Holley, 1984); L6 = oxalate (Kadir et al., 2006; Li et al., 2008); L7 = 4,4,4-trifluoro-1-(2-thienyl)butane-1,3-dionate (Olejnik et al., 1986); L8 = 3-cyanoacetylacetonate (Burrows et al., 2007).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds