Download citation
Download citation
link to html
The proton-transfer com­plexes 2-amino-4-meth­oxy-6-methyl­pyrimidinium (2A4M6MP) 4-amino­salicylate (4AMSA), C6H10N3O+·C7H6NO3, I, and 5-chloro­salicylate (5ClSA), C6H10N3O+·C7H4ClO3, II, were synthesized by slow evaporation and crystallized. The crystal structures of both I and II were determined by single-crystal X-ray structure analysis. The crystal structures of both salts exhibit O—H...O, N—H...O, N—H...N and C—H...O inter­actions in their crystals. The 4AMSA and 5ClSA anions in combination with the 2A4M6MP cations form distinct synthons, which are represented by the graph-set notations R22(8), R42(8) and R22(8). Furthermore, the ΔpKa values were calculated and clearly demonstrate that 2A4M6MP is a good salt former when combined with carb­oxy­lic acids. Hirshfeld surface analysis was used to qu­antify the weak and strong inter­actions in the solid state, and energy framework calculations showed the stability of the hydrogen-bonding inter­actions. QTAIM (quantum theory of atoms in mol­ecules) analysis revealed the nature of the chemical bonding in I and II, and the charge–density distribution in the inter­molecular inter­actions in the crystal structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622001280/ef3026sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622001280/ef3026Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622001280/ef3026Isup4.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622001280/ef3026IIsup3.hkl
Contains datablock shelx

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622001280/ef3026IIsup5.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229622001280/ef3026sup6.pdf
Additional information, tables and figures

CCDC references: 2014262; 2014260

Computing details top

For both structures, data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006). Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for (I); SHELXT2014 (Sheldrick, 2015a) for (II). For both structures, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b). Molecular graphics: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020) and ORTEP-3 for Windows (Farrugia, 2012) for (I); OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020) for (II). Software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and WinGX (Farrugia, 2012) for (I); SHELXL2014 (Sheldrick, 2015b) for (II).

2-Amino-4-methoxy-6-methylpyrimidinium 4-amino-2-hydroxybenzoate (I) top
Crystal data top
C6H10N3O+·C7H6NO3F(000) = 616
Mr = 292.3Dx = 1.392 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: P 21/nCell parameters from 6906 reflections
a = 8.8829 (2) Åθ = 2.7–28.2°
b = 15.1248 (3) ŵ = 0.11 mm1
c = 10.4933 (3) ÅT = 293 K
β = 98.392 (1)°Block, brown
V = 1394.70 (6) Å30.28 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker D8 QUEST ECO
diffractometer
2573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi scansθmax = 25.9°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 810
Tmin = 0.710, Tmax = 0.746k = 1817
8088 measured reflectionsl = 1212
2690 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.2501P]
where P = (Fo2 + 2Fc2)/3
2690 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.14 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Single crystal X-ray diffraction intensity data for the crystals of I and II were collected on Bruker D8 QUEST ECO diffractometer (Bruker, 2006) equipped with APEX III photon detector and Molybdenum monochromator (Mo Kα radiation, λ = 0.71073 Å). The unit cell refinement and data reduction were carried out using Bruker SAINT (Bruker, 2006) and the necessary absorption corrections were performed by multiscan method using SADABS (Bruker, 2006). The structure of both crystals I and II were solved by direct methods using SHELXS incorporated to WinGX-2014 program suite and refined by full-matrix least-squares techniques using SHELXL (Sheldrick, 2008, 2015). The unit cell, X-ray intensity data collection and crystal structure refinement details of salt (I) and (II) are presented in Table 1. Diagrams and publication material were generated using Olex2 (Dolomanov et al., 2009), PLATON (Spek, 2020) and Mercury softwares (Macrae et al., 2020).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H80.557 (2)0.2155 (14)0.9816 (19)0.062 (6)*
H110.119 (2)0.3848 (12)0.8608 (16)0.043 (4)*
H40.509 (3)0.307 (2)0.678 (3)0.111 (9)*
H30.473 (2)0.5151 (13)0.8772 (19)0.058 (6)*
H3A0.882 (2)0.5480 (14)0.540 (2)0.059 (6)*
H130.646 (2)0.5910 (14)0.566 (2)0.067 (6)*
H4B0.463 (3)0.1857 (16)1.177 (2)0.066 (7)*
H3B0.984 (3)0.4953 (15)0.651 (2)0.065 (6)*
H4A0.314 (2)0.2248 (13)1.206 (2)0.054 (6)*
O20.16222 (13)0.41781 (8)0.63413 (11)0.0499 (3)
N10.80749 (15)0.47671 (9)0.80428 (12)0.0423 (3)
C120.31316 (17)0.33716 (10)0.79760 (14)0.0357 (4)
O10.70149 (14)0.43536 (9)0.98058 (11)0.0527 (4)
O30.37952 (14)0.36188 (9)0.59087 (11)0.0529 (4)
N20.65577 (15)0.56046 (9)0.64433 (13)0.0420 (3)
C130.28234 (18)0.37514 (11)0.66724 (15)0.0387 (4)
O40.54959 (14)0.27302 (10)0.75865 (13)0.0610 (4)
C110.21193 (18)0.35023 (11)0.88628 (15)0.0378 (4)
C40.69030 (19)0.47687 (11)0.86762 (15)0.0405 (4)
C90.36391 (18)0.26076 (11)1.04421 (15)0.0418 (4)
N30.90016 (19)0.52269 (12)0.62232 (16)0.0593 (5)
N40.3878 (2)0.22401 (13)1.16520 (16)0.0608 (5)
C100.23558 (18)0.31375 (11)1.00685 (15)0.0410 (4)
H100.16670.32411.06390.049*
C20.53537 (18)0.56017 (11)0.71129 (16)0.0403 (4)
C30.55101 (19)0.51842 (12)0.82589 (16)0.0445 (4)
C70.44378 (18)0.28625 (11)0.83790 (16)0.0411 (4)
C10.78794 (19)0.51967 (11)0.69082 (15)0.0419 (4)
C80.4677 (2)0.24902 (12)0.95922 (17)0.0470 (4)
C60.8393 (3)0.38770 (16)1.0263 (2)0.0688 (6)
H6A0.85680.34380.96390.103*
H6B0.82940.35941.10650.103*
H6C0.92340.42811.03880.103*
C50.3953 (2)0.60699 (14)0.65024 (19)0.0548 (5)
H5A0.31040.58890.69110.082*
H5B0.37580.59250.56030.082*
H5C0.40960.66970.66010.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0450 (7)0.0616 (8)0.0434 (7)0.0130 (6)0.0079 (5)0.0123 (6)
N10.0459 (8)0.0471 (8)0.0362 (7)0.0073 (6)0.0133 (6)0.0057 (6)
C120.0357 (8)0.0357 (8)0.0355 (8)0.0021 (6)0.0047 (6)0.0008 (6)
O10.0562 (7)0.0644 (8)0.0409 (7)0.0102 (6)0.0184 (6)0.0144 (6)
O30.0505 (7)0.0701 (9)0.0411 (7)0.0132 (6)0.0166 (5)0.0125 (6)
N20.0437 (8)0.0464 (8)0.0376 (7)0.0072 (6)0.0119 (6)0.0054 (6)
C130.0390 (8)0.0387 (8)0.0384 (8)0.0009 (7)0.0056 (6)0.0015 (7)
O40.0494 (7)0.0853 (10)0.0517 (8)0.0247 (7)0.0187 (6)0.0140 (7)
C110.0359 (8)0.0394 (9)0.0381 (8)0.0009 (7)0.0048 (6)0.0005 (6)
C40.0468 (9)0.0417 (9)0.0351 (8)0.0007 (7)0.0128 (7)0.0006 (7)
C90.0456 (9)0.0424 (9)0.0363 (8)0.0064 (7)0.0018 (7)0.0030 (7)
N30.0516 (9)0.0817 (13)0.0494 (9)0.0243 (9)0.0236 (7)0.0279 (9)
N40.0611 (11)0.0755 (12)0.0458 (9)0.0092 (9)0.0084 (8)0.0211 (8)
C100.0415 (9)0.0460 (9)0.0366 (8)0.0029 (7)0.0094 (7)0.0011 (7)
C20.0408 (8)0.0390 (8)0.0422 (9)0.0008 (7)0.0094 (7)0.0042 (7)
C30.0425 (9)0.0509 (10)0.0431 (9)0.0009 (7)0.0160 (7)0.0001 (7)
C70.0383 (8)0.0445 (9)0.0412 (9)0.0032 (7)0.0086 (7)0.0020 (7)
C10.0448 (9)0.0445 (9)0.0384 (8)0.0068 (7)0.0130 (7)0.0040 (7)
C80.0430 (9)0.0499 (10)0.0469 (10)0.0080 (8)0.0025 (7)0.0068 (8)
C60.0699 (13)0.0839 (15)0.0553 (12)0.0228 (11)0.0178 (10)0.0276 (11)
C50.0458 (10)0.0592 (12)0.0596 (11)0.0089 (8)0.0081 (8)0.0032 (9)
Geometric parameters (Å, º) top
O2—C131.2521 (19)C9—C101.402 (2)
N1—C41.314 (2)N3—C11.312 (2)
N1—C11.345 (2)N3—H3A0.94 (2)
C12—C111.399 (2)N3—H3B0.87 (2)
C12—C71.405 (2)N4—H4B0.88 (2)
C12—C131.472 (2)N4—H4A0.83 (2)
O1—C41.3322 (19)C10—H100.93
O1—C61.441 (2)C2—C31.347 (2)
O3—C131.2765 (19)C2—C51.493 (2)
N2—C11.353 (2)C3—H30.94 (2)
N2—C21.363 (2)C7—C81.380 (2)
N2—H130.94 (2)C8—H80.94 (2)
O4—C71.3577 (19)C6—H6A0.96
O4—H41.01 (3)C6—H6B0.96
C11—C101.368 (2)C6—H6C0.96
C11—H110.981 (18)C5—H5A0.96
C4—C31.400 (2)C5—H5B0.96
C9—N41.374 (2)C5—H5C0.96
C9—C81.385 (2)
C4—N1—C1115.93 (14)C9—C10—H10120.1
C11—C12—C7117.38 (14)C3—C2—N2118.38 (15)
C11—C12—C13120.83 (14)C3—C2—C5125.20 (15)
C7—C12—C13121.79 (14)N2—C2—C5116.42 (15)
C4—O1—C6118.77 (14)C2—C3—C4117.45 (15)
C1—N2—C2121.18 (14)C2—C3—H3123.3 (12)
C1—N2—H13120.2 (13)C4—C3—H3119.2 (12)
C2—N2—H13118.6 (13)O4—C7—C8118.53 (15)
O2—C13—O3122.26 (14)O4—C7—C12120.76 (14)
O2—C13—C12119.63 (14)C8—C7—C12120.71 (15)
O3—C13—C12118.10 (14)N3—C1—N1119.43 (15)
C7—O4—H4104.1 (16)N3—C1—N2118.38 (15)
C10—C11—C12122.08 (15)N1—C1—N2122.19 (14)
C10—C11—H11118.5 (10)C7—C8—C9120.94 (16)
C12—C11—H11119.4 (10)C7—C8—H8117.5 (12)
N1—C4—O1119.17 (15)C9—C8—H8121.6 (12)
N1—C4—C3124.88 (15)O1—C6—H6A109.5
O1—C4—C3115.96 (14)O1—C6—H6B109.5
N4—C9—C8121.03 (17)H6A—C6—H6B109.5
N4—C9—C10119.97 (17)O1—C6—H6C109.5
C8—C9—C10118.95 (15)H6A—C6—H6C109.5
C1—N3—H3A118.4 (12)H6B—C6—H6C109.5
C1—N3—H3B118.2 (14)C2—C5—H5A109.5
H3A—N3—H3B122.9 (19)C2—C5—H5B109.5
C9—N4—H4B114.4 (14)H5A—C5—H5B109.5
C9—N4—H4A116.3 (14)C2—C5—H5C109.5
H4B—N4—H4A125 (2)H5A—C5—H5C109.5
C11—C10—C9119.88 (15)H5B—C5—H5C109.5
C11—C10—H10120.1
C11—C12—C13—O21.8 (2)C5—C2—C3—C4179.16 (16)
C7—C12—C13—O2177.82 (15)N1—C4—C3—C21.1 (3)
C11—C12—C13—O3179.25 (15)O1—C4—C3—C2179.28 (15)
C7—C12—C13—O31.1 (2)C11—C12—C7—O4177.92 (15)
C7—C12—C11—C101.4 (2)C13—C12—C7—O42.4 (2)
C13—C12—C11—C10178.20 (15)C11—C12—C7—C81.7 (2)
C1—N1—C4—O1179.81 (14)C13—C12—C7—C8177.93 (15)
C1—N1—C4—C30.5 (3)C4—N1—C1—N3179.71 (17)
C6—O1—C4—N13.2 (3)C4—N1—C1—N20.1 (2)
C6—O1—C4—C3177.10 (17)C2—N2—C1—N3179.58 (17)
C12—C11—C10—C90.6 (2)C2—N2—C1—N10.3 (3)
N4—C9—C10—C11179.95 (16)O4—C7—C8—C9179.68 (16)
C8—C9—C10—C112.3 (2)C12—C7—C8—C90.0 (3)
C1—N2—C2—C30.3 (2)N4—C9—C8—C7179.76 (17)
C1—N2—C2—C5179.75 (16)C10—C9—C8—C72.1 (3)
N2—C2—C3—C40.9 (2)
2-Amino-4-methoxy-6-methylpyrimidinium 5-chloro-2-hydroxybenzoate (II) top
Crystal data top
C6H10N3O+·C7H4ClO3Z = 2
Mr = 311.72F(000) = 324
Triclinic, P1Dx = 1.483 Mg m3
Dm = 1.483 Mg m3
Dm measured by ?
a = 8.329 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.962 (8) ÅCell parameters from 3294 reflections
c = 9.998 (7) Åθ = 3.1–28.3°
α = 111.66 (2)°µ = 0.29 mm1
β = 111.263 (13)°T = 293 K
γ = 94.052 (18)°Block, colourless
V = 698.1 (9) Å30.33 × 0.16 × 0.10 mm
Data collection top
Bruker D8 QUEST ECO
diffractometer
2483 reflections with I > 2σ(I)
phi scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.594, Tmax = 0.746h = 1111
9507 measured reflectionsk = 1313
3433 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.2462P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3433 reflectionsΔρmax = 0.42 e Å3
216 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single crystal X-ray diffraction intensity data for the crystals of I and II were collected on Bruker D8 QUEST ECO diffractometer (Bruker, 2006) equipped with APEXIII photon detector and Molybdenum monochromator (Mo Kα radiation, λ = 0.71073 Å). The unit cell refinement and data reduction were carried out using Bruker SAINT (Bruker, 2006) and the necessary absorption corrections were performed by multiscan method using SADABS (Bruker, 2006). The structure of both crystals I and II were solved by direct methods using SHELXS incorporated to WinGX-2014 program suite and refined by full-matrix least-squares techniques using SHELXL (Sheldrick, 2008, 2015). The unit cell, X-ray intensity data collection and crystal structure refinement details of salt (I) and (II) are presented in Table 1. Diagrams and publication material were generated using Olex2 (Dolomanov et al., 2009), PLATON (Spek, 2020) and Mercury softwares (Macrae et al., 2020).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H90.526 (4)0.902 (3)0.910 (3)0.059 (8)*
H110.697 (4)0.677 (3)0.590 (3)0.049 (8)*
H31.176 (3)0.438 (3)0.092 (3)0.044 (7)*
H80.750 (4)1.120 (3)1.005 (3)0.048 (7)*
H131.074 (4)0.724 (3)0.438 (4)0.059 (8)*
H41.033 (5)1.111 (4)0.832 (4)0.077 (11)*
Cl10.42523 (9)0.62173 (8)0.68319 (10)0.0615 (3)
N11.1392 (2)0.7017 (2)0.3749 (2)0.0354 (5)
N21.3851 (2)0.7841 (2)0.3361 (2)0.0341 (4)
C41.3439 (3)0.6505 (3)0.2202 (3)0.0380 (5)
C120.8394 (3)0.8872 (3)0.7207 (3)0.0360 (5)
O31.0850 (2)0.9862 (2)0.6925 (2)0.0553 (5)
O20.9380 (3)0.7520 (2)0.5297 (2)0.0568 (5)
O11.4390 (2)0.61839 (19)0.1345 (2)0.0483 (5)
N31.3071 (3)0.9393 (2)0.5279 (2)0.0424 (5)
H3A1.39431.00970.55480.051*
H3B1.23880.95440.57640.051*
C31.2024 (3)0.5346 (3)0.1761 (3)0.0450 (6)
C21.1004 (3)0.5644 (3)0.2587 (3)0.0386 (5)
O40.9775 (3)1.1457 (2)0.8921 (3)0.0530 (5)
C130.9628 (3)0.8736 (3)0.6413 (3)0.0406 (6)
C11.2784 (3)0.8089 (2)0.4130 (3)0.0321 (5)
C110.7070 (3)0.7642 (3)0.6725 (3)0.0391 (6)
C100.5941 (3)0.7747 (3)0.7457 (3)0.0408 (6)
C70.8553 (3)1.0214 (3)0.8433 (3)0.0401 (6)
C80.7394 (4)1.0286 (3)0.9164 (4)0.0520 (7)
C50.9474 (4)0.4539 (3)0.2308 (4)0.0554 (7)
H5A0.97240.43640.32380.083*
H5B0.92860.36230.14250.083*
H5C0.84270.49190.20830.083*
C90.6111 (4)0.9056 (3)0.8679 (4)0.0529 (7)
C61.5901 (4)0.7267 (3)0.1751 (4)0.0539 (7)
H6A1.55460.81500.17010.081*
H6B1.64250.68800.10200.081*
H6C1.67500.75020.28070.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0509 (4)0.0591 (5)0.0830 (6)0.0011 (3)0.0410 (4)0.0283 (4)
N10.0358 (10)0.0348 (10)0.0385 (11)0.0022 (8)0.0238 (9)0.0117 (9)
N20.0324 (9)0.0351 (10)0.0371 (11)0.0058 (7)0.0210 (8)0.0118 (9)
C40.0383 (12)0.0388 (12)0.0415 (13)0.0087 (9)0.0238 (11)0.0148 (11)
C120.0364 (12)0.0413 (13)0.0388 (13)0.0106 (9)0.0225 (10)0.0188 (11)
O30.0514 (11)0.0548 (12)0.0598 (12)0.0031 (8)0.0364 (10)0.0145 (10)
O20.0606 (11)0.0522 (11)0.0616 (12)0.0024 (9)0.0472 (10)0.0092 (10)
O10.0524 (10)0.0436 (10)0.0495 (11)0.0061 (8)0.0370 (9)0.0061 (8)
N30.0412 (11)0.0359 (10)0.0466 (12)0.0031 (8)0.0304 (10)0.0043 (9)
C30.0505 (14)0.0340 (13)0.0473 (15)0.0026 (10)0.0282 (12)0.0076 (12)
C20.0395 (12)0.0335 (12)0.0412 (13)0.0023 (9)0.0195 (11)0.0129 (11)
O40.0582 (12)0.0372 (10)0.0613 (13)0.0039 (8)0.0333 (10)0.0116 (9)
C130.0399 (13)0.0461 (14)0.0413 (14)0.0065 (10)0.0248 (11)0.0171 (12)
C10.0322 (11)0.0336 (11)0.0338 (12)0.0055 (8)0.0180 (9)0.0143 (10)
C110.0427 (13)0.0369 (13)0.0417 (14)0.0078 (10)0.0265 (11)0.0126 (11)
C100.0387 (12)0.0428 (13)0.0506 (15)0.0084 (10)0.0266 (11)0.0224 (12)
C70.0427 (13)0.0388 (13)0.0428 (14)0.0099 (10)0.0220 (11)0.0175 (11)
C80.0658 (18)0.0435 (15)0.0551 (17)0.0177 (13)0.0427 (15)0.0116 (13)
C50.0552 (16)0.0378 (14)0.0685 (19)0.0056 (11)0.0352 (14)0.0115 (13)
C90.0592 (16)0.0543 (16)0.0637 (18)0.0174 (13)0.0463 (15)0.0234 (14)
C60.0512 (15)0.0532 (16)0.0588 (17)0.0066 (12)0.0394 (14)0.0104 (14)
Geometric parameters (Å, º) top
Cl1—C101.746 (3)C3—H30.96 (3)
N1—C21.348 (3)C2—C51.494 (3)
N1—C11.354 (3)O4—C71.350 (3)
N1—H130.95 (3)O4—H40.87 (4)
N2—C41.319 (3)C11—C101.374 (3)
N2—C11.353 (3)C11—H110.92 (3)
C4—O11.338 (3)C10—C91.373 (4)
C4—C31.404 (3)C7—C81.398 (4)
C12—C111.392 (3)C8—C91.371 (4)
C12—C71.399 (4)C8—H80.98 (3)
C12—C131.496 (3)C5—H5A0.9600
O3—C131.262 (3)C5—H5B0.9600
O2—C131.247 (3)C5—H5C0.9600
O1—C61.423 (3)C9—H90.95 (3)
N3—C11.311 (3)C6—H6A0.9600
N3—H3A0.8600C6—H6B0.9600
N3—H3B0.8600C6—H6C0.9600
C3—C21.362 (3)
C2—N1—C1121.7 (2)C10—C11—C12120.2 (2)
C2—N1—H13120.7 (19)C10—C11—H11121.7 (17)
C1—N1—H13117.5 (19)C12—C11—H11118.1 (17)
C4—N2—C1116.17 (19)C9—C10—C11120.7 (2)
N2—C4—O1120.0 (2)C9—C10—Cl1118.95 (19)
N2—C4—C3124.6 (2)C11—C10—Cl1120.3 (2)
O1—C4—C3115.4 (2)O4—C7—C8118.7 (2)
C11—C12—C7119.3 (2)O4—C7—C12122.1 (2)
C11—C12—C13119.6 (2)C8—C7—C12119.2 (2)
C7—C12—C13121.1 (2)C9—C8—C7120.4 (3)
C4—O1—C6119.38 (19)C9—C8—H8118.6 (17)
C1—N3—H3A120.0C7—C8—H8121.0 (17)
C1—N3—H3B120.0C2—C5—H5A109.5
H3A—N3—H3B120.0C2—C5—H5B109.5
C2—C3—C4116.9 (2)H5A—C5—H5B109.5
C2—C3—H3120.2 (16)C2—C5—H5C109.5
C4—C3—H3122.8 (16)H5A—C5—H5C109.5
N1—C2—C3118.8 (2)H5B—C5—H5C109.5
N1—C2—C5116.9 (2)C8—C9—C10120.2 (2)
C3—C2—C5124.4 (2)C8—C9—H9125.2 (18)
C7—O4—H4100 (2)C10—C9—H9114.6 (18)
O2—C13—O3124.7 (2)O1—C6—H6A109.5
O2—C13—C12117.8 (2)O1—C6—H6B109.5
O3—C13—C12117.5 (2)H6A—C6—H6B109.5
N3—C1—N2120.42 (19)O1—C6—H6C109.5
N3—C1—N1117.8 (2)H6A—C6—H6C109.5
N2—C1—N1121.8 (2)H6B—C6—H6C109.5
C1—N2—C4—O1177.7 (2)C2—N1—C1—N3179.8 (2)
C1—N2—C4—C31.8 (4)C2—N1—C1—N20.4 (4)
N2—C4—O1—C63.4 (4)C7—C12—C11—C100.5 (4)
C3—C4—O1—C6177.1 (2)C13—C12—C11—C10179.3 (2)
N2—C4—C3—C20.9 (4)C12—C11—C10—C90.7 (4)
O1—C4—C3—C2178.7 (2)C12—C11—C10—Cl1178.82 (19)
C1—N1—C2—C31.4 (4)C11—C12—C7—O4177.9 (2)
C1—N1—C2—C5178.0 (2)C13—C12—C7—O42.3 (4)
C4—C3—C2—N10.8 (4)C11—C12—C7—C80.9 (4)
C4—C3—C2—C5178.5 (3)C13—C12—C7—C8178.8 (3)
C11—C12—C13—O22.4 (4)O4—C7—C8—C9178.6 (3)
C7—C12—C13—O2177.9 (2)C12—C7—C8—C90.3 (4)
C11—C12—C13—O3177.5 (2)C7—C8—C9—C100.8 (5)
C7—C12—C13—O32.2 (4)C11—C10—C9—C81.3 (5)
C4—N2—C1—N3178.7 (2)Cl1—C10—C9—C8178.2 (2)
C4—N2—C1—N11.2 (3)
Hydrogen-bonding interactions (Å, °) in salts I and II top
D—H···AD—HH···AD···AD—H···A
Salt I
N3—H3A···O2i0.94 (2)1.88 (2)2.815 (2)171.7 (19)
N3—H3B···O2ii0.87 (2)2.00 (2)2.805 (2)154.4 (19)
O4···H4···O31.01 (3)1.59 (3)2.5322 (19)152 (3)
N4···H4A···O4i0.834 (19)2.490 (18)3.294 (2)162.2 (18)
N4···H4B···O2iii0.88 (3)2.45 (3)3.299 (2)161.5 (18)
N1···H13···O3i0.94 (2)1.78 (2)2.7098 (18)173.8 (19)
C3···H3···O1iv0.938 (19)2.423 (19)3.313 (2)158.3 (17)
Salt II
N3···H3B···O3v0.861.992.848 (4)178
N3···H3A···N2vi0.862.273.118 (4)170
O4···H4···O30.88 (4)1.71 (4)2.543 (3)159
N1···H13···O2v0.95 (4)1.68 (4)2.623 (4)173 (3)
C11···H11···O20.92 (3)2.44 (3)2.766 (4)101 (2)
Symmetry codes: (i) x-1/2, -y+1/2, z+1/2; (ii) -x+1/2, y+1/2, -z+1/2; (iii) x+1/2, -y+1/2, z+1/2; (iv) -x+1, -y+1, -z; (v) -x, -y+1, -z+1; (vi) -x+1, -y+2, -z+1.
Topological properties of the electron density for selected intermolecular interactions in salts I and II top
D–H···AH···A (Å)ρ(rcp) (e Å-3)\nabla2ρ(rcp) (e Å-5)G(r) (a.u)V(r) (a.u)H(r)E(r) (a.u)De (kJ mol-1)
Salt I
N3—H3A···O21.88 (2)0.2072.5140.048-0.070-0.022-0.03592.17
N1—H13···O31.78 (2)0.2673.1460.069-0.105-0.036-0.052137.73
O4—H4···O31.59 (3)0.4263.780.129-0.218-0.089-0.109286.22
Salt II
N3—H3B···O31.990.1622.2440.036-0.049-0.012-0.02463.84
N1—H13···O21.68 (4)0.3433.6760.097-0.156-0.059-0.078204.14
O4—H4···O31.71 (4)0.323.9690.091-0.141-0.050-0.070184.97
Molecular descriptors of salts I and II top
Molecular descriptorsSalt ISalt II
Energy (eV)
Electron affinity A = [-ELUMO]2.0792.188
Ionization potential I = [-EHOMO]4.6865.424
Global hardness η = (I - A)/21.3041.618
Electrochemical potential µ = -(I + A)/2-3.383-3.806
Electrophilicity ω = µ2/2η4.3884.476
Electronegativity χ = (I + A)/23.3833.806
HOMO energy-4.686-5.424
LUMO energy-2.079-2.188
Band gap =[ELUMO - EHUMO]2.6073.236
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds