research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Stoichiometric and polymorphic salts of hexa­methyl­ene­tetra­minium and 2-chloro-4-nitro­benzoate

CROSSMARK_Color_square_no_text.svg

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag, PO WITS, 2050, Johannesburg, South Africa
*Correspondence e-mail: andreas.lemmerer@wits.ac.za

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 22 September 2017; accepted 4 October 2017; online 13 October 2017)

Four mol­ecular salts made from hexa­methyl­ene­tetra­minium and 2-chloro-4-nitro­benzoate have been synthesized and are reported, namely ammonium hexa­methyl­ene­tetra­minium bis­(2-chloro-4-nitro­benzoate), NH4+·C6H13N4+·2C7H3ClNO4, (I), hexa­methyl­ene­tetra­minium hydrogen bis­(2-chloro-4-nitro­benzoate), 0.5C6H13N4+·C7H3.50ClNO4, (II), hexa­methyl­ene­tetra­minium 2-chloro-4-nitro­benzoate, C6H13N4+·C7H3ClNO4, (IIIa) and (IIIb). All four mol­ecular salts show N+—H⋯O hydrogen bonding. Salt (I) crystallized out with an NH4+ counter-ion which came from decomposition of 50% of the hexa­methyl­ene­tetra­minium cation in solution. (II) shows an unusual asymmetric unit, with both a hexa­methyl­ene­tetra­minium cation and a partially deproton­ated 2-chloro-4-nitro­benzoate anion. Salts (IIIa) and (IIIb) are polymorphs of each other. This work shows that hexamethylenetetramine only protonates once, even in the presence of excess acid.

1. Chemical context

Crystal engineering, the conception and synthesis of mol­ecular solid-state structures, is fundamentally based upon the discernment and subsequent exploitation of inter­molecular inter­actions (Desiraju, 1989[Desiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]) Thus, primarily non-covalent bonding is used to achieve the organization of mol­ecules and ions in the solid state in order to produce materials with desired properties. One mol­ecule that has been used that has multiple acceptor sites is hexa­methyl­ene­tetra­mine (hmta), and it has been shown to act as a hydrogen-bond acceptor for alcohol or carb­oxy­lic acid donors (Lemmerer, 2011[Lemmerer, A. (2011). Acta Cryst. B67, 177-192.]). Inter­estingly, hmta has four equivalent N atoms but there are very few reported co-crystals or salts that use all four. Examples that use all four N atoms in neutral hydrogen bonding are seen with alcohols (MacLean et al., 1999[MacLean, E. J., Glidewell, C., Ferguson, G., Gregson, R. M. & Lough, A. J. (1999). Acta Cryst. C55, 1867-1870.]), whereas the vast majority of mol­ecular complexes with hmta show it acting as a twofold acceptor (Li et al., 2001[Li, W., Zhang, J.-P., Tong, M. L. & Chen, X.-M. (2001). Aust. J. Chem. 54, 213-217.]). However, if protonation does occur, then it is usually confined to only one site being protonated (Lemmerer et al., 2012[Lemmerer, A., Bernstein, J. & Spackman, M. S. (2012). Chem. Commun. 48, 1883-1885.]). 2-Chloro-4-nitro­benzoic (2c4nH) acid has been used extensively in making co-crystals and salts using pyridine as an acceptor (Lemmerer et al., 2010[Lemmerer, A., Esterhuysen, C. E. & Bernstein, J. (2010). J. Pharm. Sci. 99, 4054-4071.], 2015[Lemmerer, A., Govindraju, S., Johnston, M., Motloung, X. & Savig, K. L. (2015). CrystEngComm, 17, 3591-3595.]) and has been chosen to be the hydrogen-bond donor/acid. The experimental pKa of hmta is 4.89 (Cooney et al., 1986[Cooney, A. P., Crampton, M. R. & Golding, P. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 835-839.]), and the calculated pKa of 2c4nH is 2.04 (Lemmerer et al., 2015[Lemmerer, A., Govindraju, S., Johnston, M., Motloung, X. & Savig, K. L. (2015). CrystEngComm, 17, 3591-3595.]). Childs et al. (2007[Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.]) postulated that for 0 < ΔpKa < 3, either a neutral co-crystal or salt can form, and that the crystalline environment can influence which one is favoured. In general, however, for ΔpKa values > 3 and < 0, a salt or co-crystal, respectively, is formed (Lemmerer et al., 2015[Lemmerer, A., Govindraju, S., Johnston, M., Motloung, X. & Savig, K. L. (2015). CrystEngComm, 17, 3591-3595.]). Hence, it is postulated that proton transfer will occur for a solution containing hmta and 2c4nH. In this work, we will make mol­ecular salts using a 1:1 or 1:2 ratio of hmta with 2c4nH to see if two N atoms sites can be protonated. The four salts synthesized and reported here are: (hmtaH+)·(NH4+)(2c4nH)2, (I)[link], (hmtaH+)·(2c4nH)2, (II)[link] and (hmtaH+)·(2c4nH), (IIIa) and (IIIb).

[Scheme 1]

2. Structural commentary

The asymmetric units and atom-labelling schemes are shown in Fig. 1[link], together with their displacement ellipsoids for all four salts. A noteworthy asymmetric unit is the one for salts (I)[link] and (II)[link]. In salt (I)[link], there is the expected simple hmtaH+ cation and 2c4n pair that are hydrogen bonded to each other using a charge-assisted N+—H⋯O hydrogen bond (Table 1[link]). However, an NH4+ ammonium cation is included in the asymmetric unit and its charge is balanced by a second 2c4n anion. The NH4+ cation's appearance is not unique as it has been reported in the literature that hmta can decompose to form NH4 and formaldehyde (Lough et al., 2000[Lough, A. J., Wheatley, P. S., Ferguson, G. & Glidewell, C. (2000). Acta Cryst. B56, 261-272.]), especially if the crystallization takes place slowly and in the presence of an acid. From a crystallographic standpoint, the 2:1 mol­ecular salt (II)[link] features half of an hmtaH+ cation crystallizing along a mirror plane at y = 1/4 and a fully occupied 2c4nH anion. In the difference-Fourier map, there is clear evidence that the N1 atom on a special position (0.485286 0.250000 0.494001) is protonated and hence has a half positive charge. However, the carb­oxy­lic acid group of 2c4nH has bond lengths typical of being neutral and clearly shows an acidic H atom, H2, located near O1 in the difference-Fourier map. Combined, this means that H1 acts as a bifurcated donor to two 2-chloro-4-nitro­benzoic mol­ecules (Table 2[link]), which themselves share the hydrogen atom H2. Mol­ecular salts (IIIa) and (IIIb) both have a 1:1 ratio and are polymorphs of each other. Both have charge-assisted N+—H⋯O hydrogen bonds (Tables 3[link] and 4[link]) between the two ions but differ in their packing as described further below.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.94 (2) 1.71 (2) 2.6564 (18) 177 (2)
N1A—H1A⋯O2 0.94 (2) 1.89 (2) 2.817 (2) 168 (2)
N1A—H2A⋯O5 0.93 (2) 1.87 (2) 2.784 (2) 167 (2)
N1A—H3A⋯O5i 0.91 (2) 1.90 (2) 2.803 (2) 171 (2)
N1A—H4A⋯O6ii 1.02 (2) 1.73 (2) 2.747 (2) 173 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.92 (3) 2.12 (2) 2.7667 (15) 126 (1)

Table 3
Hydrogen-bond geometry (Å, °) for (IIIa)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 1.00 (3) 1.60 (3) 2.599 (2) 173 (3)

Table 4
Hydrogen-bond geometry (Å, °) for (IIIb)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.90 (2) 1.80 (2) 2.6911 (17) 175.7 (19)
[Figure 1]
Figure 1
Perspective views of compounds (I)–(IIIb), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms with superscript (i) are at symmetry position (x, −y + [{1\over 2}], z). The dashed lines indicate the symmetry-independent N+—H⋯O hydrogen bonds.

3. Supra­molecular features

The packing of salt (I)[link] consists of clearly separated layers of hydro­phobic and hydro­phillic layers. All good hydrogen-bond donors are used (Table1, Fig. 2[link]a). The NH4+ cation forms a hydrogen-bonded ring using two carboxyl­ate groups and this ring repeats along the b-axis direction. The ring can be described as R43(8) and is a common feature in ammonium carboxyl­ate salts (Lemmerer & Fernandes, 2012[Lemmerer, A. & Fernandes, M. A. (2012). Acta Cryst. C68, o188-o194.]). This ladder is then surrounded by a 2c4n anion that hydrogen bonds to the hmta+ cation. Overall, the hydro­philic layer consists of the cationic NH part of hmtaH+, NH4+ and the carboxyl­ate CO2 part of 2c4n (Fig. 3[link]a). Salt (II)[link] consists only of the hmtaH+ and 2c4n anion in a 1:2 ratio. However, it appears crystallographically that only one complete proton transfer has taken place, and that on average, each of the 2c4n anions has released half a proton each to the N atom (labelled H1) and that the other half proton (labelled as H2) is located in between the two anions. Hence, only one N atom on hmta has been protonated, and subsequently, two 2c4n anions are behaving as acceptors from a single N—H group (Fig. 1[link]). Overall, the same layering of hydro­philic and hydro­phobic parts occurs, where the cationic and anionic parts are located in the same ac plane. Salts (IIIa) and (IIIb) have identical asymmetric units with a 2:1 ratio of hmtaH+ and 2c4n, in contrast to the previous two salts. The only significant difference is in the relative packing of these ion pairs. In (IIIa), the pairs pack anti-parallel (Fig. 3[link]c), and in (IIIb), parallel (Fig. 3[link]d).

[Figure 2]
Figure 2
(a) Detailed view of the five hydrogen bonds formed by the cations and anions in (I)[link]. (b) The hydrogen-bonded ladder formed between the NH4+ cation and carboxyl­ate anion forming a repeating R43(8) motif. Hydrogen bonds are shown as dashed red lines.
[Figure 3]
Figure 3
The packing diagrams for all four salts. Note the different packing arrangement of the two 1:1 dimorphs (IIIa) and (IIIb).

4. Database survey

Up to now, there are only 36 structures of singly protonated hmtaH+ mol­ecular salts in the Cambridge Structural Database (CSD, Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), together with any organic or inorganic counter-anion. Only one structure has the hmta doubly protonated (FOQZIW; Zaręba et al., 2014[Zaręba, J. K., Białek, M. J., Janczak, J., Zoń, J. & Dobosz, A. (2014). Cryst. Growth Des. 14, 6143-6153.]). Co-crystals of hmta in a 1:1 or 1:2 ratio with carb­oxy­lic acids are much more numerous (45). Ultimately, it has been shown that even with an excess of 2c4n, the hmta mol­ecule only allows itself to be protonated once.

5. Synthesis and crystallization

All chemicals were purchased from commercial sources (Sigma Aldrich) and used as received without further purification. Crystals were grown via the slow evaporation method, under ambient conditions, of alcoholic solutions. For (I)[link] and (II)[link], these crystals crystallized out concomitantly from a 1:2 ratio, and (IIIa) and (IIIb), concomitantly from a 1:1 molar ratio. The morphology of the yellow-tinted crystals are shown in Fig. 4[link]. Detailed masses and volumes are as follows. For (I)[link] and (II)[link]: hexa­methyl­ene­tetra­mine (0.050 g, 0.375 mmol) and 2-chloro-4-nitro­benzoic acid acid (0.072 g, 0.375 mmol) in methanol (5 mL); for (IIIa) and (IIIb): hexa­methyl­ene­tetra­mine (0.050 g, 0.375 mmol) and 2-chloro-4-nitro­benzoic acid acid (0.144 g, 0.750 mmol) in ethanol (5 mL).

[Figure 4]
Figure 4
The morphologies of the four title salts: (I)[link] block, (II)[link] plate, (IIIa) thick needles and (IIIb) prism.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For all compounds, the C-bound H atoms were placed geometrically (C—H bond lengths of 0.99 (ethyl­ene CH2), and 0.95 (Ar—H) Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N–bound H atoms were located in difference-Fourier maps and their coordinates and isotropic displacement parameters allowed to refine freely. The O–bound H atom in (II)[link] was located in the difference-Fourier map and refined as riding with Uiso(H) = 1.5Ueq(O).

Table 5
Experimental details

  (I) (II) (IIIa) (IIIb)
Crystal data
Chemical formula H4N+·C6H13N4+·2C7H3ClNO4 0.5C6H13N4+·C7H3.50ClNO4 C6H13N4+·C7H3ClNO4 C6H13N4+·C7H3ClNO4
Mr 560.35 543.32 341.76 341.76
Crystal system, space group Monoclinic, C2/c Orthorhombic, Pnma Monoclinic, Cc Monoclinic, P21/c
Temperature (K) 173 173 173 173
a, b, c (Å) 33.6032 (8), 6.0235 (1), 28.0229 (7) 8.2777 (2), 19.7942 (5), 13.5331 (4) 5.9049 (1), 21.9330 (4), 12.0194 (2) 12.0663 (2), 19.5741 (4), 6.6473 (1)
α, β, γ (°) 90, 121.007 (1), 90 90, 90, 90 90, 103.445 (1), 90 90, 105.820 (1), 90
V3) 4861.56 (19) 2217.40 (10) 1514.00 (5) 1510.54 (5)
Z 8 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.33 0.36 0.28 0.28
Crystal size (mm) 0.36 × 0.19 × 0.05 0.49 × 0.22 × 0.17 0.43 × 0.36 × 0.16 0.34 × 0.34 × 0.09
 
Data collection
Diffractometer Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector Bruker D8 Venture Photon CCD area detector
Absorption correction Integration (XPREP; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (XPREP; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (XPREP; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Integration (XPREP; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.927, 0.986 0.887, 0.954 0.914, 0.978 0.921, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 16830, 5858, 4131 20018, 2749, 2269 19814, 3644, 3487 26282, 3650, 3027
Rint 0.047 0.037 0.047 0.052
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 0.95 0.031, 0.084, 1.06 0.026, 0.066, 1.07 0.039, 0.109, 1.05
No. of reflections 5858 2749 3644 3650
No. of parameters 354 173 212 212
No. of restraints 0 0 2 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.34 0.27, −0.23 0.15, −0.16 0.55, −0.32
Absolute structure Flack x determined using 1663 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.010 (19)
Computer programs: APEX3, SAINT-Plus and XPREP (Bruker 2016[Bruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus and XPREP (Bruker 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: ORTEP-III for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Ammonium hexamethylenetetraminium bis(2-chloro-4-nitro-benzoate) (I) top
Crystal data top
H4N+·C6H13N4+·2C7H3ClNO4F(000) = 2320
Mr = 560.35Dx = 1.531 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4303 reflections
a = 33.6032 (8) Åθ = 2.4–26.5°
b = 6.0235 (1) ŵ = 0.33 mm1
c = 28.0229 (7) ÅT = 173 K
β = 121.007 (1)°Plate, yellow
V = 4861.56 (19) Å30.36 × 0.19 × 0.05 mm
Z = 8
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
4131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 28.0°, θmin = 1.4°
Absorption correction: integration
(XPREP; Bruker, 2016)
h = 4442
Tmin = 0.927, Tmax = 0.986k = 77
16830 measured reflectionsl = 3437
5858 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0425P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
5858 reflectionsΔρmax = 0.29 e Å3
354 parametersΔρmin = 0.34 e Å3
0 restraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2007)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12646 (7)0.8962 (3)0.25907 (8)0.0436 (5)
H1B0.1245110.7342820.2636140.052*
H1C0.150240.922740.2488960.052*
C20.14211 (6)1.2486 (3)0.30330 (8)0.0376 (4)
H2B0.1520641.3260050.3388880.045*
H2C0.1656331.277540.2928350.045*
C30.08364 (7)1.2276 (3)0.20814 (7)0.0322 (4)
H3B0.1068771.258490.1973180.039*
H3C0.0532991.2859730.1785390.039*
C40.06273 (6)1.2897 (3)0.27554 (7)0.0340 (4)
H4B0.0322141.3483630.2464060.041*
H4C0.0716121.3672830.3108050.041*
C50.10396 (8)0.9702 (4)0.32528 (8)0.0538 (6)
H5A0.1018010.8089140.3303950.065*
H5B0.1132921.0446660.3610350.065*
C60.04479 (7)0.9401 (3)0.23067 (8)0.0417 (5)
H6A0.0139880.9945630.2012190.05*
H6B0.0423170.7785760.2351570.05*
N10.08009 (5)0.9820 (2)0.21368 (6)0.0298 (3)
N20.13960 (6)1.0090 (3)0.31095 (6)0.0436 (4)
N30.09712 (5)1.3374 (2)0.26001 (6)0.0293 (3)
N40.05840 (6)1.0525 (3)0.28254 (6)0.0400 (4)
H10.0698 (7)0.909 (3)0.1795 (9)0.055 (6)*
C70.06854 (5)0.5904 (3)0.05877 (6)0.0239 (3)
C80.08353 (5)0.3865 (3)0.05022 (6)0.0242 (3)
C90.07300 (5)0.3194 (3)0.00250 (6)0.0254 (4)
H90.0825120.1782130.0081520.03*
C100.04844 (5)0.4631 (3)0.04620 (6)0.0272 (4)
C110.03282 (6)0.6669 (3)0.04007 (7)0.0304 (4)
H110.0159470.763480.070920.037*
C120.04261 (5)0.7252 (3)0.01254 (7)0.0283 (4)
H120.0312120.862570.0173420.034*
C130.08027 (6)0.6776 (3)0.11575 (7)0.0263 (4)
N50.03893 (5)0.3921 (3)0.10143 (6)0.0344 (4)
O10.04796 (4)0.7787 (2)0.11648 (5)0.0392 (3)
O20.12006 (4)0.6506 (2)0.15595 (5)0.0360 (3)
O30.02132 (5)0.5272 (3)0.13945 (5)0.0491 (4)
O40.04925 (4)0.2028 (2)0.10660 (5)0.0442 (4)
Cl10.11490 (2)0.19844 (7)0.10370 (2)0.03492 (12)
C140.22494 (5)0.1024 (3)0.09588 (6)0.0241 (3)
C150.18721 (5)0.0359 (3)0.04462 (6)0.0232 (3)
C160.17243 (6)0.1593 (3)0.00290 (7)0.0258 (4)
H160.1462260.115060.0373420.031*
C170.19690 (6)0.3500 (3)0.00099 (6)0.0268 (4)
C180.23531 (6)0.4187 (3)0.05009 (7)0.0296 (4)
H180.2521050.5476790.0513720.035*
C190.24862 (6)0.2941 (3)0.09738 (7)0.0278 (4)
H190.2746010.3405460.1317810.033*
C200.24019 (5)0.0227 (3)0.14930 (7)0.0279 (4)
N60.17928 (6)0.4903 (3)0.04867 (6)0.0377 (4)
O50.24220 (5)0.0883 (2)0.18852 (5)0.0463 (4)
O60.24993 (4)0.22222 (19)0.15110 (5)0.0353 (3)
O70.20330 (6)0.6416 (3)0.04802 (6)0.0652 (5)
O80.14019 (5)0.4528 (3)0.08803 (5)0.0594 (4)
Cl20.15515 (2)0.19840 (7)0.03935 (2)0.03327 (12)
N1A0.21195 (6)0.5093 (3)0.19658 (7)0.0301 (3)
H1A0.1800 (8)0.543 (3)0.1788 (8)0.046 (6)*
H2A0.2175 (7)0.365 (4)0.1897 (8)0.045 (6)*
H4A0.2269 (7)0.617 (4)0.1824 (8)0.056 (6)*
H3A0.2251 (7)0.522 (3)0.2341 (9)0.046 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0376 (10)0.0339 (10)0.0426 (11)0.0118 (9)0.0088 (9)0.0071 (9)
C20.0293 (9)0.0417 (11)0.0359 (10)0.0049 (8)0.0125 (8)0.0159 (8)
C30.0407 (10)0.0352 (10)0.0257 (8)0.0047 (8)0.0207 (8)0.0023 (7)
C40.0335 (9)0.0428 (11)0.0288 (9)0.0015 (8)0.0183 (8)0.0080 (8)
C50.0782 (16)0.0458 (13)0.0310 (10)0.0021 (12)0.0235 (11)0.0110 (9)
C60.0423 (11)0.0425 (11)0.0428 (11)0.0186 (9)0.0237 (9)0.0145 (9)
N10.0286 (7)0.0305 (8)0.0267 (7)0.0013 (6)0.0117 (6)0.0103 (6)
N20.0404 (9)0.0420 (10)0.0291 (8)0.0126 (8)0.0040 (7)0.0011 (7)
N30.0364 (8)0.0255 (7)0.0299 (7)0.0010 (6)0.0198 (7)0.0040 (6)
N40.0465 (9)0.0495 (10)0.0296 (8)0.0157 (8)0.0237 (8)0.0066 (7)
C70.0206 (7)0.0273 (9)0.0279 (8)0.0059 (7)0.0153 (7)0.0069 (7)
C80.0239 (8)0.0257 (8)0.0243 (8)0.0042 (7)0.0135 (7)0.0017 (7)
C90.0245 (8)0.0282 (9)0.0266 (8)0.0042 (7)0.0155 (7)0.0075 (7)
C100.0206 (8)0.0387 (10)0.0217 (8)0.0050 (7)0.0106 (7)0.0063 (7)
C110.0234 (8)0.0356 (10)0.0270 (8)0.0008 (7)0.0092 (7)0.0013 (7)
C120.0228 (8)0.0278 (9)0.0334 (9)0.0001 (7)0.0139 (7)0.0046 (7)
C130.0302 (9)0.0237 (9)0.0310 (9)0.0076 (7)0.0201 (8)0.0086 (7)
N50.0237 (7)0.0551 (10)0.0224 (7)0.0012 (7)0.0105 (6)0.0038 (7)
O10.0282 (6)0.0513 (8)0.0410 (7)0.0063 (6)0.0198 (6)0.0237 (6)
O20.0354 (7)0.0425 (7)0.0260 (6)0.0049 (6)0.0129 (6)0.0074 (5)
O30.0473 (8)0.0709 (10)0.0260 (7)0.0071 (7)0.0166 (6)0.0067 (7)
O40.0400 (8)0.0593 (9)0.0312 (7)0.0072 (7)0.0170 (6)0.0145 (6)
Cl10.0519 (3)0.0274 (2)0.0269 (2)0.0028 (2)0.0213 (2)0.00014 (17)
C140.0230 (8)0.0225 (8)0.0256 (8)0.0026 (7)0.0117 (7)0.0020 (7)
C150.0234 (8)0.0197 (8)0.0294 (8)0.0030 (6)0.0157 (7)0.0046 (7)
C160.0247 (8)0.0294 (9)0.0229 (8)0.0031 (7)0.0119 (7)0.0062 (7)
C170.0310 (9)0.0280 (9)0.0232 (8)0.0024 (7)0.0153 (7)0.0009 (7)
C180.0317 (9)0.0272 (9)0.0319 (9)0.0083 (7)0.0179 (8)0.0023 (7)
C190.0230 (8)0.0277 (9)0.0254 (8)0.0040 (7)0.0071 (7)0.0035 (7)
C200.0233 (8)0.0273 (9)0.0280 (9)0.0004 (7)0.0096 (7)0.0024 (7)
N60.0480 (10)0.0392 (9)0.0260 (8)0.0087 (8)0.0191 (7)0.0007 (7)
O50.0737 (10)0.0317 (7)0.0230 (6)0.0127 (7)0.0174 (7)0.0018 (6)
O60.0391 (7)0.0249 (6)0.0444 (7)0.0065 (5)0.0233 (6)0.0058 (6)
O70.0738 (11)0.0669 (10)0.0432 (8)0.0364 (9)0.0217 (8)0.0112 (8)
O80.0607 (10)0.0618 (10)0.0288 (7)0.0197 (8)0.0039 (7)0.0090 (7)
Cl20.0287 (2)0.0269 (2)0.0405 (2)0.00875 (17)0.01514 (19)0.00310 (18)
N1A0.0353 (9)0.0268 (8)0.0231 (8)0.0002 (7)0.0114 (7)0.0008 (7)
Geometric parameters (Å, º) top
C1—N21.452 (2)C9—H90.95
C1—N11.507 (2)C10—C111.380 (2)
C1—H1B0.99C10—N51.473 (2)
C1—H1C0.99C11—C121.380 (2)
C2—N31.467 (2)C11—H110.95
C2—N21.468 (2)C12—H120.95
C2—H2B0.99C13—O21.237 (2)
C2—H2C0.99C13—O11.254 (2)
C3—N31.441 (2)N5—O41.222 (2)
C3—N11.498 (2)N5—O31.2243 (19)
C3—H3B0.99C14—C191.391 (2)
C3—H3C0.99C14—C151.398 (2)
C4—N31.458 (2)C14—C201.510 (2)
C4—N41.460 (2)C15—C161.375 (2)
C4—H4B0.99C15—Cl21.7349 (16)
C4—H4C0.99C16—C171.384 (2)
C5—N41.461 (3)C16—H160.95
C5—N21.465 (3)C17—C181.379 (2)
C5—H5A0.99C17—N61.467 (2)
C5—H5B0.99C18—C191.382 (2)
C6—N41.448 (2)C18—H180.95
C6—N11.510 (2)C19—H190.95
C6—H6A0.99C20—O61.2399 (19)
C6—H6B0.99C20—O51.258 (2)
N1—H10.94 (2)N6—O71.2113 (19)
C7—C121.391 (2)N6—O81.2247 (19)
C7—C81.394 (2)N1A—H1A0.94 (2)
C7—C131.527 (2)N1A—H2A0.93 (2)
C8—C91.390 (2)N1A—H4A1.02 (2)
C8—Cl11.7357 (16)N1A—H3A0.91 (2)
C9—C101.374 (2)
N2—C1—N1109.47 (14)C8—C7—C13124.12 (15)
N2—C1—H1B109.8C9—C8—C7121.47 (15)
N1—C1—H1B109.8C9—C8—Cl1115.88 (13)
N2—C1—H1C109.8C7—C8—Cl1122.62 (12)
N1—C1—H1C109.8C10—C9—C8118.11 (15)
H1B—C1—H1C108.2C10—C9—H9120.9
N3—C2—N2111.53 (14)C8—C9—H9120.9
N3—C2—H2B109.3C9—C10—C11122.78 (15)
N2—C2—H2B109.3C9—C10—N5117.32 (15)
N3—C2—H2C109.3C11—C10—N5119.90 (15)
N2—C2—H2C109.3C12—C11—C10117.57 (16)
H2B—C2—H2C108C12—C11—H11121.2
N3—C3—N1110.42 (14)C10—C11—H11121.2
N3—C3—H3B109.6C11—C12—C7122.45 (16)
N1—C3—H3B109.6C11—C12—H12118.8
N3—C3—H3C109.6C7—C12—H12118.8
N1—C3—H3C109.6O2—C13—O1125.97 (15)
H3B—C3—H3C108.1O2—C13—C7118.86 (15)
N3—C4—N4112.46 (14)O1—C13—C7115.12 (15)
N3—C4—H4B109.1O4—N5—O3123.84 (15)
N4—C4—H4B109.1O4—N5—C10118.31 (15)
N3—C4—H4C109.1O3—N5—C10117.85 (16)
N4—C4—H4C109.1C19—C14—C15118.09 (15)
H4B—C4—H4C107.8C19—C14—C20119.18 (14)
N4—C5—N2112.37 (15)C15—C14—C20122.72 (14)
N4—C5—H5A109.1C16—C15—C14121.59 (15)
N2—C5—H5A109.1C16—C15—Cl2117.30 (12)
N4—C5—H5B109.1C14—C15—Cl2121.01 (13)
N2—C5—H5B109.1C15—C16—C17117.97 (15)
H5A—C5—H5B107.9C15—C16—H16121
N4—C6—N1110.20 (14)C17—C16—H16121
N4—C6—H6A109.6C18—C17—C16122.72 (15)
N1—C6—H6A109.6C18—C17—N6119.13 (15)
N4—C6—H6B109.6C16—C17—N6118.04 (14)
N1—C6—H6B109.6C17—C18—C19117.93 (15)
H6A—C6—H6B108.1C17—C18—H18121
C3—N1—C1108.86 (14)C19—C18—H18121
C3—N1—C6108.38 (14)C18—C19—C14121.64 (15)
C1—N1—C6108.37 (15)C18—C19—H19119.2
C3—N1—H1111.0 (13)C14—C19—H19119.2
C1—N1—H1112.1 (13)O6—C20—O5125.82 (16)
C6—N1—H1108.0 (13)O6—C20—C14118.14 (15)
C1—N2—C5109.25 (17)O5—C20—C14116.04 (14)
C1—N2—C2108.94 (16)O7—N6—O8123.31 (16)
C5—N2—C2108.27 (16)O7—N6—C17118.61 (15)
C3—N3—C4108.97 (14)O8—N6—C17118.03 (15)
C3—N3—C2108.73 (14)H1A—N1A—H2A112.6 (17)
C4—N3—C2108.61 (14)H1A—N1A—H4A108.4 (17)
C6—N4—C4108.95 (14)H2A—N1A—H4A108.8 (17)
C6—N4—C5108.66 (16)H1A—N1A—H3A109.6 (17)
C4—N4—C5107.91 (15)H2A—N1A—H3A106.8 (17)
C12—C7—C8117.56 (15)H4A—N1A—H3A110.7 (17)
C12—C7—C13118.28 (14)
N3—C3—N1—C158.93 (19)N5—C10—C11—C12179.91 (15)
N3—C3—N1—C658.74 (18)C10—C11—C12—C72.2 (2)
N2—C1—N1—C358.6 (2)C8—C7—C12—C112.1 (2)
N2—C1—N1—C659.1 (2)C13—C7—C12—C11175.80 (15)
N4—C6—N1—C358.4 (2)C12—C7—C13—O2136.62 (16)
N4—C6—N1—C159.64 (19)C8—C7—C13—O241.1 (2)
N1—C1—N2—C558.9 (2)C12—C7—C13—O141.0 (2)
N1—C1—N2—C259.2 (2)C8—C7—C13—O1141.29 (16)
N4—C5—N2—C160.0 (2)C9—C10—N5—O46.9 (2)
N4—C5—N2—C258.6 (2)C11—C10—N5—O4173.10 (15)
N3—C2—N2—C160.8 (2)C9—C10—N5—O3172.66 (15)
N3—C2—N2—C557.87 (19)C11—C10—N5—O37.3 (2)
N1—C3—N3—C459.01 (18)C19—C14—C15—C162.5 (2)
N1—C3—N3—C259.21 (19)C20—C14—C15—C16176.37 (15)
N4—C4—N3—C359.83 (18)C19—C14—C15—Cl2178.82 (12)
N4—C4—N3—C258.46 (18)C20—C14—C15—Cl20.0 (2)
N2—C2—N3—C360.51 (19)C14—C15—C16—C171.8 (2)
N2—C2—N3—C457.93 (19)Cl2—C15—C16—C17178.27 (12)
N1—C6—N4—C458.2 (2)C15—C16—C17—C180.6 (3)
N1—C6—N4—C559.1 (2)C15—C16—C17—N6175.74 (15)
N3—C4—N4—C659.57 (19)C16—C17—C18—C192.1 (3)
N3—C4—N4—C558.23 (19)N6—C17—C18—C19174.17 (16)
N2—C5—N4—C659.7 (2)C17—C18—C19—C141.4 (3)
N2—C5—N4—C458.3 (2)C15—C14—C19—C180.8 (2)
C12—C7—C8—C90.1 (2)C20—C14—C19—C18178.03 (16)
C13—C7—C8—C9177.82 (15)C19—C14—C20—O6124.75 (17)
C12—C7—C8—Cl1178.35 (12)C15—C14—C20—O656.4 (2)
C13—C7—C8—Cl13.9 (2)C19—C14—C20—O554.6 (2)
C7—C8—C9—C102.0 (2)C15—C14—C20—O5124.17 (18)
Cl1—C8—C9—C10179.62 (12)C18—C17—N6—O712.8 (3)
C8—C9—C10—C111.9 (2)C16—C17—N6—O7170.81 (17)
C8—C9—C10—N5178.06 (14)C18—C17—N6—O8164.69 (17)
C9—C10—C11—C120.1 (2)C16—C17—N6—O811.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.94 (2)1.71 (2)2.6564 (18)177 (2)
N1A—H1A···O20.94 (2)1.89 (2)2.817 (2)168 (2)
N1A—H2A···O50.93 (2)1.87 (2)2.784 (2)167 (2)
N1A—H3A···O5i0.91 (2)1.90 (2)2.803 (2)171 (2)
N1A—H4A···O6ii1.02 (2)1.73 (2)2.747 (2)173 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z.
Hexamethylenetetraminium hydrogen bis(2-chloro-4-nitro-benzoate) (II) top
Crystal data top
C6H13N4+·C14H7Cl2N2O8F(000) = 1120
Mr = 543.32Dx = 1.627 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 7712 reflections
a = 8.2777 (2) Åθ = 2.9–28.3°
b = 19.7942 (5) ŵ = 0.36 mm1
c = 13.5331 (4) ÅT = 173 K
V = 2217.40 (10) Å3Block, yellow
Z = 40.49 × 0.22 × 0.17 mm
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
2269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: integration
(XPREP; Bruker, 2016)
h = 910
Tmin = 0.887, Tmax = 0.954k = 2626
20018 measured reflectionsl = 1517
2749 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.3817P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2749 reflectionsΔρmax = 0.27 e Å3
173 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5362 (2)0.250.60139 (15)0.0293 (4)
H1A0.6024020.2094780.6154130.035*0.5
H1B0.6024030.2905220.6154130.035*0.5
C20.29732 (18)0.31010 (6)0.64113 (11)0.0316 (3)
H2A0.2016250.31070.6849980.038*
H2B0.3617440.3511560.6550450.038*
C30.38433 (16)0.31232 (7)0.47447 (11)0.0302 (3)
H3A0.4491240.3533720.4876920.036*
H3B0.3503590.3131810.4043420.036*
C40.1490 (2)0.250.51788 (16)0.0317 (4)
H4A0.0510920.2499990.5599150.038*
H4B0.1137770.250.4479690.038*
N10.48529 (18)0.250.49400 (12)0.0266 (3)
N20.3952 (2)0.250.66325 (12)0.0298 (3)
N30.24353 (13)0.31154 (5)0.53769 (9)0.0284 (2)
H10.575 (3)0.250.4540 (19)0.050 (7)*
C50.91417 (14)0.41404 (6)0.36290 (9)0.0225 (2)
C60.84727 (14)0.47610 (6)0.38838 (9)0.0224 (3)
C70.93805 (15)0.53490 (6)0.38801 (9)0.0236 (3)
H70.8907040.5772430.4039210.028*
C81.09962 (15)0.52991 (6)0.36376 (9)0.0240 (3)
C91.17365 (15)0.46922 (6)0.34177 (9)0.0259 (3)
H91.2862070.467010.3284520.031*
C101.07902 (15)0.41200 (6)0.33976 (9)0.0254 (3)
H101.1268150.3700430.3222260.03*
C110.82257 (15)0.34800 (6)0.36070 (10)0.0263 (3)
N41.19475 (14)0.59237 (5)0.35791 (8)0.0290 (2)
O10.85862 (14)0.31125 (5)0.28588 (7)0.0377 (3)
H20.834080.2708740.2976860.057*0.5
O20.72967 (12)0.33353 (5)0.42674 (8)0.0413 (3)
O31.33995 (11)0.58735 (5)0.34060 (9)0.0404 (3)
O41.12464 (12)0.64612 (5)0.36731 (9)0.0407 (3)
Cl10.64344 (4)0.48455 (2)0.41656 (3)0.03169 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0282 (9)0.0237 (8)0.0360 (10)00.0040 (8)0
C20.0363 (7)0.0243 (6)0.0343 (7)0.0015 (5)0.0073 (6)0.0047 (5)
C30.0284 (7)0.0277 (6)0.0344 (7)0.0016 (5)0.0039 (5)0.0090 (5)
C40.0231 (9)0.0317 (9)0.0404 (11)00.0011 (8)0
N10.0220 (7)0.0262 (7)0.0316 (8)00.0065 (6)0
N20.0383 (9)0.0237 (7)0.0276 (8)00.0015 (7)0
N30.0249 (5)0.0251 (5)0.0351 (6)0.0026 (4)0.0046 (5)0.0028 (4)
C50.0238 (6)0.0242 (6)0.0194 (5)0.0018 (5)0.0011 (5)0.0031 (5)
C60.0199 (6)0.0278 (6)0.0196 (6)0.0041 (5)0.0017 (4)0.0025 (5)
C70.0265 (6)0.0238 (6)0.0207 (6)0.0049 (5)0.0003 (5)0.0013 (5)
C80.0261 (6)0.0253 (6)0.0207 (6)0.0015 (5)0.0003 (5)0.0021 (5)
C90.0216 (6)0.0316 (6)0.0244 (6)0.0032 (5)0.0035 (5)0.0023 (5)
C100.0261 (6)0.0237 (6)0.0262 (6)0.0065 (5)0.0041 (5)0.0015 (5)
C110.0265 (6)0.0243 (6)0.0281 (7)0.0030 (5)0.0003 (5)0.0030 (5)
N40.0302 (6)0.0292 (6)0.0277 (6)0.0029 (5)0.0015 (5)0.0026 (4)
O10.0618 (7)0.0215 (5)0.0299 (5)0.0019 (4)0.0082 (5)0.0000 (4)
O20.0399 (6)0.0337 (5)0.0503 (7)0.0100 (5)0.0201 (5)0.0041 (5)
O30.0273 (5)0.0398 (6)0.0541 (7)0.0066 (4)0.0075 (4)0.0006 (5)
O40.0406 (6)0.0248 (5)0.0566 (7)0.0009 (4)0.0045 (5)0.0009 (5)
Cl10.02016 (16)0.03606 (19)0.0388 (2)0.00424 (12)0.00556 (12)0.00421 (14)
Geometric parameters (Å, º) top
C1—N21.436 (2)C5—C61.3909 (17)
C1—N11.513 (2)C5—C101.4006 (17)
C1—H1A0.99C5—C111.5115 (17)
C1—H1B0.99C6—C71.3854 (17)
C2—N31.4693 (19)C6—Cl11.7378 (12)
C2—N21.4703 (16)C7—C81.3806 (17)
C2—H2A0.99C7—H70.95
C2—H2B0.99C8—C91.3811 (17)
C3—N31.4460 (16)C8—N41.4679 (16)
C3—N11.5132 (15)C9—C101.3775 (18)
C3—H3A0.99C9—H90.95
C3—H3B0.99C10—H100.95
C4—N3i1.4725 (14)C11—O21.2133 (16)
C4—N31.4725 (14)C11—O11.2820 (16)
C4—H4A0.99N4—O41.2185 (14)
C4—H4B0.99N4—O31.2286 (14)
N1—H10.92 (3)O1—H20.84
N2—C1—N1109.51 (14)C1—N2—C2i109.21 (10)
N2—C1—H1A109.8C2—N2—C2i108.03 (15)
N1—C1—H1A109.8C3—N3—C2108.64 (11)
N2—C1—H1B109.8C3—N3—C4109.24 (12)
N1—C1—H1B109.8C2—N3—C4108.57 (12)
H1A—C1—H1B108.2C6—C5—C10117.96 (11)
N3—C2—N2112.13 (11)C6—C5—C11124.68 (10)
N3—C2—H2A109.2C10—C5—C11117.34 (11)
N2—C2—H2A109.2C7—C6—C5121.67 (11)
N3—C2—H2B109.2C7—C6—Cl1116.53 (9)
N2—C2—H2B109.2C5—C6—Cl1121.73 (9)
H2A—C2—H2B107.9C8—C7—C6117.79 (11)
N3—C3—N1109.46 (11)C8—C7—H7121.1
N3—C3—H3A109.8C6—C7—H7121.1
N1—C3—H3A109.8C7—C8—C9122.90 (12)
N3—C3—H3B109.8C7—C8—N4118.18 (11)
N1—C3—H3B109.8C9—C8—N4118.88 (11)
H3A—C3—H3B108.2C10—C9—C8117.86 (11)
N3i—C4—N3111.64 (14)C10—C9—H9121.1
N3i—C4—H4A109.3C8—C9—H9121.1
N3—C4—H4A109.3C9—C10—C5121.73 (11)
N3i—C4—H4B109.3C9—C10—H10119.1
N3—C4—H4B109.3C5—C10—H10119.1
H4A—C4—H4B108O2—C11—O1126.54 (12)
C1—N1—C3108.75 (10)O2—C11—C5120.51 (12)
C1—N1—C3i108.75 (10)O1—C11—C5112.92 (11)
C3—N1—C3i109.21 (14)O4—N4—O3123.81 (11)
C1—N1—H1110.0 (16)O4—N4—C8118.31 (10)
C3—N1—H1110.1 (8)O3—N4—C8117.83 (11)
C3i—N1—H1110.1 (8)C11—O1—H2109.5
C1—N2—C2109.21 (10)
N2—C1—N1—C359.41 (9)C5—C6—C7—C81.59 (18)
N2—C1—N1—C3i59.42 (9)Cl1—C6—C7—C8178.61 (9)
N3—C3—N1—C159.65 (14)C6—C7—C8—C91.09 (19)
N3—C3—N1—C3i58.89 (18)C6—C7—C8—N4176.73 (11)
N1—C1—N2—C258.97 (10)C7—C8—C9—C103.08 (19)
N1—C1—N2—C2i58.97 (10)N4—C8—C9—C10174.73 (11)
N3—C2—N2—C160.31 (15)C8—C9—C10—C52.47 (19)
N3—C2—N2—C2i58.36 (18)C6—C5—C10—C90.04 (19)
N1—C3—N3—C259.30 (14)C11—C5—C10—C9178.59 (11)
N1—C3—N3—C458.98 (15)C6—C5—C11—O243.34 (19)
N2—C2—N3—C360.24 (14)C10—C5—C11—O2135.11 (14)
N2—C2—N3—C458.46 (15)C6—C5—C11—O1138.58 (13)
N3i—C4—N3—C360.40 (19)C10—C5—C11—O142.97 (16)
N3i—C4—N3—C257.92 (18)C7—C8—N4—O45.45 (18)
C10—C5—C6—C72.13 (18)C9—C8—N4—O4172.47 (12)
C11—C5—C6—C7179.43 (11)C7—C8—N4—O3176.84 (12)
C10—C5—C6—Cl1179.00 (9)C9—C8—N4—O35.24 (18)
C11—C5—C6—Cl12.56 (18)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.92 (3)2.12 (2)2.7667 (15)126 (1)
Hexamethylenetetraminium 2-chloro-4-nitro-benzoate (IIIa) top
Crystal data top
C6H13N4+·C7H3ClNO4F(000) = 712
Mr = 341.76Dx = 1.499 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 8081 reflections
a = 5.9049 (1) Åθ = 2.6–28.2°
b = 21.9330 (4) ŵ = 0.28 mm1
c = 12.0194 (2) ÅT = 173 K
β = 103.445 (1)°Block, yellow
V = 1514.00 (5) Å30.43 × 0.36 × 0.16 mm
Z = 4
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
3487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: integration
(XPREP; Bruker, 2016)
h = 77
Tmin = 0.914, Tmax = 0.978k = 2828
19814 measured reflectionsl = 1515
3644 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0432P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.15 e Å3
3644 reflectionsΔρmin = 0.16 e Å3
212 parametersAbsolute structure: Flack x determined using 1663 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.010 (19)
0 constraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2007)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0080 (3)0.72838 (9)0.47292 (17)0.0302 (4)
H1A1.0966850.7371240.5518610.036*
H1B1.0498160.6868930.4521370.036*
C20.9342 (4)0.75914 (10)0.27795 (17)0.0319 (4)
H2A0.9765260.7888910.2242310.038*
H2B0.9760870.7179550.255580.038*
C30.6207 (3)0.71808 (8)0.34676 (16)0.0286 (4)
H3A0.6588550.6764310.3250980.034*
H3B0.4511880.7199590.3418540.034*
C40.6238 (4)0.82334 (9)0.3026 (2)0.0350 (4)
H4A0.6618270.8535860.2485350.042*
H4B0.4543710.8256960.2978320.042*
C51.0013 (4)0.83387 (9)0.4256 (2)0.0391 (5)
H5A1.0884460.8436250.5043340.047*
H5B1.0452720.8641990.37330.047*
C60.6902 (4)0.79500 (9)0.49725 (19)0.0343 (4)
H6A0.5211130.7974050.4934120.041*
H6B0.7747480.8047960.5764250.041*
N10.7517 (3)0.73145 (7)0.46727 (14)0.0260 (3)
N21.0680 (3)0.77256 (8)0.39466 (16)0.0320 (4)
N30.6820 (3)0.76185 (7)0.26875 (14)0.0291 (3)
N40.7511 (3)0.83861 (7)0.41911 (17)0.0347 (4)
H10.701 (5)0.7025 (12)0.521 (3)0.047 (7)*
C70.4837 (3)0.55022 (8)0.59523 (16)0.0247 (4)
C80.5755 (3)0.51846 (8)0.69629 (15)0.0235 (3)
C90.4580 (3)0.47118 (8)0.73393 (16)0.0242 (3)
H90.5232060.4496970.8025440.029*
C100.2400 (3)0.45652 (8)0.66667 (17)0.0252 (4)
C110.1378 (3)0.48766 (9)0.56796 (17)0.0317 (4)
H110.0141860.4774540.5255560.038*
C120.2629 (4)0.53414 (9)0.53253 (18)0.0330 (4)
H120.1966490.5555270.4639530.04*
C130.6155 (3)0.60098 (8)0.55257 (15)0.0258 (4)
N50.1104 (3)0.40717 (7)0.70493 (14)0.0282 (3)
O10.5964 (3)0.65311 (6)0.59380 (14)0.0443 (4)
O20.7254 (2)0.58844 (6)0.48014 (12)0.0323 (3)
O30.0851 (3)0.39514 (8)0.64851 (16)0.0452 (4)
O40.2033 (3)0.37964 (7)0.79287 (13)0.0393 (4)
Cl10.84686 (7)0.53900 (2)0.77974 (4)0.03201 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0260 (10)0.0383 (10)0.0253 (9)0.0055 (8)0.0038 (7)0.0053 (8)
C20.0363 (11)0.0347 (10)0.0284 (10)0.0076 (8)0.0149 (9)0.0089 (8)
C30.0262 (9)0.0276 (9)0.0304 (10)0.0036 (7)0.0035 (7)0.0036 (7)
C40.0320 (11)0.0278 (9)0.0429 (11)0.0092 (8)0.0043 (9)0.0053 (8)
C50.0335 (11)0.0321 (10)0.0508 (13)0.0118 (8)0.0079 (10)0.0032 (9)
C60.0374 (11)0.0320 (10)0.0378 (11)0.0008 (8)0.0176 (9)0.0103 (8)
N10.0294 (8)0.0256 (7)0.0248 (8)0.0012 (6)0.0100 (6)0.0006 (6)
N20.0205 (8)0.0382 (8)0.0382 (9)0.0007 (7)0.0087 (7)0.0060 (7)
N30.0308 (9)0.0275 (8)0.0268 (8)0.0046 (6)0.0019 (7)0.0034 (6)
N40.0359 (9)0.0230 (7)0.0457 (10)0.0005 (6)0.0109 (8)0.0045 (7)
C70.0301 (10)0.0238 (8)0.0201 (8)0.0006 (7)0.0056 (7)0.0003 (6)
C80.0224 (8)0.0240 (7)0.0225 (8)0.0004 (7)0.0015 (7)0.0022 (6)
C90.0260 (9)0.0231 (8)0.0220 (8)0.0001 (6)0.0024 (7)0.0014 (6)
C100.0271 (9)0.0227 (8)0.0250 (9)0.0025 (6)0.0044 (7)0.0014 (6)
C110.0287 (10)0.0369 (10)0.0252 (9)0.0044 (8)0.0023 (8)0.0008 (8)
C120.0360 (11)0.0365 (10)0.0225 (9)0.0033 (8)0.0012 (8)0.0061 (7)
C130.0310 (9)0.0267 (8)0.0191 (8)0.0010 (7)0.0046 (7)0.0019 (6)
N50.0291 (8)0.0235 (7)0.0310 (8)0.0044 (6)0.0048 (7)0.0034 (6)
O10.0744 (12)0.0273 (7)0.0427 (9)0.0096 (7)0.0370 (9)0.0058 (6)
O20.0353 (8)0.0317 (7)0.0331 (7)0.0026 (5)0.0147 (6)0.0024 (6)
O30.0341 (8)0.0444 (8)0.0503 (9)0.0169 (7)0.0039 (7)0.0037 (7)
O40.0414 (9)0.0321 (7)0.0410 (9)0.0084 (6)0.0027 (7)0.0114 (6)
Cl10.0265 (2)0.0358 (2)0.0297 (2)0.00838 (18)0.00158 (16)0.00365 (19)
Geometric parameters (Å, º) top
C1—N21.450 (3)C6—N11.505 (2)
C1—N11.501 (3)C6—H6A0.99
C1—H1A0.99C6—H6B0.99
C1—H1B0.99N1—H11.00 (3)
C2—N31.469 (3)C7—C121.392 (3)
C2—N21.471 (3)C7—C81.396 (3)
C2—H2A0.99C7—C131.514 (2)
C2—H2B0.99C8—C91.381 (3)
C3—N31.445 (2)C8—Cl11.7405 (18)
C3—N11.504 (2)C9—C101.390 (3)
C3—H3A0.99C9—H90.95
C3—H3B0.99C10—C111.380 (3)
C4—N41.466 (3)C10—N51.460 (2)
C4—N31.472 (3)C11—C121.383 (3)
C4—H4A0.99C11—H110.95
C4—H4B0.99C12—H120.95
C5—N41.466 (3)C13—O21.232 (2)
C5—N21.473 (3)C13—O11.262 (2)
C5—H5A0.99N5—O31.224 (2)
C5—H5B0.99N5—O41.230 (2)
C6—N41.443 (3)
N2—C1—N1109.65 (15)C3—N1—C6108.21 (15)
N2—C1—H1A109.7C1—N1—H1113.2 (17)
N1—C1—H1A109.7C3—N1—H1109.4 (17)
N2—C1—H1B109.7C6—N1—H1107.9 (15)
N1—C1—H1B109.7C1—N2—C2109.08 (16)
H1A—C1—H1B108.2C1—N2—C5109.07 (17)
N3—C2—N2111.95 (15)C2—N2—C5107.93 (17)
N3—C2—H2A109.2C3—N3—C2109.06 (15)
N2—C2—H2A109.2C3—N3—C4108.64 (15)
N3—C2—H2B109.2C2—N3—C4108.30 (17)
N2—C2—H2B109.2C6—N4—C5108.62 (17)
H2A—C2—H2B107.9C6—N4—C4108.69 (16)
N3—C3—N1110.18 (15)C5—N4—C4108.72 (18)
N3—C3—H3A109.6C12—C7—C8118.04 (17)
N1—C3—H3A109.6C12—C7—C13119.58 (16)
N3—C3—H3B109.6C8—C7—C13122.38 (17)
N1—C3—H3B109.6C9—C8—C7122.48 (17)
H3A—C3—H3B108.1C9—C8—Cl1118.08 (14)
N4—C4—N3111.86 (15)C7—C8—Cl1119.43 (14)
N4—C4—H4A109.2C8—C9—C10116.82 (17)
N3—C4—H4A109.2C8—C9—H9121.6
N4—C4—H4B109.2C10—C9—H9121.6
N3—C4—H4B109.2C11—C10—C9123.11 (17)
H4A—C4—H4B107.9C11—C10—N5118.76 (17)
N4—C5—N2112.12 (16)C9—C10—N5118.09 (16)
N4—C5—H5A109.2C10—C11—C12118.13 (18)
N2—C5—H5A109.2C10—C11—H11120.9
N4—C5—H5B109.2C12—C11—H11120.9
N2—C5—H5B109.2C11—C12—C7121.37 (18)
H5A—C5—H5B107.9C11—C12—H12119.3
N4—C6—N1110.32 (15)C7—C12—H12119.3
N4—C6—H6A109.6O2—C13—O1126.16 (17)
N1—C6—H6A109.6O2—C13—C7118.14 (16)
N4—C6—H6B109.6O1—C13—C7115.67 (16)
N1—C6—H6B109.6O3—N5—O4123.01 (17)
H6A—C6—H6B108.1O3—N5—C10118.76 (16)
C1—N1—C3108.81 (15)O4—N5—C10118.23 (15)
C1—N1—C6109.14 (15)
N2—C1—N1—C359.36 (19)N3—C4—N4—C557.9 (2)
N2—C1—N1—C658.5 (2)C12—C7—C8—C91.7 (3)
N3—C3—N1—C159.28 (19)C13—C7—C8—C9178.40 (17)
N3—C3—N1—C659.19 (19)C12—C7—C8—Cl1177.75 (15)
N4—C6—N1—C159.0 (2)C13—C7—C8—Cl12.2 (2)
N4—C6—N1—C359.2 (2)C7—C8—C9—C100.6 (3)
N1—C1—N2—C259.2 (2)Cl1—C8—C9—C10178.85 (14)
N1—C1—N2—C558.5 (2)C8—C9—C10—C111.5 (3)
N3—C2—N2—C159.7 (2)C8—C9—C10—N5179.32 (16)
N3—C2—N2—C558.7 (2)C9—C10—C11—C122.5 (3)
N4—C5—N2—C160.1 (2)N5—C10—C11—C12179.77 (18)
N4—C5—N2—C258.3 (2)C10—C11—C12—C71.3 (3)
N1—C3—N3—C258.6 (2)C8—C7—C12—C110.7 (3)
N1—C3—N3—C459.30 (19)C13—C7—C12—C11179.37 (18)
N2—C2—N3—C359.3 (2)C12—C7—C13—O283.2 (2)
N2—C2—N3—C458.8 (2)C8—C7—C13—O296.9 (2)
N4—C4—N3—C360.2 (2)C12—C7—C13—O195.1 (2)
N4—C4—N3—C258.1 (2)C8—C7—C13—O184.8 (2)
N1—C6—N4—C558.8 (2)C11—C10—N5—O30.3 (3)
N1—C6—N4—C459.3 (2)C9—C10—N5—O3177.59 (18)
N2—C5—N4—C659.9 (2)C11—C10—N5—O4179.86 (18)
N2—C5—N4—C458.2 (2)C9—C10—N5—O42.3 (3)
N3—C4—N4—C660.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O11.00 (3)1.60 (3)2.599 (2)173 (3)
Hexamethylenetetraminium 2-chloro-4-nitro-benzoate (IIIb) top
Crystal data top
C6H13N4+·C7H3ClNO4F(000) = 712
Mr = 341.76Dx = 1.503 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8173 reflections
a = 12.0663 (2) Åθ = 2.7–28.3°
b = 19.5741 (4) ŵ = 0.28 mm1
c = 6.6473 (1) ÅT = 173 K
β = 105.820 (1)°Flint, yellow
V = 1510.54 (5) Å30.34 × 0.34 × 0.09 mm
Z = 4
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
3027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 28°, θmin = 1.8°
Absorption correction: integration
(XPREP; Bruker, 2016)
h = 1515
Tmin = 0.921, Tmax = 0.981k = 2525
26282 measured reflectionsl = 78
3650 independent reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.054P)2 + 0.5922P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3650 reflectionsΔρmax = 0.55 e Å3
212 parametersΔρmin = 0.32 e Å3
0 restraints
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2016)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47109 (13)0.06841 (8)0.8298 (2)0.0271 (3)
H1A0.4766310.0189360.8032130.033*
H1B0.5460880.083730.9215870.033*
C20.37372 (14)0.15425 (8)0.9693 (2)0.0276 (3)
H2A0.3132230.1625481.0414060.033*
H2B0.4479160.1703661.0620010.033*
C30.43573 (13)0.18246 (7)0.6683 (2)0.0244 (3)
H3A0.5104440.1993350.7570870.029*
H3B0.4170760.2081390.5349710.029*
C40.23625 (12)0.16842 (8)0.6381 (2)0.0266 (3)
H4A0.174620.1767860.7075330.032*
H4B0.2167470.194110.504750.032*
C50.27060 (14)0.05744 (8)0.7927 (3)0.0286 (3)
H5A0.2749790.0080160.7642420.034*
H5B0.2089870.0642290.8632280.034*
C60.32952 (12)0.08285 (8)0.4889 (2)0.0243 (3)
H6A0.3105350.1076890.3540870.029*
H6B0.3334220.0334630.4594420.029*
N10.44482 (11)0.10695 (6)0.6253 (2)0.0224 (3)
N20.38141 (12)0.08021 (6)0.9327 (2)0.0272 (3)
N30.34674 (10)0.19364 (6)0.77319 (19)0.0236 (3)
N40.24105 (10)0.09499 (6)0.5939 (2)0.0253 (3)
H10.5012 (17)0.0994 (10)0.563 (3)0.034 (5)*
C70.75647 (12)0.14049 (7)0.3243 (2)0.0245 (3)
C80.86231 (13)0.10840 (7)0.4116 (2)0.0250 (3)
C90.95324 (12)0.11511 (8)0.3214 (3)0.0283 (3)
H91.0251780.0934350.3807830.034*
C100.93535 (13)0.15426 (8)0.1431 (2)0.0291 (3)
C110.83262 (14)0.18678 (8)0.0513 (3)0.0312 (3)
H110.8228820.2131740.0722950.037*
C120.74455 (13)0.17962 (8)0.1452 (3)0.0295 (3)
H120.6734390.2021560.0856090.035*
C130.65228 (13)0.13753 (8)0.4116 (3)0.0276 (3)
N51.03144 (12)0.16391 (9)0.0488 (2)0.0407 (4)
O10.61912 (11)0.08068 (6)0.4561 (2)0.0409 (3)
O20.60096 (11)0.19263 (6)0.4134 (2)0.0434 (3)
O31.02236 (14)0.20679 (8)0.0877 (3)0.0594 (4)
O41.11599 (12)0.12771 (11)0.1120 (2)0.0706 (6)
Cl10.88646 (4)0.06116 (2)0.64016 (6)0.03601 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0267 (7)0.0216 (7)0.0312 (8)0.0035 (6)0.0047 (6)0.0047 (6)
C20.0346 (8)0.0249 (7)0.0237 (7)0.0002 (6)0.0088 (6)0.0012 (6)
C30.0265 (7)0.0156 (6)0.0333 (8)0.0003 (5)0.0116 (6)0.0010 (6)
C40.0223 (7)0.0268 (7)0.0310 (8)0.0051 (6)0.0076 (6)0.0002 (6)
C50.0312 (8)0.0241 (7)0.0346 (8)0.0056 (6)0.0160 (6)0.0001 (6)
C60.0247 (7)0.0239 (7)0.0249 (7)0.0001 (6)0.0077 (6)0.0021 (6)
N10.0216 (6)0.0179 (6)0.0298 (6)0.0015 (4)0.0110 (5)0.0020 (5)
N20.0350 (7)0.0222 (6)0.0247 (6)0.0002 (5)0.0090 (5)0.0032 (5)
N30.0265 (6)0.0191 (6)0.0269 (6)0.0014 (5)0.0103 (5)0.0004 (5)
N40.0209 (6)0.0260 (6)0.0292 (6)0.0003 (5)0.0072 (5)0.0023 (5)
C70.0198 (7)0.0216 (7)0.0329 (8)0.0033 (5)0.0089 (6)0.0067 (6)
C80.0231 (7)0.0239 (7)0.0273 (7)0.0025 (6)0.0058 (6)0.0041 (6)
C90.0181 (7)0.0333 (8)0.0325 (8)0.0000 (6)0.0054 (6)0.0070 (6)
C100.0225 (7)0.0356 (8)0.0317 (8)0.0050 (6)0.0115 (6)0.0082 (7)
C110.0305 (8)0.0309 (8)0.0334 (8)0.0023 (6)0.0103 (7)0.0014 (7)
C120.0233 (7)0.0280 (8)0.0368 (8)0.0020 (6)0.0076 (6)0.0010 (6)
C130.0219 (7)0.0274 (8)0.0359 (8)0.0027 (6)0.0117 (6)0.0060 (6)
N50.0271 (7)0.0621 (10)0.0355 (8)0.0076 (7)0.0129 (6)0.0112 (7)
O10.0368 (7)0.0242 (6)0.0723 (9)0.0010 (5)0.0331 (6)0.0005 (6)
O20.0391 (7)0.0293 (6)0.0702 (9)0.0047 (5)0.0291 (7)0.0018 (6)
O30.0622 (9)0.0590 (9)0.0723 (11)0.0087 (7)0.0443 (8)0.0089 (8)
O40.0281 (7)0.1466 (18)0.0404 (8)0.0219 (9)0.0149 (6)0.0116 (9)
Cl10.0355 (2)0.0380 (2)0.0323 (2)0.00006 (17)0.00555 (16)0.00463 (16)
Geometric parameters (Å, º) top
C1—N21.448 (2)C6—N11.5140 (19)
C1—N11.5105 (19)C6—H6A0.99
C1—H1A0.99C6—H6B0.99
C1—H1B0.99N1—H10.90 (2)
C2—N31.4724 (19)C7—C121.390 (2)
C2—N21.4766 (19)C7—C81.399 (2)
C2—H2A0.99C7—C131.522 (2)
C2—H2B0.99C8—C91.393 (2)
C3—N31.4475 (18)C8—Cl11.7340 (16)
C3—N11.5150 (18)C9—C101.378 (2)
C3—H3A0.99C9—H90.95
C3—H3B0.99C10—C111.379 (2)
C4—N41.4714 (19)C10—N51.473 (2)
C4—N31.4746 (19)C11—C121.379 (2)
C4—H4A0.99C11—H110.95
C4—H4B0.99C12—H120.95
C5—N41.469 (2)C13—O11.2454 (19)
C5—N21.474 (2)C13—O21.2454 (19)
C5—H5A0.99N5—O31.219 (2)
C5—H5B0.99N5—O41.219 (2)
C6—N41.4454 (19)
N2—C1—N1110.18 (11)C6—N1—C3108.36 (11)
N2—C1—H1A109.6C1—N1—H1109.4 (12)
N1—C1—H1A109.6C6—N1—H1111.2 (12)
N2—C1—H1B109.6C3—N1—H1110.4 (12)
N1—C1—H1B109.6C1—N2—C5108.64 (12)
H1A—C1—H1B108.1C1—N2—C2108.84 (12)
N3—C2—N2112.14 (12)C5—N2—C2108.28 (12)
N3—C2—H2A109.2C3—N3—C2109.46 (12)
N2—C2—H2A109.2C3—N3—C4108.80 (12)
N3—C2—H2B109.2C2—N3—C4107.99 (11)
N2—C2—H2B109.2C6—N4—C5108.79 (12)
H2A—C2—H2B107.9C6—N4—C4109.36 (11)
N3—C3—N1109.86 (11)C5—N4—C4108.80 (12)
N3—C3—H3A109.7C12—C7—C8118.18 (14)
N1—C3—H3A109.7C12—C7—C13116.36 (13)
N3—C3—H3B109.7C8—C7—C13125.45 (14)
N1—C3—H3B109.7C9—C8—C7121.08 (14)
H3A—C3—H3B108.2C9—C8—Cl1117.62 (12)
N4—C4—N3111.73 (11)C7—C8—Cl1121.27 (12)
N4—C4—H4A109.3C10—C9—C8117.76 (14)
N3—C4—H4A109.3C10—C9—H9121.1
N4—C4—H4B109.3C8—C9—H9121.1
N3—C4—H4B109.3C9—C10—C11123.26 (14)
H4A—C4—H4B107.9C9—C10—N5118.72 (14)
N4—C5—N2111.88 (12)C11—C10—N5118.00 (15)
N4—C5—H5A109.2C12—C11—C10117.61 (15)
N2—C5—H5A109.2C12—C11—H11121.2
N4—C5—H5B109.2C10—C11—H11121.2
N2—C5—H5B109.2C11—C12—C7122.11 (14)
H5A—C5—H5B107.9C11—C12—H12118.9
N4—C6—N1109.79 (12)C7—C12—H12118.9
N4—C6—H6A109.7O1—C13—O2125.36 (14)
N1—C6—H6A109.7O1—C13—C7118.49 (13)
N4—C6—H6B109.7O2—C13—C7115.79 (14)
N1—C6—H6B109.7O3—N5—O4123.66 (16)
H6A—C6—H6B108.2O3—N5—C10118.92 (15)
C1—N1—C6108.45 (11)O4—N5—C10117.42 (16)
C1—N1—C3109.01 (11)
N2—C1—N1—C658.92 (15)N3—C4—N4—C558.67 (15)
N2—C1—N1—C358.86 (15)C12—C7—C8—C90.3 (2)
N4—C6—N1—C159.13 (15)C13—C7—C8—C9178.99 (14)
N4—C6—N1—C359.07 (14)C12—C7—C8—Cl1177.65 (11)
N3—C3—N1—C158.31 (15)C13—C7—C8—Cl11.0 (2)
N3—C3—N1—C659.54 (15)C7—C8—C9—C100.2 (2)
N1—C1—N2—C558.93 (15)Cl1—C8—C9—C10178.17 (12)
N1—C1—N2—C258.77 (15)C8—C9—C10—C110.1 (2)
N4—C5—N2—C160.34 (15)C8—C9—C10—N5178.05 (14)
N4—C5—N2—C257.72 (16)C9—C10—C11—C120.4 (2)
N3—C2—N2—C159.64 (16)N5—C10—C11—C12177.55 (14)
N3—C2—N2—C558.29 (16)C10—C11—C12—C70.9 (2)
N1—C3—N3—C258.23 (15)C8—C7—C12—C110.9 (2)
N1—C3—N3—C459.57 (15)C13—C7—C12—C11179.66 (14)
N2—C2—N3—C359.64 (16)C12—C7—C13—O1131.29 (16)
N2—C2—N3—C458.66 (16)C8—C7—C13—O150.0 (2)
N4—C4—N3—C360.13 (15)C12—C7—C13—O242.2 (2)
N4—C4—N3—C258.59 (15)C8—C7—C13—O2136.53 (17)
N1—C6—N4—C559.65 (15)C9—C10—N5—O3168.41 (16)
N1—C6—N4—C459.06 (15)C11—C10—N5—O39.7 (2)
N2—C5—N4—C660.87 (15)C9—C10—N5—O412.0 (2)
N2—C5—N4—C458.19 (15)C11—C10—N5—O4169.91 (17)
N3—C4—N4—C660.04 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.90 (2)1.80 (2)2.6911 (17)175.7 (19)
 

Acknowledgements

This material is based upon work supported financially by the University of the Witwatersrand Friedel Sellschop Grant and the Mol­ecular Sciences Institute. The National Research Foundation National Equipment Programme (UID: 78572) is thanked for financing the purchase of the single-crystal diffractometer. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in regard thereto.

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2016). APEX3, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChilds, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338.  Web of Science CSD CrossRef PubMed CAS
First citationCooney, A. P., Crampton, M. R. & Golding, P. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 835–839.  CrossRef Web of Science
First citationDesiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationLemmerer, A. (2011). Acta Cryst. B67, 177–192.  Web of Science CSD CrossRef IUCr Journals
First citationLemmerer, A., Bernstein, J. & Spackman, M. S. (2012). Chem. Commun. 48, 1883–1885.  Web of Science CSD CrossRef CAS
First citationLemmerer, A., Esterhuysen, C. E. & Bernstein, J. (2010). J. Pharm. Sci. 99, 4054–4071.  Web of Science CSD CrossRef CAS PubMed
First citationLemmerer, A. & Fernandes, M. A. (2012). Acta Cryst. C68, o188–o194.  Web of Science CSD CrossRef IUCr Journals
First citationLemmerer, A., Govindraju, S., Johnston, M., Motloung, X. & Savig, K. L. (2015). CrystEngComm, 17, 3591–3595.  Web of Science CSD CrossRef CAS
First citationLi, W., Zhang, J.-P., Tong, M. L. & Chen, X.-M. (2001). Aust. J. Chem. 54, 213–217.  Web of Science CSD CrossRef
First citationLough, A. J., Wheatley, P. S., Ferguson, G. & Glidewell, C. (2000). Acta Cryst. B56, 261–272.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMacLean, E. J., Glidewell, C., Ferguson, G., Gregson, R. M. & Lough, A. J. (1999). Acta Cryst. C55, 1867–1870.  Web of Science CSD CrossRef CAS IUCr Journals
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationZaręba, J. K., Białek, M. J., Janczak, J., Zoń, J. & Dobosz, A. (2014). Cryst. Growth Des. 14, 6143–6153.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds