Download citation
Download citation
link to html
The crystal structures of rubescin D (1, C26H30O5) and monadelphin A (2, C30H36O11), bioactive mol­ecules of the vilasinin and gedunin classes of limonoids, respectively, are reported for the first time and the synthons affecting their crystal packings are analyzed on the basis of their occurrences in mol­ecules in the Cambridge Structural Database that share the same moieties. Rubescin D, 1, crystallizes in the space group P21 and its mol­ecular structure consists of three six-membered rings A, C and D having, respectively, envelope, twist-boat and half-chair conformations, and three five-membered rings with half-chair (B and E) and planar conformations (F). Many synthons found in the crystal packing of 1 are in agreement with expectations derived from mol­ecules displaying the same moieties. However, the secondary alcohol–ketone O—H...O=C synthon, which has a low occurrence (2.9%), con­tributes much to the layered packing, while the furan–ketone Csp2—H...O=C and secondary alcohol–epoxide O—H...OC2 synthons usually found in these com­pounds (occurrences of 20.6 and 17.6%, respectively) are missing. The packing of 1 is close to that of ceramicine B (3), but is com­pletely different from that of TS3 (4), suggesting that the absence of the epoxide group in 3 would have favoured the furan–secondary alcohol Csp2—H...OH synthon and that the missing hy­droxy group in 4, a strong hydrogen-bond donor, would have favoured the involvement of water mol­ecules in the crystal packing. The mol­ecular structure of monadelphin A, 2, consists of four six-membered fused rings (A, B, C and D) and one five-membered ring (E); they have twist-boat (A and C), chair (B), screw-boat (D) and planar (E) conformations. The mol­ecule crystallizes in the space group P212121 with the con­tribution of many synthons usually found in com­pounds having the same moieties. However, the secondary alcohol–acetate O—H...OOC and secondary alcohol–ketone O—H...O=C synthons (occurrences of 16.7% each in these com­pounds) are missing. The furan–acetate Csp2—H...OOC synthon not observed in these com­pounds greatly con­tributes to the layered packing of 2. The layered packing is very close to those of 7-oxogedunin (5) and 6-de­hydro-7-deacet­oxy-7-oxogedunin (6), which both crystallize in the space group P21.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621005209/ef3017sup1.cif
Contains datablocks 1, 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621005209/ef30171sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621005209/ef30172sup3.hkl
Contains datablock 2

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621005209/ef30171sup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621005209/ef30172sup5.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229621005209/ef3017sup6.pdf
Additional figures

CCDC references: 2071433; 2071435

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND for Windows (Brandenburg & Putz, 2018).

7-(Furan-3-yl)-12-hydroxy-1,6,11,16-tetramethyl-3,14-dioxahexacyclo[11.6.1.02,4.02,11.06,10.016,20]icosa-9,17-dien-19-one (1) top
Crystal data top
C26H30O5F(000) = 452
Mr = 422.50Dx = 1.321 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 7.1783 (3) ÅCell parameters from 3518 reflections
b = 11.6806 (5) Åθ = 5.1–76.2°
c = 13.0308 (6) ŵ = 0.73 mm1
β = 103.545 (5)°T = 100 K
V = 1062.20 (8) Å3Needle, colorless
Z = 20.11 × 0.10 × 0.06 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
4410 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source3885 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.087
Detector resolution: 10.4508 pixels mm-1θmax = 76.6°, θmin = 5.2°
ω scansh = 99
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2015)
k = 1414
Tmin = 0.935, Tmax = 0.963l = 1616
11588 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.063 w = 1/[σ2(Fo2) + (0.0915P)2 + 0.3275P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.172(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.43 e Å3
4410 reflectionsΔρmin = 0.37 e Å3
288 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.0 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

A low-temperature (100 K) with Supernova, Dual, Cu at zero, Atlas, X-ray apparatus equipped with a micro-focus sealed X-ray tube (λ = 1.54184 Å) and a CCD plate detector were used. Measurements were performed via ω-scans and numerical absorption corrections based on Gaussian integration over a multifaceted crystal model by using CrysAlisPro 1.171.38.43 software (Rigaku Oxford Diffraction, 2015) were done. The structures were solved by direct methods using SHELXT(Sheldrick, 2015a) and refined on F2 by full matrix least-squares procedures within the independent atom model (IAM) by using SHELXL-2018 program (Sheldrick, 2015b).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.6956 (4)0.6099 (3)0.6959 (2)0.0203 (6)
O10.7383 (4)0.6364 (3)0.4770 (2)0.0209 (6)
O20.0282 (4)0.3880 (3)0.4804 (2)0.0221 (6)
O40.3157 (4)0.3368 (3)0.6583 (2)0.0215 (6)
O51.2276 (5)0.3258 (4)1.0660 (3)0.0338 (8)
C90.5202 (6)0.5558 (3)0.6410 (3)0.0166 (7)
C80.3689 (6)0.5378 (4)0.7087 (3)0.0189 (8)
C180.6983 (6)0.4887 (4)0.6676 (3)0.0199 (8)
H180.75650.47270.60650.024*
C60.1363 (6)0.4796 (4)0.5410 (3)0.0199 (8)
H60.05570.54990.53810.024*
C10.5869 (6)0.5843 (4)0.4550 (3)0.0183 (8)
C120.4829 (6)0.5087 (4)0.8204 (3)0.0205 (8)
C70.2238 (6)0.4445 (4)0.6561 (3)0.0184 (8)
H70.11950.43860.69510.022*
C160.6435 (6)0.4202 (4)0.8452 (3)0.0187 (8)
C150.7815 (6)0.4808 (4)0.9409 (3)0.0206 (8)
H150.84530.54460.91100.025*
C40.1984 (6)0.4872 (4)0.3689 (3)0.0198 (8)
C170.7400 (6)0.3991 (4)0.7536 (3)0.0210 (8)
H17A0.88030.39520.78220.025*
H17B0.69780.32370.72180.025*
C110.2938 (5)0.4986 (4)0.4848 (3)0.0179 (7)
H110.37110.42680.50010.021*
C190.9388 (6)0.4078 (4)1.0055 (3)0.0220 (8)
C140.6436 (7)0.5363 (4)0.9995 (3)0.0258 (9)
H14B0.60250.48151.04780.031*
H14A0.70090.60461.03970.031*
C50.0791 (6)0.3786 (4)0.3784 (3)0.0222 (8)
H5A0.03760.37560.32020.027*
H5B0.15560.30860.37580.027*
C30.3563 (6)0.4775 (4)0.3111 (3)0.0231 (8)
H30.33240.44010.24460.028*
C100.4408 (5)0.5920 (4)0.5246 (3)0.0167 (7)
C20.5318 (6)0.5215 (4)0.3530 (4)0.0241 (9)
H20.62750.51140.31430.029*
C220.9287 (7)0.3285 (4)1.0889 (3)0.0264 (9)
H220.81940.31221.11570.032*
C230.0639 (6)0.5856 (4)0.3194 (3)0.0249 (9)
H23A0.03760.59450.35770.030*
H23B0.00640.56800.24520.030*
H23C0.13730.65690.32380.030*
C211.1054 (8)0.2818 (4)1.1216 (4)0.0289 (10)
H211.13940.22601.17580.035*
C260.5734 (6)0.3051 (4)0.8803 (3)0.0223 (8)
H26A0.51990.31730.94200.027*
H26C0.68140.25160.89850.027*
H26B0.47450.27310.82250.027*
C201.1217 (7)0.4017 (5)0.9964 (4)0.0302 (10)
H201.17120.44520.94720.036*
C240.3705 (6)0.7186 (4)0.5115 (3)0.0205 (8)
H24A0.23530.72210.51420.025*
H24B0.38490.74820.44340.025*
H24C0.44700.76510.56860.025*
C130.4797 (7)0.5683 (4)0.9082 (4)0.0253 (9)
H130.38550.62410.91240.030*
C250.2539 (6)0.6475 (4)0.7161 (3)0.0220 (8)
H25A0.34240.71060.74210.026*
H25B0.17070.63500.76490.026*
H25C0.17530.66690.64610.026*
H10.256 (10)0.302 (6)0.606 (5)0.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0156 (13)0.0214 (15)0.0239 (13)0.0025 (11)0.0044 (11)0.0014 (11)
O10.0146 (13)0.0230 (15)0.0266 (14)0.0015 (11)0.0080 (11)0.0038 (11)
O20.0154 (13)0.0275 (16)0.0250 (14)0.0056 (12)0.0079 (11)0.0002 (12)
O40.0213 (14)0.0180 (14)0.0254 (14)0.0015 (12)0.0061 (11)0.0017 (12)
O50.0296 (18)0.038 (2)0.0325 (17)0.0088 (15)0.0043 (13)0.0014 (14)
C90.0134 (17)0.0148 (17)0.0233 (18)0.0008 (14)0.0079 (14)0.0022 (14)
C80.0163 (18)0.020 (2)0.0225 (19)0.0014 (15)0.0092 (15)0.0010 (14)
C180.0130 (17)0.026 (2)0.0221 (17)0.0013 (16)0.0065 (14)0.0010 (16)
C60.0140 (17)0.024 (2)0.0245 (18)0.0011 (16)0.0096 (14)0.0012 (16)
C10.0126 (17)0.0205 (19)0.0232 (18)0.0004 (14)0.0071 (14)0.0045 (15)
C120.0197 (19)0.0210 (19)0.0242 (19)0.0000 (15)0.0117 (15)0.0009 (15)
C70.0127 (17)0.0209 (19)0.0246 (18)0.0008 (15)0.0103 (14)0.0026 (14)
C160.0203 (19)0.020 (2)0.0178 (17)0.0010 (15)0.0081 (14)0.0011 (14)
C150.0218 (19)0.021 (2)0.0198 (17)0.0009 (17)0.0058 (15)0.0020 (15)
C40.0149 (17)0.023 (2)0.0236 (18)0.0033 (16)0.0078 (15)0.0025 (15)
C170.0171 (19)0.025 (2)0.0234 (19)0.0062 (16)0.0099 (15)0.0036 (15)
C110.0133 (16)0.0202 (19)0.0222 (18)0.0040 (15)0.0083 (14)0.0008 (14)
C190.024 (2)0.023 (2)0.0186 (17)0.0024 (17)0.0042 (15)0.0005 (15)
C140.031 (2)0.025 (2)0.0228 (19)0.0045 (17)0.0083 (17)0.0021 (16)
C50.020 (2)0.024 (2)0.0244 (19)0.0018 (16)0.0092 (16)0.0004 (15)
C30.0215 (19)0.028 (2)0.0220 (18)0.0052 (17)0.0103 (15)0.0066 (16)
C100.0134 (17)0.0171 (18)0.0216 (18)0.0008 (15)0.0077 (14)0.0008 (14)
C20.0183 (19)0.034 (2)0.0245 (19)0.0032 (17)0.0142 (16)0.0012 (16)
C220.030 (2)0.025 (2)0.0241 (19)0.0011 (18)0.0051 (16)0.0014 (17)
C230.019 (2)0.029 (2)0.026 (2)0.0002 (16)0.0041 (16)0.0023 (17)
C210.039 (3)0.023 (2)0.0215 (19)0.0022 (19)0.0022 (18)0.0013 (16)
C260.021 (2)0.024 (2)0.0235 (18)0.0020 (16)0.0087 (16)0.0023 (15)
C200.028 (2)0.037 (3)0.026 (2)0.002 (2)0.0083 (18)0.0054 (19)
C240.0181 (18)0.020 (2)0.0248 (19)0.0002 (15)0.0086 (15)0.0011 (15)
C130.027 (2)0.027 (2)0.025 (2)0.0056 (17)0.0109 (17)0.0004 (16)
C250.021 (2)0.023 (2)0.0248 (18)0.0059 (16)0.0103 (15)0.0013 (16)
Geometric parameters (Å, º) top
O3—C91.441 (5)C4—C51.552 (6)
O3—C181.465 (5)C17—H17A0.9900
O1—C11.219 (5)C17—H17B0.9900
O2—C61.443 (5)C11—C101.521 (5)
O2—C51.463 (5)C11—H111.0000
O4—C71.417 (5)C19—C201.348 (7)
O4—H10.82 (7)C19—C221.442 (6)
O5—C211.362 (7)C14—C131.511 (6)
O5—C201.366 (6)C14—H14B0.9900
C9—C181.470 (5)C14—H14A0.9900
C9—C101.549 (5)C5—H5A0.9900
C9—C81.565 (5)C5—H5B0.9900
C8—C121.532 (6)C3—C21.352 (6)
C8—C251.540 (6)C3—H30.9500
C8—C71.552 (6)C10—C241.559 (6)
C18—C171.510 (6)C2—H20.9500
C18—H181.0000C22—C211.355 (7)
C6—C111.500 (5)C22—H220.9500
C6—C71.540 (5)C23—H23A0.9800
C6—H61.0000C23—H23B0.9800
C1—C21.488 (6)C23—H23C0.9800
C1—C101.542 (5)C21—H210.9500
C12—C131.344 (6)C26—H26A0.9800
C12—C161.526 (6)C26—H26C0.9800
C7—H71.0000C26—H26B0.9800
C16—C171.534 (5)C20—H200.9500
C16—C261.542 (6)C24—H24A0.9800
C16—C151.568 (6)C24—H24B0.9800
C15—C191.505 (6)C24—H24C0.9800
C15—C141.528 (6)C13—H130.9500
C15—H151.0000C25—H25A0.9800
C4—C31.504 (5)C25—H25B0.9800
C4—C111.512 (5)C25—H25C0.9800
C4—C231.542 (6)
C9—O3—C1860.8 (2)C6—C11—H11103.0
C6—O2—C5109.6 (3)C4—C11—H11103.0
C7—O4—H1106 (5)C10—C11—H11103.0
C21—O5—C20105.7 (4)C20—C19—C22104.7 (4)
O3—C9—C1860.4 (3)C20—C19—C15126.8 (4)
O3—C9—C10116.4 (3)C22—C19—C15128.4 (4)
C18—C9—C10118.5 (3)C13—C14—C15100.8 (3)
O3—C9—C8114.8 (3)C13—C14—H14B111.6
C18—C9—C8118.4 (3)C15—C14—H14B111.6
C10—C9—C8116.3 (3)C13—C14—H14A111.6
C12—C8—C25107.4 (3)C15—C14—H14A111.6
C12—C8—C7114.7 (3)H14B—C14—H14A109.4
C25—C8—C7107.3 (3)O2—C5—C4105.7 (3)
C12—C8—C9106.2 (3)O2—C5—H5A110.6
C25—C8—C9112.2 (3)C4—C5—H5A110.6
C7—C8—C9109.2 (3)O2—C5—H5B110.6
O3—C18—C958.8 (3)C4—C5—H5B110.6
O3—C18—C17119.7 (3)H5A—C5—H5B108.7
C9—C18—C17123.7 (3)C2—C3—C4120.6 (4)
O3—C18—H18114.5C2—C3—H3119.7
C9—C18—H18114.5C4—C3—H3119.7
C17—C18—H18114.5C11—C10—C1105.7 (3)
O2—C6—C11102.3 (3)C11—C10—C9101.8 (3)
O2—C6—C7112.3 (3)C1—C10—C9114.5 (3)
C11—C6—C7109.4 (3)C11—C10—C24117.5 (3)
O2—C6—H6110.8C1—C10—C24103.8 (3)
C11—C6—H6110.8C9—C10—C24113.7 (3)
C7—C6—H6110.8C3—C2—C1125.2 (4)
O1—C1—C2119.5 (4)C3—C2—H2117.4
O1—C1—C10121.6 (4)C1—C2—H2117.4
C2—C1—C10118.6 (3)C21—C22—C19106.7 (4)
C13—C12—C16109.5 (4)C21—C22—H22126.7
C13—C12—C8125.6 (4)C19—C22—H22126.7
C16—C12—C8124.1 (4)C4—C23—H23A109.5
O4—C7—C6109.7 (3)C4—C23—H23B109.5
O4—C7—C8110.7 (3)H23A—C23—H23B109.5
C6—C7—C8108.7 (3)C4—C23—H23C109.5
O4—C7—H7109.2H23A—C23—H23C109.5
C6—C7—H7109.2H23B—C23—H23C109.5
C8—C7—H7109.2C22—C21—O5110.7 (4)
C12—C16—C17113.6 (3)C22—C21—H21124.7
C12—C16—C26111.8 (4)O5—C21—H21124.7
C17—C16—C26109.2 (3)C16—C26—H26A109.5
C12—C16—C1599.7 (3)C16—C26—H26C109.5
C17—C16—C15112.1 (3)H26A—C26—H26C109.5
C26—C16—C15110.3 (3)C16—C26—H26B109.5
C19—C15—C14116.8 (4)H26A—C26—H26B109.5
C19—C15—C16116.1 (4)H26C—C26—H26B109.5
C14—C15—C16103.0 (3)C19—C20—O5112.2 (4)
C19—C15—H15106.7C19—C20—H20123.9
C14—C15—H15106.7O5—C20—H20123.9
C16—C15—H15106.7C10—C24—H24A109.5
C3—C4—C11106.8 (3)C10—C24—H24B109.5
C3—C4—C23108.6 (4)H24A—C24—H24B109.5
C11—C4—C23116.4 (4)C10—C24—H24C109.5
C3—C4—C5118.2 (4)H24A—C24—H24C109.5
C11—C4—C596.9 (3)H24B—C24—H24C109.5
C23—C4—C5109.8 (3)C12—C13—C14112.1 (4)
C18—C17—C16114.8 (3)C12—C13—H13123.9
C18—C17—H17A108.6C14—C13—H13123.9
C16—C17—H17A108.6C8—C25—H25A109.5
C18—C17—H17B108.6C8—C25—H25B109.5
C16—C17—H17B108.6H25A—C25—H25B109.5
H17A—C17—H17B107.6C8—C25—H25C109.5
C6—C11—C4105.0 (3)H25A—C25—H25C109.5
C6—C11—C10118.8 (3)H25B—C25—H25C109.5
C4—C11—C10121.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O11.002.533.093 (5)115
O4—H1···O20.82 (7)2.26 (7)2.784 (4)122 (6)
C6—H6···O1i1.002.453.332 (5)147
C21—H21···O3ii0.952.263.183 (5)164
O4—H1···O1iii0.82 (7)2.22 (7)2.902 (4)140 (6)
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+2; (iii) x+1, y1/2, z+1.
13-(Acetyloxy)-7-(furan-3-yl)-18-hydroxy-1,8,12,16,16-pentamethyl-5,15,19-trioxo-3,6-dioxapentacyclo[9.8.0.02,4.02,8.012,17]nonadecan-9-yl acetate (2) top
Crystal data top
C30H36O11Dx = 1.342 Mg m3
Mr = 572.59Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 3267 reflections
a = 11.2394 (8) Åθ = 3.9–75.2°
b = 11.9259 (11) ŵ = 0.86 mm1
c = 21.1432 (17) ÅT = 100 K
V = 2834.0 (4) Å3Block, colorless
Z = 40.39 × 0.19 × 0.03 mm
F(000) = 1216
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
5897 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source4413 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.084
Detector resolution: 10.4508 pixels mm-1θmax = 78.7°, θmin = 4.2°
ω scansh = 1214
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2015)
k = 1415
Tmin = 0.832, Tmax = 0.971l = 2626
23725 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.3498P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.149(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.22 e Å3
5897 reflectionsΔρmin = 0.20 e Å3
381 parametersAbsolute structure: Refined as an inversion twin
0 restraintsAbsolute structure parameter: 0.3 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

A low-temperature (100 K) with Supernova, Dual, Cu at zero, Atlas, X-ray apparatus equipped with a micro-focus sealed X-ray tube (λ = 1.54184 Å) and a CCD plate detector were used. Measurements were performed via ω-scans and numerical absorption corrections based on Gaussian integration over a multifaceted crystal model by using CrysAlisPro 1.171.38.43 software (Rigaku Oxford Diffraction, 2015) were done. The structures were solved by direct methods using SHELXT(Sheldrick, 2015a) and refined on F2 by full matrix least squares procedures within the independent atom model (IAM) by using SHELXL-2018 program (Sheldrick, 2015b).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O100.6975 (3)0.2275 (3)0.18082 (13)0.0366 (6)
O20.9552 (3)0.1427 (3)0.45240 (15)0.0428 (7)
O80.4604 (2)0.2177 (3)0.33525 (15)0.0424 (7)
O31.0200 (3)0.2463 (3)0.34797 (15)0.0451 (7)
O41.0278 (3)0.4545 (3)0.15875 (15)0.0442 (7)
O51.1874 (3)0.4869 (3)0.21654 (18)0.0506 (8)
O110.5260 (3)0.2873 (3)0.13801 (18)0.0593 (10)
O90.4130 (3)0.1033 (4)0.2551 (2)0.0649 (11)
O10.4942 (3)0.0626 (4)0.49729 (19)0.0614 (10)
O70.7961 (4)0.3606 (4)0.00568 (16)0.0665 (11)
C90.7309 (3)0.2876 (3)0.31879 (16)0.0301 (8)
H90.76380.22190.29510.036*
C120.7221 (3)0.3388 (4)0.20501 (18)0.0335 (8)
H120.69070.39580.17460.040*
C50.7535 (4)0.1575 (4)0.41050 (18)0.0349 (8)
H50.77520.09740.37960.042*
C70.9240 (3)0.2752 (4)0.36778 (18)0.0357 (9)
C110.6601 (3)0.3537 (4)0.26869 (18)0.0337 (8)
H11A0.57740.32530.26630.040*
H11B0.65730.43420.28020.040*
C140.8936 (4)0.4058 (3)0.27223 (19)0.0340 (8)
C60.8712 (4)0.2181 (4)0.42640 (18)0.0368 (9)
H60.85390.27730.45860.044*
C80.8426 (3)0.3596 (4)0.33577 (19)0.0335 (8)
C100.6626 (3)0.2345 (4)0.37529 (18)0.0335 (8)
C151.0066 (4)0.4682 (4)0.2728 (2)0.0404 (9)
H151.04930.47290.31430.048*
C10.5690 (3)0.1541 (4)0.3459 (2)0.0372 (9)
H10.59960.12780.30400.045*
C130.8607 (4)0.3506 (4)0.20943 (19)0.0356 (8)
C240.3904 (4)0.1831 (4)0.2877 (2)0.0452 (10)
C260.5988 (4)0.3187 (4)0.4190 (2)0.0393 (9)
H26B0.65600.34990.44930.047*
H26A0.53500.28030.44200.047*
H26C0.56490.37950.39350.047*
C290.5948 (4)0.2123 (4)0.1494 (2)0.0467 (10)
C280.9276 (4)0.2383 (4)0.20345 (19)0.0383 (9)
H28A0.90080.18700.23680.046*
H28C1.01330.25140.20780.046*
H28B0.91120.20510.16200.046*
C161.0817 (4)0.4704 (4)0.2147 (2)0.0433 (10)
C30.5683 (5)0.0709 (4)0.4559 (2)0.0483 (11)
C170.8996 (4)0.4308 (4)0.1554 (2)0.0407 (9)
H170.85550.50310.16030.049*
C180.8788 (4)0.3875 (4)0.0897 (2)0.0441 (10)
C270.8195 (4)0.4601 (4)0.37986 (19)0.0392 (9)
H27C0.75010.50210.36470.047*
H27B0.88930.50930.38010.047*
H27A0.80420.43290.42280.047*
C40.6999 (4)0.0948 (4)0.4693 (2)0.0433 (10)
C20.5406 (4)0.0510 (5)0.3864 (3)0.0519 (12)
H2B0.45520.03210.38180.062*
H2A0.58760.01370.37100.062*
C190.7883 (6)0.4154 (6)0.0510 (2)0.0615 (15)
H190.72680.46660.06170.074*
C220.7563 (5)0.0244 (4)0.4747 (2)0.0506 (12)
H22C0.74110.06640.43570.061*
H22A0.72090.06430.51060.061*
H22B0.84230.01740.48120.061*
C200.8974 (5)0.2972 (5)0.0020 (2)0.0571 (13)
H200.92570.24990.03490.068*
C210.9513 (5)0.3106 (5)0.0540 (2)0.0501 (12)
H211.02310.27610.06760.060*
C300.5796 (5)0.0926 (5)0.1307 (3)0.0569 (13)
H30A0.65760.05600.12900.068*
H30C0.54170.08870.08910.068*
H30B0.52950.05440.16190.068*
C230.7148 (5)0.1544 (5)0.5327 (2)0.0508 (12)
H23C0.79940.15780.54370.061*
H23B0.67170.11290.56560.061*
H23A0.68270.23060.52970.061*
C250.2848 (4)0.2573 (5)0.2798 (3)0.0600 (14)
H25C0.25610.28100.32150.072*
H25B0.22160.21630.25780.072*
H25A0.30710.32350.25510.072*
O60.8954 (3)0.5267 (3)0.26821 (14)0.0391 (6)
H311.001 (5)0.122 (5)0.425 (3)0.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O100.0379 (14)0.0395 (15)0.0324 (13)0.0015 (13)0.0020 (12)0.0048 (12)
O20.0369 (15)0.057 (2)0.0343 (14)0.0057 (15)0.0077 (13)0.0035 (14)
O80.0266 (13)0.0531 (19)0.0475 (16)0.0021 (13)0.0021 (12)0.0016 (14)
O30.0308 (13)0.062 (2)0.0428 (15)0.0029 (14)0.0020 (12)0.0044 (15)
O40.0414 (16)0.0498 (18)0.0415 (15)0.0050 (15)0.0108 (13)0.0046 (14)
O50.0377 (16)0.0523 (19)0.062 (2)0.0059 (15)0.0091 (15)0.0093 (16)
O110.059 (2)0.058 (2)0.061 (2)0.0028 (19)0.0274 (18)0.0016 (17)
O90.0454 (19)0.060 (2)0.089 (3)0.0004 (18)0.021 (2)0.023 (2)
O10.0489 (19)0.065 (2)0.070 (2)0.0008 (18)0.0254 (19)0.0166 (19)
O70.072 (3)0.096 (3)0.0316 (16)0.008 (2)0.0011 (17)0.0027 (18)
C90.0282 (16)0.039 (2)0.0234 (15)0.0007 (16)0.0005 (14)0.0002 (14)
C120.0324 (18)0.039 (2)0.0294 (17)0.0003 (16)0.0023 (15)0.0028 (16)
C50.0312 (18)0.045 (2)0.0286 (17)0.0014 (18)0.0035 (15)0.0007 (16)
C70.0294 (17)0.046 (2)0.0317 (18)0.0046 (18)0.0042 (15)0.0042 (16)
C110.0298 (17)0.040 (2)0.0313 (18)0.0019 (17)0.0013 (15)0.0007 (16)
C140.0325 (19)0.032 (2)0.0373 (19)0.0015 (16)0.0017 (17)0.0023 (16)
C60.0340 (19)0.047 (2)0.0292 (18)0.0044 (19)0.0022 (15)0.0020 (17)
C80.0302 (18)0.040 (2)0.0303 (18)0.0004 (16)0.0015 (15)0.0046 (16)
C100.0291 (17)0.042 (2)0.0294 (18)0.0011 (17)0.0036 (14)0.0011 (16)
C150.0339 (19)0.043 (2)0.044 (2)0.0029 (18)0.0024 (18)0.0004 (18)
C10.0264 (17)0.043 (2)0.042 (2)0.0021 (17)0.0018 (16)0.0018 (18)
C130.0354 (19)0.040 (2)0.0310 (18)0.0010 (17)0.0035 (16)0.0003 (17)
C240.0283 (18)0.051 (3)0.057 (3)0.0072 (19)0.007 (2)0.001 (2)
C260.0343 (19)0.048 (2)0.036 (2)0.0056 (19)0.0050 (17)0.0025 (17)
C290.048 (2)0.055 (3)0.037 (2)0.001 (2)0.011 (2)0.005 (2)
C280.0352 (19)0.045 (2)0.0349 (19)0.0030 (18)0.0041 (16)0.0001 (17)
C160.045 (2)0.037 (2)0.048 (2)0.0039 (19)0.004 (2)0.0059 (19)
C30.045 (2)0.044 (3)0.057 (3)0.004 (2)0.015 (2)0.012 (2)
C170.040 (2)0.043 (2)0.038 (2)0.0018 (19)0.0066 (18)0.0077 (18)
C180.048 (2)0.047 (3)0.037 (2)0.002 (2)0.009 (2)0.0067 (18)
C270.041 (2)0.045 (2)0.0310 (19)0.002 (2)0.0021 (16)0.0053 (17)
C40.044 (2)0.051 (3)0.035 (2)0.006 (2)0.011 (2)0.0102 (19)
C20.042 (2)0.052 (3)0.062 (3)0.010 (2)0.002 (2)0.010 (2)
C190.064 (3)0.085 (4)0.036 (2)0.009 (3)0.004 (2)0.007 (2)
C220.048 (2)0.057 (3)0.046 (2)0.008 (2)0.009 (2)0.012 (2)
C200.067 (3)0.068 (3)0.036 (2)0.008 (3)0.016 (2)0.002 (2)
C210.054 (3)0.060 (3)0.036 (2)0.005 (2)0.011 (2)0.000 (2)
C300.061 (3)0.059 (3)0.050 (3)0.008 (3)0.009 (3)0.013 (2)
C230.058 (3)0.064 (3)0.030 (2)0.010 (3)0.010 (2)0.006 (2)
C250.036 (2)0.069 (4)0.075 (3)0.002 (2)0.015 (2)0.002 (3)
O60.0393 (15)0.0340 (15)0.0441 (15)0.0023 (13)0.0046 (13)0.0013 (12)
Geometric parameters (Å, º) top
O10—C291.344 (5)C1—C21.533 (6)
O10—C121.449 (5)C1—H11.0000
O2—C61.416 (5)C13—C281.541 (6)
O2—H310.81 (6)C13—C171.553 (6)
O8—C241.342 (6)C24—C251.490 (7)
O8—C11.454 (5)C26—H26B0.9800
O3—C71.208 (5)C26—H26A0.9800
O4—C161.343 (6)C26—H26C0.9800
O4—C171.470 (5)C29—C301.491 (7)
O5—C161.205 (6)C28—H28A0.9800
O11—C291.206 (6)C28—H28C0.9800
O9—C241.201 (7)C28—H28B0.9800
O1—C31.213 (6)C3—C21.520 (7)
O7—C191.367 (7)C3—C41.533 (7)
O7—C201.369 (8)C17—C181.502 (6)
C9—C111.543 (5)C17—H171.0000
C9—C101.554 (5)C18—C191.348 (8)
C9—C81.564 (5)C18—C211.439 (7)
C9—H91.0000C27—H27C0.9800
C12—C111.526 (5)C27—H27B0.9800
C12—C131.568 (5)C27—H27A0.9800
C12—H121.0000C4—C231.527 (7)
C5—C61.544 (6)C4—C221.561 (7)
C5—C101.562 (6)C2—H2B0.9900
C5—C41.571 (6)C2—H2A0.9900
C5—H51.0000C19—H190.9500
C7—C81.519 (6)C22—H22C0.9800
C7—C61.534 (6)C22—H22A0.9800
C11—H11A0.9900C22—H22B0.9800
C11—H11B0.9900C20—C211.341 (8)
C14—O61.445 (5)C20—H200.9500
C14—C151.472 (6)C21—H210.9500
C14—C131.527 (6)C30—H30A0.9800
C14—C81.561 (5)C30—H30C0.9800
C6—H61.0000C30—H30B0.9800
C8—C271.541 (6)C23—H23C0.9800
C10—C261.542 (6)C23—H23B0.9800
C10—C11.553 (6)C23—H23A0.9800
C15—O61.435 (5)C25—H25C0.9800
C15—C161.490 (6)C25—H25B0.9800
C15—H151.0000C25—H25A0.9800
C29—O10—C12117.5 (3)C10—C26—H26C109.5
C6—O2—H31110 (4)H26B—C26—H26C109.5
C24—O8—C1116.6 (4)H26A—C26—H26C109.5
C16—O4—C17120.7 (3)O11—C29—O10123.3 (5)
C19—O7—C20105.5 (4)O11—C29—C30125.7 (5)
C11—C9—C10118.8 (3)O10—C29—C30111.0 (4)
C11—C9—C8106.9 (3)C13—C28—H28A109.5
C10—C9—C8116.4 (3)C13—C28—H28C109.5
C11—C9—H9104.4H28A—C28—H28C109.5
C10—C9—H9104.4C13—C28—H28B109.5
C8—C9—H9104.4H28A—C28—H28B109.5
O10—C12—C11109.3 (3)H28C—C28—H28B109.5
O10—C12—C13107.0 (3)O5—C16—O4119.7 (4)
C11—C12—C13113.0 (3)O5—C16—C15122.3 (4)
O10—C12—H12109.1O4—C16—C15118.0 (4)
C11—C12—H12109.1O1—C3—C2122.9 (5)
C13—C12—H12109.1O1—C3—C4123.0 (5)
C6—C5—C10112.9 (4)C2—C3—C4114.0 (4)
C6—C5—C4112.3 (3)O4—C17—C18105.2 (4)
C10—C5—C4113.9 (3)O4—C17—C13111.0 (4)
C6—C5—H5105.6C18—C17—C13115.1 (4)
C10—C5—H5105.6O4—C17—H17108.4
C4—C5—H5105.6C18—C17—H17108.4
O3—C7—C8124.9 (4)C13—C17—H17108.4
O3—C7—C6119.9 (4)C19—C18—C21105.5 (5)
C8—C7—C6114.9 (3)C19—C18—C17126.5 (5)
C12—C11—C9108.1 (3)C21—C18—C17128.0 (4)
C12—C11—H11A110.1C8—C27—H27C109.5
C9—C11—H11A110.1C8—C27—H27B109.5
C12—C11—H11B110.1H27C—C27—H27B109.5
C9—C11—H11B110.1C8—C27—H27A109.5
H11A—C11—H11B108.4H27C—C27—H27A109.5
O6—C14—C1558.9 (3)H27B—C27—H27A109.5
O6—C14—C13112.5 (3)C23—C4—C3110.8 (4)
C15—C14—C13115.7 (4)C23—C4—C22108.4 (4)
O6—C14—C8114.1 (3)C3—C4—C22103.6 (4)
C15—C14—C8119.2 (4)C23—C4—C5115.6 (4)
C13—C14—C8120.5 (3)C3—C4—C5108.2 (4)
O2—C6—C7109.7 (3)C22—C4—C5109.6 (4)
O2—C6—C5111.0 (4)C3—C2—C1111.9 (4)
C7—C6—C5111.3 (3)C3—C2—H2B109.2
O2—C6—H6108.2C1—C2—H2B109.2
C7—C6—H6108.2C3—C2—H2A109.2
C5—C6—H6108.2C1—C2—H2A109.2
C7—C8—C27110.3 (3)H2B—C2—H2A107.9
C7—C8—C14113.4 (3)C18—C19—O7111.4 (5)
C27—C8—C14108.0 (3)C18—C19—H19124.3
C7—C8—C9102.8 (3)O7—C19—H19124.3
C27—C8—C9115.5 (3)C4—C22—H22C109.5
C14—C8—C9106.9 (3)C4—C22—H22A109.5
C26—C10—C1109.1 (3)H22C—C22—H22A109.5
C26—C10—C9115.2 (4)C4—C22—H22B109.5
C1—C10—C9106.1 (3)H22C—C22—H22B109.5
C26—C10—C5113.6 (3)H22A—C22—H22B109.5
C1—C10—C5105.7 (3)C21—C20—O7111.1 (5)
C9—C10—C5106.4 (3)C21—C20—H20124.4
O6—C15—C1459.6 (3)O7—C20—H20124.4
O6—C15—C16115.3 (4)C20—C21—C18106.4 (5)
C14—C15—C16119.3 (4)C20—C21—H21126.8
O6—C15—H15116.7C18—C21—H21126.8
C14—C15—H15116.7C29—C30—H30A109.5
C16—C15—H15116.7C29—C30—H30C109.5
O8—C1—C2109.2 (3)H30A—C30—H30C109.5
O8—C1—C10108.0 (4)C29—C30—H30B109.5
C2—C1—C10114.3 (4)H30A—C30—H30B109.5
O8—C1—H1108.4H30C—C30—H30B109.5
C2—C1—H1108.4C4—C23—H23C109.5
C10—C1—H1108.4C4—C23—H23B109.5
C14—C13—C28109.1 (3)H23C—C23—H23B109.5
C14—C13—C17107.8 (4)C4—C23—H23A109.5
C28—C13—C17109.8 (3)H23C—C23—H23A109.5
C14—C13—C12109.3 (3)H23B—C23—H23A109.5
C28—C13—C12113.7 (4)C24—C25—H25C109.5
C17—C13—C12106.9 (3)C24—C25—H25B109.5
O9—C24—O8123.3 (4)H25C—C25—H25B109.5
O9—C24—C25125.1 (5)C24—C25—H25A109.5
O8—C24—C25111.6 (4)H25C—C25—H25A109.5
C10—C26—H26B109.5H25B—C25—H25A109.5
C10—C26—H26A109.5C15—O6—C1461.5 (3)
H26B—C26—H26A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O80.992.353.106 (5)133
C30—H30B···O90.982.443.231 (7)138
O2—H31···O30.81 (6)2.21 (6)2.633 (5)113 (5)
C5—H5···O5i1.002.463.435 (5)165
C11—H11B···O9ii0.992.293.128 (6)142
C25—H25A···O5iii0.982.503.238 (7)132
C20—H20···O11iv0.952.493.372 (6)154
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1/2, y+1/2, z.
CSD statistics for synthons between the moieties in 1 and 2 Filters used for the CSD search: no ions, only organics, R factor 7.5%, structures with 3D coordinates. For each D—H···A hydrogen bond, H···A = Å and 120° top
Number of hits (percentage) for a given synthon between the moieties in 1*
Total number of hits**Furan–ketone Csp2—H···OCSecondary alcohol–epoxide O—H···OC2Furan–epoxide Csp2—H···OC2Secondary alcohol–ketone O—H···OC
347 (20.6%)6 (17.6%)4 (11.8%)1 (2.9%)
Number of hits (percentage) for a given synthon between the moieties in 2*
Total number of hits***Secondary alcohol–lactone O—H···OOCFuran–lactone Csp2—H···OOCSecondary alcohol–ketone O—H···OCSecondary alcohol–acetate O—H···OOC
63 (50%)2 (33.3%)1 (16.7%)1(16.7%)
Notes: (*) only the synthons found in considered structures are shown in this table; (**) the following moieties have been considered for 1: furan, carbonyl, epoxide and hydroxy (secondary alcohol); (***) the following moieties have been considered for 2: furan, carbonyl, epoxide, lactone, acetate and hydroxy (secondary alcohol).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds