Download citation
Download citation
link to html
The structures of diastereomeric pairs consisting of (S)- and (R)-2-methyl­piperazine with (2S,3S)-tartaric acid are both 1:1 salts, namely (S)-2-methyl­piperazinium (2S,3S)-tartrate dihydrate, C5H14N22+·C4H4O62-·2H2O, (I), and (R)-2-methyl­piper­azinium (2S,3S)-tartrate dihydrate, C5H14N22+·C4H4O62-·2H2O, (II), which reveal the formation of well defined ammonium carboxyl­ate salts linked via strong inter­molecular hydrogen bonds. Unlike the situation in the more soluble salt (II), the alternating columns of tartrate and ammonium ions of the less soluble salt (I) are packed neatly in a grid around the a axis, which incorporates water mol­ecules at regular inter­vals. The increased efficiency of packing for (I) is evident in its lower `packing coefficient', and the hydrogen-bond contribution is stronger in the more soluble salt (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109024093/eg3019sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109024093/eg3019Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109024093/eg3019IIsup3.hkl
Contains datablock II

CCDC references: 742259; 742260

Comment top

Tartaric acid is one of the most accessible enantiomerically pure compounds, and it has emerged as a useful class of chiral resolving reagent for racemic amines (Gawronski & Gawronska, 1999). Although a variety of amines have been resolved by the formation of a diastereomeric salt with tartaric acid, systematic research on the crystal structure of diastereomers is still of importance if the process is to become non-heuristic. Here we report the crystal structures of a pair of diastereomeric 1:1 salts, (I) and (II), of (2S,3S)-tartaric acid with (S)- and (R)-2-methylpiperazine, which is a valuable compound as a raw material for various drugs and candidates for clinical compounds designed to treat HIV infection (Gala et al., 2003), obesity (Chen et al., 2006), hypertension (Bell et al., 2004) and diabetes (Cernerud et al., 2004).

In both crystal structures, all the N atoms of 2-methylpiperazine have two H atoms, showing that these amines are completely converted to quaternary ammonium cations (Figs. 1 and 2). It is also found that the O3—C6, O4—C6, O5—C9 and O6—C9 bond lengths of the tartaric acid moieties lie between 1.2416 (15) and 1.2811 (16) Å (Tables 1 and 3), which means that the O—C bonds are longer than the standard double bond of a carboxylic acid (1.200 Å) but shorter than a single bond (1.317 Å) (Leiserowitz, 1976), indicating the formation of well defined carboxylate anions. In addition, the geometries of 2-methylpiperazinium are almost identical except for the symmetry. The torsion angles C1—N1—C4—C5 in (I) and C1—N2—C4—C5 in (II) are 178.5 (1) and 176.9 (1)°, respectively, indicating that these methyl groups are in the most stable equatorial position in the chair conformation of six-membered ring piperazine. The conformations of the tartrate moieties also have roughly the same geometry around the C7—C8 axis, and the O1—C7—C8—O2 torsion angles are 67.1 (1) in (I), and 70.9 (1)° in (II).

In the crystal packing, the molecules are linked via strong intermolecular O—H···O and N—H···O hydrogen bonds (Fig. 3 and 4). The crystal packing of (I) reveals neat alternating columns of tartrate and ammonium in a grid around the a axis that incorporate water molecules at regular intervals, whereas in (II) the columns are more interconnected. The solubility of 5.0 g/100 g H2O for (I) is less than that of 63.6 g/100 g H2O for (II) at 298 K, and the crystal density of 1.523 g cm-3 for (I) is greater than that of 1.493 g cm-3 for (II). The increased efficiency of packing for (I) is also evident in its lower `packing coefficient' (Spek, 2009) (77.1%), which differs by 2.4% from the value found for (II) (75.3%), indicating the presence of a stronger molecular interaction in the less soluble salt (I). In contrast, there are more hydrogen bonds in (II) than in (I). Additionally, a scatter diagram of angles (D—H···A) versus distances (H···A) for individual intermolecular hydrogen bonds shows two weak hydrogen bonds in (I), which correspond to the interactions of carboxylate hydroxy groups and water molecules (Figs. 5 and 6). These hydrogen bonds form columns of tartrate ions around the a axis in (I). On the other hand, as shown Fig. 7, the weaker two hydrogen bonds in (II) take the form of bifurcated hydrogen bonds, whose values are estimated as being weaker than those of ordinary hydrogen bonds constituted geometrically with a donor and an acceptor. From the number of hydrogen bonds and the correlation between length and angle, we predict that these interactions are stronger in the more soluble salt (II). Although the less soluble diastereomeric salts are commonly stabilized by intermolecular interactions to a much greater extent than the corresponding more soluble diastereomeric salts, it has been reported that the number of hydrogen bonds does not necessarily lead to greater stability and less solubility in hydrated salts (Langkilde et al., 2002). Therefore, other than hydrogen bonds, the Coulomb interaction and the van der Waals interaction make a large contribution to the stabilization of the packing structure of the less soluble salt (I). In contrast, the more soluble salt (II) is structurally disadvantaged in close packing, and adopts the less stable packing structure supported by intermolecular hydrogen bonds.

Related literature top

For related literature, see: Bell et al. (2004); Cernerud et al. (2004); Chen et al. (2006); Gala et al. (2003); Gawronski & Gawronska (1999); Langkilde et al. (2002); Leiserowitz (1976); Spek (2003).

Experimental top

Enantiomeric pure (2S,3S)-tartaric acid and (S)- and (R)-2-methylpiperazine were manufactured by Toray Fine Chemicals Co. Ltd (Japan). Both salts were prepared by heating 1 mmol quantities of (2S,3S)-tartaric acid and (S)-2-methylpiperazine [for (I)] or (R)-2-methylpiperazine [for (II)] under reflux in water, and then cooling to room temperature afforded a crop of colourless prisms [m.p. 518–519 K for (I) and 498–499 K for (II)]. Their melting points were measured on melting point apparatus. The solubility of these salts in water was established by the equilibration method, i.e. preparation of a saturated solution at room temperature and determination of its concentration.

Refinement top

In the refinement of (I), the positions of the alcohol, ammonium and water H atoms were determined by differential Fourier analysis near atoms O1, O2, N1, N2, O1W and O2W, and refined isotropically. In the refinement of (II), the positions of the alcohol, ammonium and water H atoms were determined by differential Fourier analysis near atoms O1, O2, N1, N2, O1W and O2W, and refined isotropically, except for the alcohol H atoms, which were refined with a Uiso(H) value of 1.5Ueq(O). The positions of all other H atoms in both compounds were calculated geometrically and refined as riding, with C—H bond lengths of 0.99–1.00 Å, and with Uiso(H) values of 1.2Ueq(C). In both (I) and (II), in the absence of significant anomalous scattering effects, Friedel pairs were merged, and the absolute configuration was determined from the known configuration of (2S,3S)-tartaric acid.

Computing details top

For both compounds, data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The asymmetric unit of (II), showing 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. The packing of (I) along the a axis, showing neat alternating columns of tartrate and ammonium in a grid around the a axis that incorporates water molecules at regular intervals.
[Figure 4] Fig. 4. The packing of (II) along the a axis, showing the columns of tartrate and ammonium interconnected by hydrogen bonds.
[Figure 5] Fig. 5. Scatter plot of angles (D—H···A > 150°) versus distances (H···A) for intermolecular hydrogen bonds in (I) (open circles) and in (II) (black squares), showing the strength of the individual hydrogen bonds. The O2W—H3W···O1 and N2—H4···O2W bonds in (II) have been omitted owing to their obvious weakness.
[Figure 6] Fig. 6. A perspective view of the partial packing of (I), showing two weaker hydrogen bonds which correspond the interactions of hydroxy groups attached to a symmetry-related carboxylate group and a water molecule. [Please include symmetry codes in figure]
[Figure 7] Fig. 7. A perspective view of the partial packing of (II), showing the weaker two hydrogen bonds adopted as bifurcated hydrogen bonds.[Symmetry code: (iv) -x + 1, y + 1/2, -z + 3/2.] [please check added symmetry code]
(I) (S)-2-methylpiperazinium (2S,3S)-tartrate dihydrate top
Crystal data top
C5H14N22+·C4H4O62·2H2OF(000) = 308
Mr = 286.29Dx = 1.523 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ybCell parameters from 10478 reflections
a = 6.0830 (9) Åθ = 3.5–27.4°
b = 10.8648 (16) ŵ = 0.13 mm1
c = 9.6826 (14) ÅT = 123 K
β = 102.621 (5)°Prism, colourless
V = 624.47 (16) Å30.60 × 0.60 × 0.20 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1507 independent reflections
Radiation source: rotating anode1502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 77
Tmin = 0.924, Tmax = 0.974k = 1412
10636 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.1273P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.24 e Å3
1507 reflectionsΔρmin = 0.15 e Å3
214 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.112 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: see text
Secondary atom site location: difference Fourier map
Crystal data top
C5H14N22+·C4H4O62·2H2OV = 624.47 (16) Å3
Mr = 286.29Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.0830 (9) ŵ = 0.13 mm1
b = 10.8648 (16) ÅT = 123 K
c = 9.6826 (14) Å0.60 × 0.60 × 0.20 mm
β = 102.621 (5)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1507 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1502 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.974Rint = 0.022
10636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0201 restraint
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
1507 reflectionsΔρmin = 0.15 e Å3
214 parametersAbsolute structure: see text
Special details top

Experimental. Higashi, T. (1995). Program for Absorption Correction. Rigaku Corporation, Tokyo, Japan.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35235 (17)0.04270 (11)0.39134 (10)0.0089 (2)
H10.281 (3)0.0948 (19)0.446 (2)0.017 (4)*
H20.483 (3)0.017 (2)0.4451 (19)0.020 (5)*
N20.03960 (18)0.05456 (11)0.12366 (11)0.0097 (2)
H30.110 (3)0.005 (2)0.068 (2)0.022 (5)*
H40.092 (3)0.085 (2)0.067 (2)0.021 (5)*
O10.28928 (15)0.54793 (9)0.11093 (9)0.01071 (19)
H50.388 (4)0.567 (2)0.071 (2)0.028 (5)*
O20.02065 (16)0.35088 (9)0.16880 (9)0.0126 (2)
H60.095 (4)0.339 (2)0.201 (2)0.025 (5)*
O30.35913 (15)0.32765 (9)0.00708 (9)0.01114 (19)
O40.58822 (15)0.26506 (9)0.19308 (10)0.0131 (2)
O50.08400 (15)0.55150 (10)0.31454 (9)0.0144 (2)
O60.25014 (15)0.54817 (9)0.46468 (9)0.0118 (2)
C10.2033 (2)0.06457 (12)0.33950 (13)0.0107 (2)
H70.28260.12250.28820.013*
H80.16640.10870.42100.013*
C20.0119 (2)0.02020 (12)0.24158 (13)0.0112 (2)
H90.09930.03010.29590.013*
H100.10510.09200.20230.013*
C30.1923 (2)0.16021 (12)0.17565 (12)0.0105 (2)
H110.22720.20500.09400.013*
H120.11590.21800.22890.013*
C40.4098 (2)0.11472 (12)0.27110 (13)0.0094 (2)
H130.48860.05910.21530.011*
C50.5664 (2)0.22025 (13)0.33006 (13)0.0117 (2)
H140.69880.18780.39650.017*
H150.61440.26260.25230.017*
H160.48700.27830.37940.017*
C60.4487 (2)0.33921 (13)0.12254 (12)0.0087 (2)
C70.3766 (2)0.44923 (13)0.20251 (12)0.0086 (2)
H170.50840.47880.27570.010*
C80.1914 (2)0.40408 (12)0.27509 (12)0.0090 (2)
H180.25610.33840.34450.011*
C90.1093 (2)0.50994 (12)0.35615 (12)0.0091 (2)
O1W0.83727 (17)0.28450 (9)0.46011 (10)0.0128 (2)
H1W0.827 (3)0.213 (2)0.490 (2)0.022 (5)*
H2W0.743 (3)0.2807 (19)0.376 (2)0.017 (4)*
O2W0.28825 (16)0.07860 (9)0.03701 (10)0.0117 (2)
H3W0.217 (4)0.070 (2)0.116 (3)0.032 (6)*
H4W0.300 (3)0.158 (2)0.028 (2)0.023 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0082 (4)0.0100 (5)0.0078 (4)0.0003 (4)0.0003 (4)0.0004 (4)
N20.0093 (5)0.0104 (5)0.0083 (4)0.0006 (4)0.0001 (4)0.0007 (4)
O10.0109 (4)0.0089 (4)0.0128 (4)0.0000 (3)0.0036 (3)0.0021 (4)
O20.0102 (4)0.0169 (5)0.0110 (4)0.0060 (4)0.0032 (3)0.0043 (4)
O30.0124 (4)0.0119 (4)0.0087 (4)0.0005 (4)0.0013 (3)0.0013 (4)
O40.0121 (4)0.0135 (5)0.0126 (4)0.0036 (4)0.0005 (3)0.0001 (4)
O50.0104 (4)0.0192 (5)0.0126 (4)0.0049 (4)0.0006 (3)0.0006 (4)
O60.0116 (4)0.0123 (4)0.0104 (4)0.0017 (3)0.0005 (3)0.0019 (4)
C10.0117 (5)0.0083 (6)0.0116 (5)0.0011 (5)0.0012 (4)0.0013 (5)
C20.0098 (5)0.0124 (6)0.0110 (5)0.0014 (5)0.0011 (4)0.0020 (5)
C30.0116 (6)0.0088 (6)0.0098 (5)0.0015 (5)0.0004 (4)0.0003 (5)
C40.0097 (5)0.0102 (6)0.0083 (5)0.0000 (4)0.0023 (4)0.0008 (4)
C50.0109 (6)0.0124 (6)0.0110 (5)0.0027 (5)0.0008 (4)0.0004 (5)
C60.0065 (5)0.0097 (6)0.0105 (5)0.0015 (4)0.0033 (4)0.0012 (5)
C70.0082 (5)0.0090 (5)0.0082 (5)0.0007 (4)0.0012 (4)0.0010 (5)
C80.0092 (5)0.0096 (6)0.0079 (5)0.0008 (4)0.0013 (4)0.0008 (4)
C90.0108 (5)0.0089 (6)0.0083 (5)0.0002 (4)0.0039 (4)0.0008 (4)
O1W0.0165 (5)0.0108 (5)0.0112 (4)0.0002 (4)0.0033 (4)0.0015 (4)
O2W0.0130 (4)0.0109 (5)0.0101 (4)0.0010 (4)0.0007 (3)0.0011 (4)
Geometric parameters (Å, º) top
N1—C11.4946 (17)C2—H90.9900
N1—C41.5060 (16)C2—H100.9900
N1—H10.94 (2)C3—C41.5216 (17)
N1—H20.89 (2)C3—H110.9900
N2—C21.4893 (16)C3—H120.9900
N2—C31.4930 (16)C4—C51.5198 (18)
N2—H30.93 (2)C4—H131.0000
N2—H40.93 (2)C5—H140.9800
O1—C71.4187 (16)C5—H150.9800
O1—H50.81 (2)C5—H160.9800
O2—C81.4160 (15)C6—C71.5391 (18)
O2—H60.84 (2)C7—C81.5329 (16)
O3—C61.2605 (15)C7—H171.0000
O4—C61.2580 (16)C8—C91.5362 (17)
O5—C91.2416 (15)C8—H181.0000
O6—C91.2718 (15)O1W—H1W0.83 (2)
C1—C21.5173 (16)O1W—H2W0.89 (2)
C1—H70.9900O2W—H3W0.80 (2)
C1—H80.9900O2W—H4W0.86 (3)
C1—N1—C4111.83 (9)N1—C4—C5109.50 (10)
C1—N1—H1109.7 (12)N1—C4—C3108.68 (10)
C4—N1—H1109.6 (12)C5—C4—C3111.94 (11)
C1—N1—H2110.2 (14)N1—C4—H13108.9
C4—N1—H2106.8 (12)C5—C4—H13108.9
H1—N1—H2108.6 (16)C3—C4—H13108.9
C2—N2—C3112.35 (9)C4—C5—H14109.5
C2—N2—H3109.0 (13)C4—C5—H15109.5
C3—N2—H3108.0 (13)H14—C5—H15109.5
C2—N2—H4110.5 (12)C4—C5—H16109.5
C3—N2—H4108.4 (13)H14—C5—H16109.5
H3—N2—H4108.4 (16)H15—C5—H16109.5
C7—O1—H5106.2 (16)O4—C6—O3124.77 (12)
C8—O2—H6109.5 (14)O4—C6—C7117.18 (10)
N1—C1—C2109.84 (11)O3—C6—C7118.01 (11)
N1—C1—H7109.7O1—C7—C8108.42 (10)
C2—C1—H7109.7O1—C7—C6112.43 (9)
N1—C1—H8109.7C8—C7—C6107.50 (11)
C2—C1—H8109.7O1—C7—H17109.5
H7—C1—H8108.2C8—C7—H17109.5
N2—C2—C1110.80 (10)C6—C7—H17109.5
N2—C2—H9109.5O2—C8—C7107.06 (9)
C1—C2—H9109.5O2—C8—C9114.09 (10)
N2—C2—H10109.5C7—C8—C9110.38 (11)
C1—C2—H10109.5O2—C8—H18108.4
H9—C2—H10108.1C7—C8—H18108.4
N2—C3—C4110.46 (11)C9—C8—H18108.4
N2—C3—H11109.6O5—C9—O6124.65 (12)
C4—C3—H11109.6O5—C9—C8119.81 (11)
N2—C3—H12109.6O6—C9—C8115.54 (11)
C4—C3—H12109.6H1W—O1W—H2W101.4 (19)
H11—C3—H12108.1H3W—O2W—H4W103 (2)
C4—N1—C1—C258.20 (13)O4—C6—C7—C882.22 (13)
C3—N2—C2—C155.51 (14)O3—C6—C7—C895.61 (13)
N1—C1—C2—N255.17 (13)O1—C7—C8—O267.06 (13)
C2—N2—C3—C456.76 (13)C6—C7—C8—O254.73 (12)
C1—N1—C4—C5178.47 (10)O1—C7—C8—C957.65 (12)
C1—N1—C4—C358.98 (13)C6—C7—C8—C9179.44 (10)
N2—C3—C4—N157.02 (13)O2—C8—C9—O58.91 (17)
N2—C3—C4—C5178.09 (10)C7—C8—C9—O5111.68 (13)
O4—C6—C7—O1158.52 (11)O2—C8—C9—O6170.61 (10)
O3—C6—C7—O123.64 (16)C7—C8—C9—O668.80 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Wi0.943 (19)1.83 (2)2.7657 (15)171.1 (18)
O1W—H1W···O6i0.84 (2)1.93 (2)2.7523 (14)169.5 (19)
N1—H2···O6i0.894 (19)1.811 (19)2.7004 (15)172.6 (17)
O1W—H2W···O40.889 (19)1.823 (19)2.7043 (14)171.0 (19)
N2—H3···O2W0.93 (2)1.88 (2)2.7981 (15)171.4 (18)
O2W—H3W···O5ii0.80 (3)1.93 (3)2.7189 (13)172 (3)
N2—H4···O1ii0.927 (19)2.36 (2)2.9010 (15)116.7 (16)
N2—H4···O2ii0.927 (19)2.514 (19)2.9589 (14)109.8 (14)
N2—H4···O3ii0.927 (19)1.86 (2)2.7565 (15)161.5 (18)
O2W—H4W···O30.87 (2)1.88 (2)2.7454 (14)173.8 (18)
O1—H5···O2Wiii0.81 (2)2.07 (2)2.8340 (14)157 (2)
O2—H6···O4iv0.84 (2)2.07 (2)2.8486 (14)153.3 (19)
C7—H17···O5v1.002.553.4091 (16)144
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1/2, z; (iii) x+1, y+1/2, z; (iv) x1, y, z; (v) x+1, y, z.
(II) (R)-2-methylpiperazinium (2S,3S)-tartrate dihydrate top
Crystal data top
C5H14N22+·C4H4O62·2H2OF(000) = 616
Mr = 286.29Dx = 1.493 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 12156 reflections
a = 6.1303 (2) Åθ = 3.5–27.4°
b = 11.3207 (5) ŵ = 0.13 mm1
c = 18.3570 (5) ÅT = 108 K
V = 1273.96 (8) Å3Prism, colourless
Z = 40.60 × 0.60 × 0.60 mm
Data collection top
Rigaku RAXIS-RAPID
diffractometer
1697 independent reflections
Radiation source: rotating anode1670 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 77
Tmin = 0.926, Tmax = 0.926k = 1414
12586 measured reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.2769P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.31 e Å3
1697 reflectionsΔρmin = 0.18 e Å3
212 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.091 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: see text
Secondary atom site location: difference Fourier map
Crystal data top
C5H14N22+·C4H4O62·2H2OV = 1273.96 (8) Å3
Mr = 286.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1303 (2) ŵ = 0.13 mm1
b = 11.3207 (5) ÅT = 108 K
c = 18.3570 (5) Å0.60 × 0.60 × 0.60 mm
Data collection top
Rigaku RAXIS-RAPID
diffractometer
1697 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1670 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.926Rint = 0.016
12586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
1697 reflectionsΔρmin = 0.18 e Å3
212 parametersAbsolute structure: see text
Special details top

Experimental. Higashi, T. (1995). Program for Absorption Correction. Rigaku Corporation, Tokyo, Japan.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.79592 (19)0.82184 (10)0.92596 (6)0.0098 (2)
H10.722 (3)0.7603 (18)0.9426 (9)0.019 (4)*
H20.904 (3)0.8326 (16)0.9564 (10)0.019 (5)*
N20.55081 (19)0.89368 (9)0.79978 (6)0.0095 (2)
H30.631 (3)0.9553 (17)0.7809 (9)0.018 (4)*
H40.432 (3)0.8801 (18)0.7707 (10)0.021 (5)*
O10.38481 (17)0.38355 (8)0.86726 (5)0.0118 (2)
H50.296 (3)0.3621 (17)0.8947 (10)0.018*
O20.74561 (17)0.51208 (8)0.80713 (5)0.0110 (2)
H60.868 (4)0.5174 (16)0.7896 (10)0.017*
O30.61974 (16)0.61528 (8)0.97595 (5)0.0114 (2)
O40.33199 (16)0.61587 (8)0.90128 (5)0.0135 (2)
O50.83065 (16)0.22810 (8)0.89099 (5)0.0123 (2)
O60.78964 (16)0.28333 (8)0.77496 (5)0.0119 (2)
C10.6882 (2)0.78480 (11)0.79843 (6)0.0107 (2)
H70.74440.77170.74850.013*
H80.59850.71560.81220.013*
C20.8777 (2)0.79690 (11)0.85092 (6)0.0112 (2)
H90.96390.72300.85110.013*
H100.97420.86200.83480.013*
C30.6594 (2)0.93110 (11)0.92723 (6)0.0112 (2)
H110.75050.99990.91370.013*
H120.60400.94420.97720.013*
C40.4679 (2)0.92184 (11)0.87488 (6)0.0105 (2)
H130.36930.85670.89140.013*
C50.3400 (2)1.03709 (11)0.87345 (7)0.0143 (3)
H140.21821.03000.83910.021*
H150.43621.10160.85800.021*
H160.28321.05390.92230.021*
C60.4932 (2)0.56718 (11)0.92898 (6)0.0094 (2)
C70.5493 (2)0.43856 (11)0.90949 (6)0.0092 (2)
H170.56760.39290.95570.011*
C80.7629 (2)0.43311 (11)0.86694 (6)0.0089 (2)
H180.88630.45800.89910.011*
C90.7975 (2)0.30406 (10)0.84220 (7)0.0091 (2)
O1W0.12467 (18)0.33211 (9)0.98185 (5)0.0157 (2)
H1W0.025 (4)0.287 (2)0.9637 (13)0.043 (6)*
H2W0.165 (3)0.3040 (17)1.0237 (11)0.022 (5)*
O2W0.17068 (16)0.55667 (8)0.76452 (5)0.0114 (2)
H3W0.224 (4)0.5613 (19)0.8065 (12)0.032 (5)*
H4W0.193 (4)0.631 (2)0.7482 (12)0.037 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0111 (5)0.0100 (5)0.0084 (5)0.0002 (4)0.0019 (4)0.0004 (4)
N20.0102 (5)0.0099 (5)0.0083 (5)0.0004 (4)0.0007 (4)0.0004 (4)
O10.0107 (4)0.0136 (4)0.0112 (4)0.0040 (4)0.0013 (4)0.0011 (3)
O20.0110 (4)0.0111 (4)0.0109 (4)0.0001 (4)0.0022 (4)0.0031 (3)
O30.0134 (4)0.0107 (4)0.0102 (4)0.0006 (4)0.0014 (4)0.0020 (3)
O40.0144 (5)0.0130 (4)0.0132 (4)0.0034 (4)0.0003 (4)0.0000 (3)
O50.0154 (5)0.0107 (4)0.0107 (4)0.0017 (4)0.0004 (4)0.0011 (3)
O60.0149 (5)0.0115 (4)0.0093 (4)0.0016 (4)0.0003 (3)0.0020 (3)
C10.0135 (6)0.0091 (5)0.0095 (5)0.0008 (5)0.0007 (5)0.0013 (4)
C20.0114 (6)0.0122 (5)0.0099 (5)0.0013 (5)0.0010 (5)0.0008 (4)
C30.0130 (6)0.0104 (5)0.0100 (5)0.0019 (5)0.0013 (5)0.0018 (4)
C40.0101 (6)0.0123 (5)0.0090 (5)0.0000 (5)0.0005 (5)0.0002 (4)
C50.0144 (6)0.0148 (6)0.0136 (6)0.0044 (5)0.0009 (5)0.0011 (5)
C60.0115 (6)0.0096 (5)0.0070 (5)0.0003 (5)0.0039 (4)0.0010 (4)
C70.0103 (6)0.0086 (5)0.0087 (5)0.0002 (5)0.0004 (5)0.0006 (4)
C80.0104 (6)0.0085 (5)0.0080 (5)0.0002 (5)0.0005 (4)0.0004 (4)
C90.0061 (5)0.0097 (5)0.0114 (5)0.0002 (4)0.0009 (4)0.0007 (4)
O1W0.0163 (5)0.0185 (5)0.0123 (4)0.0054 (4)0.0027 (4)0.0042 (4)
O2W0.0133 (4)0.0101 (4)0.0109 (4)0.0004 (4)0.0005 (4)0.0012 (3)
Geometric parameters (Å, º) top
N1—C21.4928 (15)C2—H90.9900
N1—C31.4937 (16)C2—H100.9900
N1—H10.89 (2)C3—C41.5211 (18)
N1—H20.88 (2)C3—H110.9900
N2—C11.4931 (16)C3—H120.9900
N2—C41.5036 (15)C4—C51.5225 (17)
N2—H30.92 (2)C4—H131.0000
N2—H40.91 (2)C5—H140.9800
O1—C71.4159 (15)C5—H150.9800
O1—H50.78 (2)C5—H160.9800
O2—C81.4198 (14)C6—C71.5383 (17)
O2—H60.82 (2)C7—C81.5261 (18)
O3—C61.2811 (16)C7—H171.0000
O4—C61.2408 (16)C8—C91.5445 (16)
O5—C91.2581 (15)C8—H181.0000
O6—C91.2575 (15)O1W—H1W0.86 (3)
C1—C21.5152 (18)O1W—H2W0.87 (2)
C1—H70.9900O2W—H3W0.84 (2)
C1—H80.9900O2W—H4W0.90 (2)
C2—N1—C3111.04 (9)N2—C4—C3109.44 (11)
C2—N1—H1110.0 (12)N2—C4—C5109.89 (10)
C3—N1—H1110.9 (13)C3—C4—C5110.44 (10)
C2—N1—H2111.1 (13)N2—C4—H13109.0
C3—N1—H2107.5 (12)C3—C4—H13109.0
H1—N1—H2106.2 (16)C5—C4—H13109.0
C1—N2—C4112.40 (9)C4—C5—H14109.5
C1—N2—H3108.7 (12)C4—C5—H15109.5
C4—N2—H3111.3 (11)H14—C5—H15109.5
C1—N2—H4107.4 (13)C4—C5—H16109.5
C4—N2—H4107.6 (12)H14—C5—H16109.5
H3—N2—H4109.3 (17)H15—C5—H16109.5
C7—O1—H5106.2 (14)O4—C6—O3124.70 (12)
C8—O2—H6106.3 (13)O4—C6—C7120.20 (11)
N2—C1—C2110.32 (10)O3—C6—C7115.07 (11)
N2—C1—H7109.6O1—C7—C8108.24 (10)
C2—C1—H7109.6O1—C7—C6112.62 (10)
N2—C1—H8109.6C8—C7—C6110.42 (10)
C2—C1—H8109.6O1—C7—H17108.5
H7—C1—H8108.1C8—C7—H17108.5
N1—C2—C1110.28 (11)C6—C7—H17108.5
N1—C2—H9109.6O2—C8—C7107.83 (10)
C1—C2—H9109.6O2—C8—C9112.24 (10)
N1—C2—H10109.6C7—C8—C9107.86 (10)
C1—C2—H10109.6O2—C8—H18109.6
H9—C2—H10108.1C7—C8—H18109.6
N1—C3—C4111.44 (10)C9—C8—H18109.6
N1—C3—H11109.3O6—C9—O5125.27 (11)
C4—C3—H11109.3O6—C9—C8117.38 (11)
N1—C3—H12109.3O5—C9—C8117.34 (10)
C4—C3—H12109.3H1W—O1W—H2W108.9 (19)
H11—C3—H12108.0H3W—O2W—H4W101 (2)
C4—N2—C1—C256.76 (13)O4—C6—C7—C8112.99 (12)
C3—N1—C2—C157.60 (13)O3—C6—C7—C868.89 (13)
N2—C1—C2—N156.84 (13)O1—C7—C8—O270.93 (12)
C2—N1—C3—C457.38 (14)C6—C7—C8—O252.78 (13)
C1—N2—C4—C355.41 (13)O1—C7—C8—C950.49 (12)
C1—N2—C4—C5176.85 (10)C6—C7—C8—C9174.20 (10)
N1—C3—C4—N255.19 (13)O2—C8—C9—O65.24 (17)
N1—C3—C4—C5176.29 (10)C7—C8—C9—O6113.41 (12)
O4—C6—C7—O18.14 (15)O2—C8—C9—O5175.01 (11)
O3—C6—C7—O1169.97 (10)C7—C8—C9—O566.35 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.885 (19)1.86 (2)2.7344 (15)168.5 (18)
O1W—H1W···O5i0.86 (2)1.91 (2)2.7234 (14)157 (2)
N1—H2···O3ii0.875 (19)1.908 (18)2.7730 (15)169.6 (17)
O1W—H2W···O5iii0.87 (2)1.90 (2)2.7401 (13)162.1 (17)
N2—H3···O2Wiv0.921 (19)1.868 (18)2.7772 (14)168.7 (17)
O2W—H3W···O10.84 (2)2.50 (2)3.0201 (13)120.8 (18)
O2W—H3W···O40.84 (2)1.96 (2)2.7802 (13)165 (2)
N2—H4···O2iv0.916 (18)2.337 (19)2.9917 (15)128.3 (16)
N2—H4···O6iv0.916 (18)1.936 (19)2.7926 (15)154.9 (18)
O2W—H4W···O6iv0.90 (2)1.78 (2)2.6774 (13)172 (2)
O1—H5···O1W0.781 (18)1.944 (18)2.7032 (14)164.3 (18)
O2—H6···O2Wv0.82 (2)1.96 (2)2.7671 (14)167.3 (17)
C1—H7···O1iv0.992.603.2713 (15)125
C1—H8···O20.992.483.1115 (15)122
C1—H8···O40.992.573.4627 (15)150
C8—H18···O1Wv1.002.543.2673 (16)129
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+2; (iii) x1/2, y+1/2, z+2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC5H14N22+·C4H4O62·2H2OC5H14N22+·C4H4O62·2H2O
Mr286.29286.29
Crystal system, space groupMonoclinic, P21Orthorhombic, P212121
Temperature (K)123108
a, b, c (Å)6.0830 (9), 10.8648 (16), 9.6826 (14)6.1303 (2), 11.3207 (5), 18.3570 (5)
α, β, γ (°)90, 102.621 (5), 9090, 90, 90
V3)624.47 (16)1273.96 (8)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.130.13
Crystal size (mm)0.60 × 0.60 × 0.200.60 × 0.60 × 0.60
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Rigaku RAXIS-RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Multi-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.924, 0.9740.926, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
10636, 1507, 1502 12586, 1697, 1670
Rint0.0220.016
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.050, 1.05 0.022, 0.060, 1.05
No. of reflections15071697
No. of parameters214212
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.150.31, 0.18
Absolute structureSee textSee text

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2003), SHELXS97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (I) top
O3—C61.2605 (15)O5—C91.2416 (15)
O4—C61.2580 (16)O6—C91.2718 (15)
C1—N1—C4—C5178.47 (10)O1—C7—C8—O267.06 (13)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Wi0.943 (19)1.83 (2)2.7657 (15)171.1 (18)
O1W—H1W···O6i0.84 (2)1.93 (2)2.7523 (14)169.5 (19)
N1—H2···O6i0.894 (19)1.811 (19)2.7004 (15)172.6 (17)
O1W—H2W···O40.889 (19)1.823 (19)2.7043 (14)171.0 (19)
N2—H3···O2W0.93 (2)1.88 (2)2.7981 (15)171.4 (18)
O2W—H3W···O5ii0.80 (3)1.93 (3)2.7189 (13)172 (3)
N2—H4···O3ii0.927 (19)1.86 (2)2.7565 (15)161.5 (18)
O2W—H4W···O30.87 (2)1.88 (2)2.7454 (14)173.8 (18)
O1—H5···O2Wiii0.81 (2)2.07 (2)2.8340 (14)157 (2)
O2—H6···O4iv0.84 (2)2.07 (2)2.8486 (14)153.3 (19)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1/2, z; (iii) x+1, y+1/2, z; (iv) x1, y, z.
Selected geometric parameters (Å, º) for (II) top
O3—C61.2811 (16)O5—C91.2581 (15)
O4—C61.2408 (16)O6—C91.2575 (15)
C1—N2—C4—C5176.85 (10)O1—C7—C8—O270.93 (12)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.885 (19)1.86 (2)2.7344 (15)168.5 (18)
O1W—H1W···O5i0.86 (2)1.91 (2)2.7234 (14)157 (2)
N1—H2···O3ii0.875 (19)1.908 (18)2.7730 (15)169.6 (17)
O1W—H2W···O5iii0.87 (2)1.90 (2)2.7401 (13)162.1 (17)
N2—H3···O2Wiv0.921 (19)1.868 (18)2.7772 (14)168.7 (17)
O2W—H3W···O10.84 (2)2.50 (2)3.0201 (13)120.8 (18)
O2W—H3W···O40.84 (2)1.96 (2)2.7802 (13)165 (2)
N2—H4···O2iv0.916 (18)2.337 (19)2.9917 (15)128.3 (16)
N2—H4···O6iv0.916 (18)1.936 (19)2.7926 (15)154.9 (18)
O2W—H4W···O6iv0.90 (2)1.78 (2)2.6774 (13)172 (2)
O1—H5···O1W0.781 (18)1.944 (18)2.7032 (14)164.3 (18)
O2—H6···O2Wv0.82 (2)1.96 (2)2.7671 (14)167.3 (17)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z+2; (iii) x1/2, y+1/2, z+2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds