Download citation
Download citation
link to html
The ability to intentionally construct, through different types of interactions, inorganic–organic hybrid materials with desired properties is the main goal of inorganic crystal engineering. The primary deformation, related to intrinsic interactions within inorganic substructure, and the secondary deformation, mainly caused by the hydrogen bond interactions, are both responsible for polyhedral distortions of halogenidoantimonates(III) with organic cations. The evolution of structural parameters, in particular the Sb—I secondary- and O/N/C—H...I hydrogen bonds, as a function of temperature assists in understanding the contribution of those two distortion factors to the irregularity of [SbI6]3− polyhedra. In tris­(piperazine-1,4-diium) bis[hexaiodidoantimon­ate(III)] pentahydrate, (C4H12N2)3[SbI6]2·5H2O (TPBHP), where the isolated [SbI6]3– units were found, distortion is governed only by O/N/C—H...I hydrogen bonds, whereas in piperazine-1,4-diium bis[tetraiodidoantimon­ate(III)] tetrahydrate, (C4H12N2)[SbI4]2·4H2O (PBTT), both primary and O—H...I secondary factors cause the deformation of one-dimensional [{SbI4}n]n chains. The larger in spatial dimensions piperazine-1,4-diium cations, in contrast to the smaller water of crystallization molecules, do not significantly contribute to the octahedral distortion, especially in PBTT. The formation of isolated [SbI6]3− ions in TPBHP is the result of specific second coordination sphere hydrogen bond interactions that stabilize the hybrid structure and simultaneously effectively separate and prevent [SbI6]3− units from mutual interactions. The temperature-induced changes, further supported by the analysis of data retrieved from the Cambridge Structural Database, illustrate the significance of both primary and secondary distortion factors on the deformation of octahedra. Also, a comparison of packing features in the studied hybrids with those in the non-metal containing piperazine-1,4-diium diiodide diiodine (C4H12N2)I2·I2 (PDD) confirms the importance and hierarchy of different types of interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520617003420/eb5060sup1.cif
Contains datablocks global, TPBHP_295K, TPBHP_85K, PBTT_295K, PBTT_85K, PDD_295K, PDD_85K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617003420/eb5060TPBHP_295Ksup2.hkl
Contains datablock TPBHP_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617003420/eb5060TPBHP_85Ksup3.hkl
Contains datablock TPBHP_85K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617003420/eb5060PBTT_295Ksup4.hkl
Contains datablock PBTT_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617003420/eb5060PBTT_85Ksup5.hkl
Contains datablock PBTT_85K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617003420/eb5060PDD_295Ksup6.hkl
Contains datablock PDD_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617003420/eb5060PDD_85Ksup7.hkl
Contains datablock PDD_85K

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2052520617003420/eb5060PDD_85Ksup8.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520617003420/eb5060sup9.pdf
Table of selected bond lengths and angles

CCDC references: 1520784; 1520785; 1520786; 1520787; 1520788; 1520789

Computing details top

For all compounds, data collection: CrysAlis CCD ver. 171.33.57 (Oxford Diffraction Ltd., 2010); cell refinement: CrysAlis PRO ver. 171.34.44 (Oxford Diffraction Ltd., 2010); data reduction: CrysAlis PRO ver. 171.34.44 (Oxford Diffraction Ltd., 2010); program(s) used to solve structure: SHELXS97 (G.M.Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (G.M.Sheldrick, 2008); molecular graphics: Mercury (C.F.Macrae at al., 2008); software used to prepare material for publication: SHELXL97 (G.M.Sheldrick, 2008).

(TPBHP_295K) Tris(piperazine-1,4-diium) bis(hexaiodidoantimonate(III)) pentahydrate top
Crystal data top
2(SbI63)·3(C4H12N22+)·5(H2O)F(000) = 1876
Mr = 2120.87Dx = 3.031 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 16.2050 (5) ÅCell parameters from 5072 reflections
b = 8.7361 (3) Åθ = 2.9–29.6°
c = 16.4295 (5) ŵ = 9.16 mm1
β = 92.216 (3)°T = 295 K
V = 2324.16 (13) Å3Tabular, red-orange
Z = 20.10 × 0.09 × 0.06 mm
Data collection top
Xcalibur
diffractometer
4788 independent reflections
Radiation source: fine-focus sealed tube3105 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω–scanθmax = 26.5°, θmin = 2.9°
Absorption correction: analytical
CrysAlis Pro ver. 171.33.57 (Oxford Diffraction Ltd., 2010)
h = 2020
Tmin = 0.49, Tmax = 0.61k = 810
15908 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0247P)2]
where P = (Fo2 + 2Fc2)/3
4788 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 2.54 e Å3
10 restraintsΔρmin = 1.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.28128 (2)0.34971 (4)0.43586 (2)0.03301 (11)
I10.38229 (3)0.59134 (5)0.50041 (3)0.05144 (13)
I20.15164 (2)0.09118 (5)0.36394 (3)0.04173 (12)
I30.38814 (3)0.09896 (5)0.49095 (3)0.04642 (12)
I40.13860 (3)0.56866 (5)0.35906 (3)0.04513 (12)
I50.36223 (3)0.35268 (5)0.28051 (3)0.04450 (12)
I60.20557 (3)0.33247 (5)0.60837 (3)0.05363 (14)
N110.5205 (3)0.1627 (5)0.6663 (3)0.0452 (13)
H1110.50510.16260.61310.054*
H1120.57610.16230.67020.054*
C120.4891 (4)0.3047 (7)0.7053 (4)0.0453 (17)
H1210.42960.31030.69690.054*
H1220.51300.39390.68010.054*
C130.4885 (4)0.0220 (7)0.7055 (3)0.0457 (17)
H1310.51160.06780.68010.055*
H1320.42890.01790.69780.055*
N210.1641 (3)0.7080 (6)0.6795 (3)0.0464 (14)
H2110.18790.62030.66370.056*
H2120.17300.71730.73370.056*
N220.0947 (3)0.8270 (6)0.5300 (3)0.0490 (14)
H2210.07160.91430.54720.059*
H2220.08480.81990.47580.059*
C230.0738 (4)0.7003 (7)0.6606 (4)0.0458 (17)
H2310.04710.78930.68320.055*
H2320.05120.60980.68570.055*
C240.0562 (4)0.6947 (7)0.5708 (4)0.0454 (17)
H2410.07770.60010.54910.054*
H2420.00300.69620.55980.054*
C250.2036 (4)0.8405 (7)0.6376 (4)0.0442 (16)
H2510.18250.93590.65880.053*
H2520.26280.83820.64840.053*
C260.1854 (4)0.8328 (8)0.5475 (4)0.0509 (18)
H2610.21110.74230.52540.061*
H2620.20840.92190.52140.061*
O10.00000.8293 (9)0.25000.096 (3)
H110.038 (3)0.769 (2)0.268 (6)0.145*
O20.0348 (3)0.1015 (6)0.5875 (3)0.0653 (14)
H210.024 (5)0.100 (8)0.6378 (14)0.098*
H220.067 (4)0.177 (6)0.584 (4)0.098*
O30.3141 (3)0.8418 (7)0.2966 (4)0.0853 (18)
H310.274 (3)0.901 (7)0.303 (5)0.128*
H320.294 (4)0.770 (5)0.267 (4)0.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0330 (2)0.0340 (2)0.0319 (2)0.00318 (19)0.00162 (18)0.00124 (18)
I10.0464 (3)0.0488 (3)0.0587 (3)0.0072 (2)0.0025 (2)0.0129 (2)
I20.0432 (3)0.0398 (2)0.0420 (3)0.0049 (2)0.0012 (2)0.00732 (19)
I30.0483 (3)0.0471 (3)0.0428 (3)0.0175 (2)0.0110 (2)0.0051 (2)
I40.0534 (3)0.0404 (2)0.0414 (3)0.0103 (2)0.0012 (2)0.0022 (2)
I50.0419 (3)0.0535 (3)0.0384 (3)0.0078 (2)0.0059 (2)0.0033 (2)
I60.0689 (3)0.0493 (3)0.0437 (3)0.0002 (2)0.0138 (2)0.0024 (2)
N110.041 (3)0.055 (3)0.039 (3)0.005 (3)0.001 (3)0.005 (3)
C120.051 (4)0.044 (4)0.042 (4)0.007 (3)0.000 (3)0.007 (3)
C130.051 (4)0.039 (4)0.048 (4)0.004 (3)0.008 (4)0.001 (3)
N210.056 (4)0.053 (3)0.029 (3)0.006 (3)0.010 (3)0.004 (3)
N220.055 (4)0.059 (4)0.033 (3)0.009 (3)0.003 (3)0.008 (3)
C230.045 (4)0.053 (4)0.039 (4)0.000 (3)0.004 (3)0.003 (3)
C240.039 (4)0.052 (4)0.045 (4)0.001 (3)0.004 (3)0.010 (3)
C250.041 (4)0.048 (4)0.043 (4)0.003 (3)0.012 (3)0.004 (3)
C260.036 (4)0.069 (5)0.048 (5)0.005 (3)0.000 (3)0.016 (4)
O10.101 (7)0.090 (6)0.095 (7)0.0000.034 (6)0.000
O20.058 (3)0.053 (3)0.084 (4)0.005 (3)0.002 (3)0.004 (3)
O30.044 (3)0.098 (5)0.114 (5)0.001 (3)0.001 (3)0.039 (4)
Geometric parameters (Å, º) top
Sb1—I12.8505 (6)N22—C241.486 (7)
Sb1—I32.9146 (6)N22—C261.488 (7)
Sb1—I52.9146 (6)N22—H2210.9000
Sb1—I63.1352 (6)N22—H2220.9000
Sb1—I43.2204 (6)C23—C241.492 (8)
Sb1—I23.2739 (6)C23—H2310.9700
N11—C131.489 (7)C23—H2320.9700
N11—C121.494 (7)C24—H2410.9700
N11—H1110.9000C24—H2420.9700
N11—H1120.9000C25—C261.500 (8)
C12—C12i1.498 (12)C25—H2510.9700
C12—H1210.9700C25—H2520.9700
C12—H1220.9700C26—H2610.9700
C13—C13i1.496 (11)C26—H2620.9700
C13—H1310.9700O1—H110.85 (1)
C13—H1320.9700O2—H210.85 (1)
N21—C231.486 (8)O2—H220.85 (1)
N21—C251.502 (7)O3—H310.85 (1)
N21—H2110.9000O3—H320.85 (1)
N21—H2120.9000
I1—Sb1—I396.623 (17)C23—N21—H212109.2
I1—Sb1—I592.742 (17)C25—N21—H212109.2
I3—Sb1—I589.798 (17)H211—N21—H212107.9
I1—Sb1—I686.467 (16)C24—N22—C26111.6 (5)
I3—Sb1—I686.086 (16)C24—N22—H221109.3
I5—Sb1—I6175.689 (19)C26—N22—H221109.3
I1—Sb1—I495.692 (16)C24—N22—H222109.3
I3—Sb1—I4167.686 (18)C26—N22—H222109.3
I5—Sb1—I489.557 (15)H221—N22—H222108.0
I6—Sb1—I494.738 (16)N21—C23—C24110.9 (5)
I1—Sb1—I2175.102 (18)N21—C23—H231109.5
I3—Sb1—I287.639 (15)C24—C23—H231109.5
I5—Sb1—I289.676 (15)N21—C23—H232109.5
I6—Sb1—I291.435 (15)C24—C23—H232109.5
I4—Sb1—I280.060 (14)H231—C23—H232108.0
C13—N11—C12111.7 (5)N22—C24—C23110.7 (5)
C13—N11—H111109.3N22—C24—H241109.5
C12—N11—H111109.3C23—C24—H241109.5
C13—N11—H112109.3N22—C24—H242109.5
C12—N11—H112109.3C23—C24—H242109.5
H111—N11—H112107.9H241—C24—H242108.1
N11—C12—C12i110.4 (4)C26—C25—N21110.3 (5)
N11—C12—H121109.6C26—C25—H251109.6
C12i—C12—H121109.6N21—C25—H251109.6
N11—C12—H122109.6C26—C25—H252109.6
C12i—C12—H122109.6N21—C25—H252109.6
H121—C12—H122108.1H251—C25—H252108.1
N11—C13—C13i110.2 (4)C25—C26—N22110.3 (5)
N11—C13—H131109.6C25—C26—H261109.6
C13i—C13—H131109.6N22—C26—H261109.6
N11—C13—H132109.6C25—C26—H262109.6
C13i—C13—H132109.6N22—C26—H262109.6
H131—C13—H132108.1H261—C26—H262108.1
C23—N21—C25111.9 (5)H21—O2—H22104 (2)
C23—N21—H211109.2H31—O3—H32104 (2)
C25—N21—H211109.2
C13—N11—C12—C12i56.6 (8)N21—C23—C24—N2255.6 (7)
C12—N11—C13—C13i57.3 (8)C23—N21—C25—C2655.6 (7)
C25—N21—C23—C2455.4 (7)N21—C25—C26—N2255.9 (7)
C26—N22—C24—C2357.2 (7)C24—N22—C26—C2557.5 (7)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H111···I30.902.763.569 (5)150
N21—H211···I60.902.693.556 (5)161
N21—H212···I2ii0.902.753.514 (5)144
N22—H222···I40.903.063.693 (5)129
N11—H112···O3iii0.901.842.726 (7)167
N22—H221···O2iv0.901.872.767 (7)174
N22—H222···O2v0.902.272.864 (7)123
C12—H122···I5iii0.973.053.844 (6)140
C25—H252···I5ii0.973.133.809 (6)128
C26—H262···I2iv0.973.093.789 (6)130
O1—H11···I40.85 (1)2.79 (3)3.623 (5)166 (10)
O2—H21···O1v0.85 (1)2.00 (3)2.816 (6)161 (7)
O2—H22···I60.85 (1)2.64 (3)3.431 (5)156 (7)
O3—H31···I2iv0.85 (1)2.80 (2)3.622 (5)166 (8)
O3—H32···I6vi0.85 (1)3.05 (4)3.815 (6)150 (6)
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y+1, z+1; (vi) x, y+1, z1/2.
(TPBHP_85K) Tris(piperazine-1,4-diium) bis(hexaiodidoantimonate(III)) pentahydrate top
Crystal data top
2(SbI63)·3(C4H12N22+)·5(H2O)F(000) = 1876
Mr = 2120.87Dx = 3.113 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 16.0632 (9) ÅCell parameters from 2874 reflections
b = 8.6414 (5) Åθ = 2.9–29.6°
c = 16.3102 (10) ŵ = 9.41 mm1
β = 91.994 (5)°T = 85 K
V = 2262.6 (2) Å3Tabular, red-orange
Z = 20.10 × 0.09 × 0.06 mm
Data collection top
Xcalibur
diffractometer
4663 independent reflections
Radiation source: fine-focus sealed tube2475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω–scanθmax = 26.5°, θmin = 2.9°
Absorption correction: analytical
CrysAlis Pro ver. 171.33.57 (Oxford Diffraction Ltd., 2010)
h = 2020
Tmin = 0.49, Tmax = 0.61k = 810
15379 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ^2^(Fo^2^) + (0.0339P)^2^]
where P = (Fo^2^ + 2Fc^2^)/3
4663 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 1.72 e Å3
48 restraintsΔρmin = 1.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.28247 (6)0.35187 (13)0.43513 (7)0.0126 (2)
I10.38456 (7)0.59592 (13)0.49865 (7)0.0175 (3)
I20.15029 (7)0.09323 (12)0.36543 (7)0.0149 (3)
I30.38835 (7)0.09791 (12)0.48943 (7)0.0158 (3)
I40.13825 (7)0.57222 (12)0.35813 (7)0.0156 (3)
I50.36311 (6)0.35323 (13)0.27809 (6)0.0155 (3)
I60.20894 (7)0.33426 (14)0.60992 (7)0.0176 (3)
N110.5210 (8)0.1633 (15)0.6659 (8)0.016 (3)
H1110.50580.16300.61220.020*
H1120.57710.16340.66970.020*
C120.4894 (10)0.3075 (18)0.7041 (9)0.016 (4)
H1210.42950.31410.69500.019*
H1220.51450.39690.67880.019*
C130.4897 (10)0.0204 (18)0.7044 (9)0.014 (4)
H1310.51470.06920.67930.017*
H1320.42980.01370.69520.017*
N210.1628 (8)0.7096 (14)0.6818 (8)0.014 (3)
H2110.18650.61900.66860.017*
H2120.17070.72360.73620.017*
N220.0932 (8)0.8265 (16)0.5288 (8)0.017 (3)
H2210.06950.91480.54560.020*
H2220.08370.81810.47430.020*
C230.0728 (10)0.702 (2)0.6618 (10)0.019 (4)
H2310.04570.79260.68390.023*
H2320.04950.61130.68730.023*
C240.0552 (10)0.6949 (19)0.5700 (9)0.017 (4)
H2410.07730.59920.54860.020*
H2420.00450.69580.55890.020*
C250.2044 (10)0.839 (2)0.6371 (10)0.021 (4)
H2510.18570.93690.65840.025*
H2520.26410.83200.64740.025*
C260.1865 (9)0.834 (2)0.5472 (9)0.017 (4)
H2610.21310.74370.52410.020*
H2620.20940.92520.52190.020*
O10.00000.828 (2)0.25000.027 (4)
H110.032 (4)0.768 (3)0.278 (4)0.040*
O20.0365 (7)0.1029 (14)0.5860 (8)0.025 (3)
H210.031 (8)0.086 (9)0.637 (2)0.038*
H220.081 (7)0.155 (19)0.584 (8)0.038*
O30.3136 (7)0.8460 (15)0.2960 (8)0.025 (3)
H310.276 (6)0.908 (14)0.310 (10)0.037*
H320.288 (8)0.777 (14)0.268 (9)0.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0145 (6)0.0114 (5)0.0116 (6)0.0018 (5)0.0019 (5)0.0002 (5)
I10.0181 (6)0.0155 (6)0.0187 (7)0.0014 (5)0.0032 (5)0.0034 (5)
I20.0161 (6)0.0129 (6)0.0154 (6)0.0010 (5)0.0023 (5)0.0017 (5)
I30.0178 (6)0.0150 (6)0.0141 (6)0.0047 (5)0.0053 (5)0.0015 (5)
I40.0201 (6)0.0130 (6)0.0134 (6)0.0023 (5)0.0018 (5)0.0010 (5)
I50.0160 (6)0.0171 (6)0.0132 (6)0.0022 (5)0.0011 (4)0.0008 (5)
I60.0228 (6)0.0154 (6)0.0148 (6)0.0013 (5)0.0008 (5)0.0011 (5)
N110.017 (5)0.018 (5)0.015 (5)0.004 (4)0.000 (4)0.001 (4)
C120.016 (7)0.019 (8)0.012 (7)0.003 (6)0.007 (6)0.000 (6)
C130.013 (7)0.010 (7)0.019 (7)0.004 (6)0.004 (6)0.003 (6)
N210.016 (4)0.013 (4)0.012 (4)0.001 (3)0.003 (3)0.006 (3)
N220.019 (8)0.016 (8)0.014 (7)0.004 (7)0.005 (6)0.002 (6)
C230.018 (9)0.024 (10)0.015 (9)0.004 (8)0.002 (8)0.002 (8)
C240.015 (5)0.018 (6)0.017 (5)0.001 (4)0.004 (4)0.006 (4)
C250.021 (7)0.018 (7)0.023 (7)0.002 (7)0.007 (6)0.001 (7)
C260.010 (8)0.026 (10)0.015 (9)0.003 (8)0.000 (7)0.006 (8)
O10.029 (10)0.029 (10)0.022 (10)0.0000.002 (8)0.000
O20.015 (6)0.033 (8)0.029 (7)0.006 (6)0.005 (5)0.001 (6)
O30.018 (6)0.023 (7)0.032 (8)0.006 (6)0.012 (6)0.014 (6)
Geometric parameters (Å, º) top
Sb1—I12.8446 (15)N22—C241.465 (19)
Sb1—I32.8963 (15)N22—C261.519 (19)
Sb1—I52.9102 (15)N22—H2210.9000
Sb1—I63.1272 (16)N22—H2220.9000
Sb1—I43.2199 (15)C23—C241.51 (2)
Sb1—I23.2601 (15)C23—H2310.9700
N11—C131.482 (18)C23—H2320.9700
N11—C121.490 (19)C24—H2410.9700
N11—H1110.9000C24—H2420.9700
N11—H1120.9000C25—C261.48 (2)
C12—C12i1.52 (3)C25—H2510.9700
C12—H1210.9700C25—H2520.9700
C12—H1220.9700C26—H2610.9700
C13—C13i1.51 (3)C26—H2620.9700
C13—H1310.9700O1—H110.85 (1)
C13—H1320.9700O2—H210.85 (1)
N21—C231.47 (2)O2—H220.85 (1)
N21—C251.50 (2)O3—H310.85 (1)
N21—H2110.9000O3—H320.85 (1)
N21—H2120.9000
I1—Sb1—I397.21 (4)C23—N21—H212109.2
I1—Sb1—I592.81 (4)C25—N21—H212109.2
I3—Sb1—I589.86 (4)H211—N21—H212107.9
I1—Sb1—I686.29 (4)C24—N22—C26111.4 (12)
I3—Sb1—I685.46 (4)C24—N22—H221109.3
I5—Sb1—I6175.08 (5)C26—N22—H221109.3
I1—Sb1—I495.82 (4)C24—N22—H222109.3
I3—Sb1—I4166.97 (5)C26—N22—H222109.3
I5—Sb1—I489.46 (4)H221—N22—H222108.0
I6—Sb1—I495.44 (4)N21—C23—C24111.7 (13)
I1—Sb1—I2174.55 (5)N21—C23—H231109.3
I3—Sb1—I287.45 (4)C24—C23—H231109.3
I5—Sb1—I290.02 (4)N21—C23—H232109.3
I6—Sb1—I291.29 (4)C24—C23—H232109.3
I4—Sb1—I279.54 (4)H231—C23—H232107.9
C13—N11—C12113.2 (11)N22—C24—C23110.8 (13)
C13—N11—H111108.9N22—C24—H241109.5
C12—N11—H111108.9C23—C24—H241109.5
C13—N11—H112108.9N22—C24—H242109.5
C12—N11—H112108.9C23—C24—H242109.5
H111—N11—H112107.8H241—C24—H242108.1
N11—C12—C12i110.1 (10)C26—C25—N21112.6 (14)
N11—C12—H121109.6C26—C25—H251109.1
C12i—C12—H121109.6N21—C25—H251109.1
N11—C12—H122109.6C26—C25—H252109.1
C12i—C12—H122109.6N21—C25—H252109.1
H121—C12—H122108.2H251—C25—H252107.8
N11—C13—C13i110.5 (10)C25—C26—N22110.6 (13)
N11—C13—H131109.5C25—C26—H261109.5
C13i—C13—H131109.5N22—C26—H261109.5
N11—C13—H132109.5C25—C26—H262109.5
C13i—C13—H132109.5N22—C26—H262109.5
H131—C13—H132108.1H261—C26—H262108.1
C23—N21—C25112.0 (12)H21—O2—H22104 (3)
C23—N21—H211109.2H31—O3—H32104 (3)
C25—N21—H211109.2
C13—N11—C12—C12i55.9 (19)N21—C23—C24—N2256.1 (17)
C12—N11—C13—C13i55.9 (19)C23—N21—C25—C2652.6 (18)
C25—N21—C23—C2453.1 (18)N21—C25—C26—N2252.8 (19)
C26—N22—C24—C2356.9 (17)C24—N22—C26—C2555.8 (18)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H111···I30.902.763.566 (13)149
N21—H211···I60.902.673.536 (13)162
N21—H212···I2ii0.902.663.457 (13)147
N22—H222···I40.903.003.639 (13)130
N11—H112···O3iii0.901.832.708 (16)166
N22—H221···O2iv0.901.842.732 (18)171
N22—H222···O2v0.902.242.820 (16)122
C12—H122···I5iii0.972.993.774 (16)139
C25—H252···I5ii0.973.063.758 (16)130
C26—H262···I2iv0.973.063.747 (16)129
O1—H11···I40.85 (1)2.71 (133.558 (11)177 (8)
O2—H21···O1v0.85 (1)2.07 (4)2.822 (13)148 (7)
O2—H22···I60.85 (1)2.59 (4)3.427 (12)167 (13)
O3—H31···I2iv0.85 (1)2.75 (2)3.596 (11)175 (17)
O3—H32···I6vi0.85 (1)2.99 (9)3.756 (11)151 (16)
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y+1, z+1; (vi) x, y+1, z1/2.
(PBTT_295K) Piperazine-1,4-diium bis(tetraiodidoantimonate(III)) tetrahydrate top
Crystal data top
2(SbI4)·C4H12N22+·4(H2O)F(000) = 1232
Mr = 1418.94Dx = 3.519 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3518 reflections
a = 7.4437 (4) Åθ = 3.0–29.5°
b = 13.0949 (8) ŵ = 11.25 mm1
c = 13.7941 (8) ÅT = 295 K
β = 95.161 (5)°Tabular, red-orange
V = 1339.12 (13) Å30.10 × 0.08 × 0.04 mm
Z = 2
Data collection top
Xcalibur
diffractometer
2754 independent reflections
Radiation source: fine-focus sealed tube2235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω–scanθmax = 26.5°, θmin = 3.0°
Absorption correction: analytical
CrysAlis Pro ver. 171.33.57 (Oxford Diffraction Ltd., 2010)
h = 96
Tmin = 0.43, Tmax = 0.63k = 1616
9285 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.042 w = 1/[σ^2^(Fo^2^) + (0.0109P)^2^]
where P = (Fo^2^ + 2Fc^2^)/3
S = 1.01(Δ/σ)max = 0.001
2754 reflectionsΔρmax = 0.74 e Å3
114 parametersΔρmin = 0.74 e Å3
6 restraintsExtinction correction: SHELXL, Fc^*^=kFc[1+0.001xFc^2^λ^3^/sin(2θ)]^-1/4^
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00084 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sb10.76216 (4)0.47847 (2)0.09028 (2)0.03096 (9)
I10.63074 (5)0.31910 (3)0.20118 (3)0.04413 (11)
I21.08989 (4)0.34884 (3)0.05847 (2)0.04060 (10)
I30.94073 (5)0.57817 (3)0.25775 (3)0.04614 (11)
I40.44280 (4)0.61643 (3)0.10473 (2)0.04103 (10)
N110.5254 (8)0.0819 (4)0.0671 (4)0.0451 (14)0.80
H1110.59780.12020.10840.054*0.80
H1120.41240.10630.06720.054*0.80
N210.672 (3)0.0337 (15)0.0453 (14)0.040 (5)0.20
H2110.74780.01110.02100.047*0.20
H2120.73710.07560.08650.047*0.20
C120.5299 (7)0.0254 (4)0.1018 (4)0.0483 (14)
H1210.65320.05020.10770.058*
H1220.48430.02890.16540.058*
C130.5839 (7)0.0911 (4)0.0310 (4)0.0469 (14)
H1310.57470.16180.05180.056*
H1320.70920.07060.03030.056*
O10.1615 (7)0.3354 (3)0.3337 (3)0.0691 (12)
H110.142 (9)0.354 (4)0.2749 (16)0.104*
H120.160 (9)0.2708 (8)0.331 (4)0.104*
O20.8478 (6)0.3755 (4)0.4616 (4)0.0765 (13)
H210.882 (9)0.330 (4)0.503 (4)0.115*
H220.924 (7)0.372 (5)0.420 (4)0.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.03212 (18)0.02937 (19)0.03142 (19)0.00070 (15)0.00300 (14)0.00042 (14)
I10.0543 (2)0.0368 (2)0.0422 (2)0.00850 (17)0.00916 (17)0.00576 (16)
I20.03800 (19)0.0357 (2)0.0490 (2)0.00533 (15)0.00859 (16)0.00611 (16)
I30.0517 (2)0.0413 (2)0.0431 (2)0.00400 (18)0.00869 (17)0.00584 (17)
I40.04048 (19)0.0421 (2)0.0402 (2)0.00870 (16)0.00196 (15)0.01163 (16)
N110.049 (3)0.039 (3)0.046 (4)0.003 (3)0.003 (3)0.012 (3)
N210.055 (14)0.033 (12)0.028 (12)0.008 (11)0.011 (10)0.011 (10)
C120.060 (4)0.051 (4)0.033 (3)0.004 (3)0.002 (3)0.009 (3)
C130.060 (4)0.037 (3)0.045 (3)0.005 (3)0.006 (3)0.005 (3)
O10.089 (3)0.047 (3)0.067 (3)0.003 (3)0.017 (3)0.002 (2)
O20.077 (3)0.079 (3)0.073 (3)0.030 (3)0.008 (3)0.006 (3)
Geometric parameters (Å, º) top
Sb1—I12.8146 (5)N21—H2110.9000
Sb1—I32.8732 (5)N21—H2120.9000
Sb1—I43.0066 (5)C12—C13iii1.504 (7)
Sb1—I23.0361 (5)C12—H1210.9700
Sb1—I4i3.2201 (5)C12—H1220.9700
Sb1—I2ii3.3080 (5)C13—H1310.9700
N11—C131.463 (7)C13—H1320.9700
N11—C121.484 (7)O1—H110.85 (1)
N11—H1110.9000O1—H120.85 (1)
N11—H1120.9000O2—H210.85 (1)
N21—C131.41 (2)O2—H220.85 (1)
N21—C121.57 (2)
I1—Sb1—I393.333 (14)C13—N21—H212109.6
I1—Sb1—I495.389 (14)C12—N21—H212109.6
I3—Sb1—I489.143 (14)H211—N21—H212108.1
I1—Sb1—I289.258 (14)N11—C12—C13iii109.7 (4)
I3—Sb1—I292.902 (14)N11—C12—N2151.0 (8)
I4—Sb1—I2174.810 (15)C13iii—C12—N21108.9 (7)
I1—Sb1—I4i90.353 (13)N11—C12—H121109.7
I3—Sb1—I4i175.664 (15)C13iii—C12—H121109.7
I4—Sb1—I4i88.237 (12)N21—C12—H12162.2
I2—Sb1—I4i89.426 (13)N11—C12—H122109.7
I1—Sb1—I2ii174.487 (15)C13iii—C12—H122109.7
I3—Sb1—I2ii91.857 (13)N21—C12—H122141.0
I4—Sb1—I2ii86.544 (13)H121—C12—H122108.2
I2—Sb1—I2ii88.621 (12)N21—C13—N1154.6 (9)
I4i—Sb1—I2ii84.538 (12)N21—C13—C12iii112.2 (9)
Sb1—I2—Sb1ii91.379 (12)N11—C13—C12iii110.9 (4)
Sb1—I4—Sb1i91.763 (12)N21—C13—H131138.4
C13—N11—C12112.1 (5)N11—C13—H131109.5
C13—N11—H111109.2C12iii—C13—H131109.5
C12—N11—H111109.2N21—C13—H13257.4
C13—N11—H112109.2N11—C13—H132109.5
C12—N11—H112109.2C12iii—C13—H132109.5
H111—N11—H112107.9H131—C13—H132108.1
C13—N21—C12110.2 (14)H11—O1—H12104 (2)
C13—N21—H211109.6H21—O2—H22104 (2)
C12—N21—H211109.6
I1—Sb1—I2—Sb1ii174.911 (14)C13—N11—C12—C13iii56.3 (7)
I3—Sb1—I2—Sb1ii91.790 (13)C13—N11—C12—N2142.5 (9)
I4i—Sb1—I2—Sb1ii84.550 (12)C13—N21—C12—N1143.9 (10)
I2ii—Sb1—I2—Sb1ii0.0C13—N21—C12—C13iii56.5 (14)
I1—Sb1—I4—Sb1i90.188 (14)C12—N21—C13—N1142.1 (9)
I3—Sb1—I4—Sb1i176.545 (15)C12—N21—C13—C12iii58.4 (14)
I4i—Sb1—I4—Sb1i0.0C12—N11—C13—N2146.0 (10)
I2ii—Sb1—I4—Sb1i84.633 (12)C12—N11—C13—C12iii57.0 (7)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H111···O1iv0.901.982.811 (7)152
N11—H112···O2iv0.901.962.826 (7)162
N21—H211···O2v0.901.882.76 (2)164
N21—H212···O1iv0.901.732.624 (18)173
O1—H11···I2vi0.85 (1)2.98 (2)3.791 (4)162 (5)
O1—H11···I3vi0.85 (1)3.30 (5)3.687 (4)111 (5)
O1—H12···I3iv0.85 (1)2.87 (3)3.653 (4)154 (5)
O2—H21···I2vii0.85 (1)2.88 (3)3.637 (4)151 (5)
O2—H22···O1viii0.85 (1)2.27 (2)3.095 (7)166 (6)
Symmetry codes: (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z1/2; (vi) x1, y, z; (vii) x, y+1/2, z+1/2; (viii) x+1, y, z.
(PBTT_85K) Piperazine-1,4-diium bis(tetraiodidoantimonate(III)) tetrahydrate top
Crystal data top
2(SbI4)·C4H12N22+·4(H2O)F(000) = 1232
Mr = 1418.94Dx = 3.614 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4310 reflections
a = 7.31459 (16) Åθ = 2.8–29.6°
b = 12.9482 (3) ŵ = 11.55 mm1
c = 13.8097 (3) ÅT = 85 K
β = 94.560 (2)°Tabular, red-orange
V = 1303.79 (5) Å30.10 × 0.08 × 0.04 mm
Z = 2
Data collection top
Xcalibur
diffractometer
2680 independent reflections
Radiation source: fine-focus sealed tube2316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω–scanθmax = 26.5°, θmin = 2.8°
Absorption correction: analytical
CrysAlis Pro ver. 171.33.57 (Oxford Diffraction Ltd., 2010)
h = 96
Tmin = 0.43, Tmax = 0.64k = 1616
8963 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ^2^(Fo^2^) + (0.0093P)^2^]
where P = (Fo^2^ + 2Fc^2^)/3
2680 reflections(Δ/σ)max = 0.001
103 parametersΔρmax = 0.71 e Å3
6 restraintsΔρmin = 0.92 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.76039 (4)0.47971 (3)0.09006 (2)0.01057 (8)
I10.62508 (4)0.31947 (3)0.20205 (2)0.01357 (8)
I21.09279 (4)0.34775 (2)0.06094 (2)0.01268 (8)
I30.93816 (4)0.58140 (3)0.25750 (2)0.01409 (8)
I40.43658 (4)0.61943 (3)0.10332 (2)0.01294 (8)
N110.5267 (5)0.0830 (3)0.0678 (3)0.0163 (10)
H1110.60040.12110.10910.020*
H1120.41230.10850.06790.020*
C120.5281 (6)0.0273 (4)0.1025 (3)0.0136 (11)
H1210.48090.03090.16610.016*
H1220.65270.05360.10790.016*
C130.5894 (6)0.0915 (4)0.0312 (3)0.0143 (11)
H1310.58440.16320.05160.017*
H1320.71580.06870.03050.017*
O10.1530 (5)0.3394 (3)0.3335 (3)0.0201 (8)
H110.117 (7)0.368 (3)0.2799 (19)0.030*
H120.128 (7)0.2761 (11)0.324 (3)0.030*
O20.8456 (5)0.3738 (3)0.4603 (3)0.0217 (9)
H210.897 (6)0.330 (3)0.499 (3)0.033*
H220.910 (6)0.374 (4)0.412 (2)0.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.00974 (15)0.01068 (18)0.01132 (17)0.00044 (13)0.00095 (12)0.00017 (13)
I10.01504 (16)0.01300 (18)0.01282 (17)0.00179 (14)0.00213 (13)0.00127 (13)
I20.01105 (15)0.01191 (18)0.01524 (17)0.00170 (13)0.00207 (13)0.00155 (13)
I30.01470 (16)0.01321 (18)0.01389 (17)0.00118 (14)0.00188 (13)0.00140 (13)
I40.01222 (15)0.01364 (18)0.01288 (17)0.00234 (13)0.00051 (13)0.00275 (13)
N110.016 (2)0.017 (2)0.015 (2)0.0012 (19)0.0042 (18)0.0038 (18)
C120.018 (3)0.011 (3)0.012 (3)0.001 (2)0.001 (2)0.008 (2)
C130.015 (2)0.014 (3)0.014 (3)0.002 (2)0.002 (2)0.000 (2)
O10.025 (2)0.015 (2)0.020 (2)0.0031 (18)0.0039 (17)0.0023 (16)
O20.0191 (19)0.023 (2)0.023 (2)0.0060 (17)0.0011 (16)0.0004 (18)
Geometric parameters (Å, º) top
Sb1—I12.8142 (5)C12—C13iii1.506 (6)
Sb1—I32.8798 (4)C12—H1210.9700
Sb1—I42.9975 (4)C12—H1220.9700
Sb1—I23.0246 (4)C13—H1310.9700
Sb1—I4i3.2006 (4)C13—H1320.9700
Sb1—I2ii3.2938 (4)O1—H110.85 (1)
N11—C131.481 (6)O1—H120.85 (1)
N11—C121.506 (6)O2—H210.85 (1)
N11—H1110.9000O2—H220.85 (1)
N11—H1120.9000
I1—Sb1—I392.974 (13)C12—N11—H111109.3
I1—Sb1—I495.580 (13)C13—N11—H112109.3
I3—Sb1—I489.056 (12)C12—N11—H112109.3
I1—Sb1—I288.745 (13)H111—N11—H112107.9
I3—Sb1—I292.785 (12)C13iii—C12—N11109.1 (4)
I4—Sb1—I2175.209 (15)C13iii—C12—H121109.9
I1—Sb1—I4i90.470 (12)N11—C12—H121109.9
I3—Sb1—I4i176.310 (15)C13iii—C12—H122109.9
I4—Sb1—I4i89.289 (12)N11—C12—H122109.9
I2—Sb1—I4i88.614 (12)H121—C12—H122108.3
I1—Sb1—I2ii174.051 (15)N11—C13—C12iii111.1 (4)
I3—Sb1—I2ii92.814 (12)N11—C13—H131109.4
I4—Sb1—I2ii85.889 (12)C12iii—C13—H131109.4
I2—Sb1—I2ii89.601 (12)N11—C13—H132109.4
I4i—Sb1—I2ii83.777 (11)C12iii—C13—H132109.4
Sb1—I2—Sb1ii90.399 (12)H131—C13—H132108.0
Sb1—I4—Sb1i90.711 (12)H11—O1—H12104 (2)
C13—N11—C12111.7 (4)H21—O2—H22104 (2)
C13—N11—H111109.3
I1—Sb1—I2—Sb1ii174.286 (14)I3—Sb1—I4—Sb1i176.701 (15)
I3—Sb1—I2—Sb1ii92.798 (12)I4i—Sb1—I4—Sb1i0.0
I4i—Sb1—I2—Sb1ii83.785 (11)I2ii—Sb1—I4—Sb1i83.812 (11)
I2ii—Sb1—I2—Sb1ii0.0C13—N11—C12—C13iii56.8 (5)
I1—Sb1—I4—Sb1i90.403 (13)C12—N11—C13—C12iii57.9 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H111···O1iv0.901.982.801 (5)151
N11—H112···O2iv0.901.912.777 (5)161
O1—H11···I2v0.85 (1)3.03 (3)3.757 (3)145 (4)
O1—H11···I3v0.85 (1)3.07 (4)3.623 (4)125 (4)
O1—H12···I3iv0.85 (1)2.79 (2)3.613 (4)164 (4)
O2—H21···I2vi0.85 (1)2.81 (2)3.609 (4)159 (4)
O2—H22···O1vii0.85 (1)2.20 (2)2.991 (5)156 (4)
Symmetry codes: (iv) x+1, y1/2, z+1/2; (v) x1, y, z; (vi) x, y+1/2, z+1/2; (vii) x+1, y, z.
(PDD_295K) Piperazine-1,4-diium diiodide diiodine top
Crystal data top
C4H12N22+·2(I)·I2Z = 1
Mr = 595.76F(000) = 262
Triclinic, P1Dx = 3.051 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5154 (6) ÅCell parameters from 1913 reflections
b = 7.4946 (7) Åθ = 3.1–29.5°
c = 8.1299 (6) ŵ = 9.56 mm1
α = 64.759 (9)°T = 295 K
β = 68.019 (8)°Tabular, red
γ = 69.500 (9)°0.23 × 0.18 × 0.13 mm
V = 324.27 (6) Å3
Data collection top
Xcalibur
diffractometer
1325 independent reflections
Radiation source: fine-focus sealed tube1218 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ω–scanθmax = 26.5°, θmin = 3.1°
Absorption correction: analytical
CrysAlis Pro ver. 171.33.57 (Oxford Diffraction Ltd., 2010)
h = 48
Tmin = 0.23, Tmax = 0.39k = 99
2297 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ^2^(Fo^2^) + (0.0287P)^2^ + 0.2957P]
where P = (Fo^2^ + 2Fc^2^)/3
S = 1.17(Δ/σ)max < 0.001
1325 reflectionsΔρmax = 0.97 e Å3
47 parametersΔρmin = 0.72 e Å3
0 restraintsExtinction correction: SHELXL, Fc^*^=kFc[1+0.001xFc^2^λ^3^/sin(2θ)]^-1/4^
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0234 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.23323 (5)0.24003 (5)0.80815 (5)0.04546 (15)
I20.22218 (6)0.07360 (5)0.58767 (4)0.04926 (15)
N110.6386 (6)0.3302 (5)0.9426 (5)0.0378 (8)
H1120.53400.27430.94710.045*
H1110.77690.25490.90480.045*
C120.6165 (8)0.5404 (7)0.8031 (7)0.0436 (11)
H1210.62980.53700.68140.052*
H1220.73830.59630.78850.052*
C130.6074 (8)0.3277 (7)1.1336 (7)0.0416 (10)
H1310.72890.37521.13210.050*
H1320.61480.19001.22180.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0294 (2)0.0499 (2)0.0637 (2)0.00589 (14)0.01060 (15)0.02920 (17)
I20.0601 (3)0.0543 (2)0.0385 (2)0.02055 (17)0.00936 (16)0.01764 (16)
N110.0297 (19)0.0381 (19)0.050 (2)0.0004 (15)0.0107 (17)0.0251 (17)
C120.042 (3)0.045 (3)0.040 (2)0.011 (2)0.007 (2)0.014 (2)
C130.043 (3)0.036 (2)0.051 (3)0.0023 (19)0.023 (2)0.016 (2)
Geometric parameters (Å, º) top
I2—I2i2.7651 (8)C12—C13ii1.494 (7)
N11—C131.481 (6)C12—H1210.9700
N11—C121.493 (6)C12—H1220.9700
N11—H1120.9000C13—H1310.9700
N11—H1110.9000C13—H1320.9700
C13—N11—C12111.8 (3)N11—C12—H122109.5
C13—N11—H112109.3C13ii—C12—H122109.5
C12—N11—H112109.3H121—C12—H122108.1
C13—N11—H111109.3N11—C13—C12ii110.6 (4)
C12—N11—H111109.3N11—C13—H131109.5
H112—N11—H111107.9C12ii—C13—H131109.5
N11—C12—C13ii110.7 (4)N11—C13—H132109.5
N11—C12—H121109.5C12ii—C13—H132109.5
C13ii—C12—H121109.5H131—C13—H132108.1
C13—N11—C12—C13ii56.2 (5)C12—N11—C13—C12ii56.2 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H111···I1iii0.902.753.506 (4)142
N11—H112···I10.902.733.559 (4)154
Symmetry code: (iii) x+1, y, z.
(PDD_85K) Piperazine-1,4-diium diiodide diiodine top
Crystal data top
C4H12N22+·2(I)·I2Z = 1
Mr = 595.76F(000) = 262
Triclinic, P1Dx = 3.143 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4948 (5) ÅCell parameters from 2137 reflections
b = 7.4032 (6) Åθ = 3.1–29.5°
c = 8.0819 (5) ŵ = 9.85 mm1
α = 64.087 (7)°T = 85 K
β = 67.276 (7)°Tabular, red
γ = 69.593 (7)°0.23 × 0.18 × 0.13 mm
V = 314.73 (5) Å3
Data collection top
Xcalibur
diffractometer
1285 independent reflections
Radiation source: fine-focus sealed tube1201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω–scanθmax = 26.5°, θmin = 3.1°
Absorption correction: analytical
CrysAlis Pro ver. 171.33.57 (Oxford Diffraction Ltd., 2010)
h = 58
Tmin = 0.23, Tmax = 0.40k = 99
2215 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ^2^(Fo^2^) + (0.0234P)^2^]
where P = (Fo^2^ + 2Fc^2^)/3
S = 1.15(Δ/σ)max < 0.001
1285 reflectionsΔρmax = 0.95 e Å3
47 parametersΔρmin = 0.73 e Å3
0 restraintsExtinction correction: SHELXL, Fc^*^=kFc[1+0.001xFc^2^λ^3^/sin(2θ)]^-1/4^
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0111 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.22990 (4)0.24178 (4)0.80687 (4)0.01223 (12)
I20.22355 (5)0.07421 (4)0.58836 (4)0.01320 (12)
N110.6345 (6)0.3246 (5)0.9450 (5)0.0121 (8)
H1110.77160.24600.90670.015*
H1120.52580.26850.95470.015*
C120.6166 (8)0.5371 (7)0.7983 (6)0.0141 (9)
H1210.62790.53140.67730.017*
H1220.74180.59340.77890.017*
C130.6073 (7)0.3260 (6)1.1376 (6)0.0119 (9)
H1310.73220.37481.13040.014*
H1320.61310.18711.23020.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.00796 (17)0.01262 (17)0.01701 (18)0.00138 (12)0.00322 (12)0.00682 (13)
I20.01524 (18)0.01384 (18)0.01107 (17)0.00475 (12)0.00278 (12)0.00437 (13)
N110.0088 (18)0.0112 (18)0.0160 (19)0.0011 (15)0.0030 (15)0.0057 (15)
C120.013 (2)0.016 (2)0.011 (2)0.0017 (18)0.0031 (18)0.0043 (18)
C130.010 (2)0.011 (2)0.014 (2)0.0009 (17)0.0045 (18)0.0039 (18)
Geometric parameters (Å, º) top
I2—I2i2.7608 (6)C12—C13ii1.503 (6)
N11—C121.498 (5)C12—H1210.9700
N11—C131.501 (5)C12—H1220.9700
N11—H1110.9000C13—H1310.9700
N11—H1120.9000C13—H1320.9700
C12—N11—C13111.7 (3)N11—C12—H122109.6
C12—N11—H111109.3C13ii—C12—H122109.6
C13—N11—H111109.3H121—C12—H122108.1
C12—N11—H112109.3N11—C13—C12ii110.5 (3)
C13—N11—H112109.3N11—C13—H131109.6
H111—N11—H112107.9C12ii—C13—H131109.6
N11—C12—C13ii110.4 (3)N11—C13—H132109.6
N11—C12—H121109.6C12ii—C13—H132109.6
C13ii—C12—H121109.6H131—C13—H132108.1
C13—N11—C12—C13ii56.7 (5)C12—N11—C13—C12ii56.7 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H111···I1iii0.902.763.491 (4)139
N11—H112···I10.902.723.538 (3)151
Symmetry code: (iii) x+1, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds