research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ciprofloxacin salt and salt co-crystal with di­hy­droxy­benzoic acids

crossmark logo

aDepartment of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia, bResearch and Education Center for Natural Sciences, Keio University, Hiyoshi, 4-1-1, Kohoku, Yokohama 223-8521, Japan, cDepartment of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan, and dDepartment of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro, Tokyo 152-8551, Japan
*Correspondence e-mail: yudapn@itb.ac.id

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 12 January 2022; accepted 1 February 2022; online 3 February 2022)

The crystal structure of two multi-component crystals of ciprofloxacin [systematic name: 1-cyclo­propyl-6-fluoro-4-oxo-7-(piperazin-1-yl)quinoline-3-carb­­oxy­lic acid], a fluoro­quinolone anti­biotic, namely, ciprofloxacin 2,6-di­hydroxy­benzoate salt, C17H19FN3O3+·C7H5O4, (I), and ciprofloxacin hydro­chloride–3,5-di­hydroxy­benzoic–water (1/1/1), C17H19FN3O3+·Cl·C7H6O4·H2O, (II), were determined. In (I) and (II), the ciprofloxacin cations are connected via head-to-tail N—H⋯O hydrogen bonding. Both structures show an alternating layered arrangement between ciprofloxacin and di­hydroxy­benzoic acid.

1. Chemical context

The design and exploration of multi-component crystals of active pharmaceutical ingredients (APIs) have gained increasing inter­est over recent decades. The formation of multi-component crystals, i.e. salts and co-crystals through a crystal-engineering approach has been continuously demonstrated as a versatile tool to improve the physicochemical properties of APIs (Kavanagh et al., 2019[Kavanagh, O. N., Croker, D. M., Walker, G. M. & Zaworotko, M. J. (2019). Drug Discovery Today, 24, 796-804.]; Putra & Uekusa, 2020[Putra, O. D. & Uekusa, H. (2020). Advances in Organic Crystal Chemistry, pp. 153-184. Singapore: Springer Singapore.]; Thakur & Thakuria, 2020[Thakur, T. S. & Thakuria, R. (2020). Cryst. Growth Des. 20, 6245-6265.]). Recently, the co-crystallization of salt APIs or salt co-crystal formation has been increasingly studied. Salt co-crystallization has been utilized to suppress hydrate formation of salt APIs (Nugraha & Uekusa, 2018[Nugraha, Y. P. & Uekusa, H. (2018). CrystEngComm, 20, 2653-2662.]; Fujito et al., 2021[Fujito, T., Oshima, T., Higashi, K., Ueda, K., Ito, M., Masu, H., Noguchi, S. & Moribe, K. (2021). Cryst. Growth Des. https://doi.org/10.1021/acs.cgd.1c01050.]). As a part of our study of salt co-crystals of APIs, we investigated multi-component crystals of ciprofloxacin. Ciprofloxacin is a Biopharmaceutics Classification System (BCS) class IV fluoro­quinolone anti­biotic that is widely used therapeutically as the free base and the hydro­chloride salt (Olivera et al., 2011[Olivera, M. E., Manzo, R. H., Junginger, H. E., Midha, K. K., Shah, V. P., Stavchansky, S., Dressman, J. B. & Barends, D. M. (2011). J. Pharm. Sci. 100, 22-33.]).

[Scheme 1]

2. Structural commentary

Compound (I)[link] was obtained as an anion-exchange product between ciprofloxacin hydro­chloride and 2,6-di­hydro­benzoic acid in solution. 2,6-Di­hydroxy­benzoic acid (2,6HBA) is a relatively strong carb­oxy­lic acid with a pKa of 1.30 (Gdaniec et al., 1994[Gdaniec, M., Gilski, M. & Denisov, G. S. (1994). Acta Cryst. C50, 1622-1626.]; Habibi-yangjeh et al., 2005[Habibi-yangjeh, A., Danandeh-jenagharad, M. & Nooshyar, M. (2005). Bull. Korean Chem. Soc. 26, 2007-2016.]). Compound (I)[link] crystallizes in the monoclinic space group P21/c. The asymmetric unit consists of one ciprofloxacin cation and one 2,6HBA anion (Fig. 1[link]). The C—O distances of the ciprofloxacin carb­oxy­lic group i.e., 1.218 (3) and 1.325 (3) Å indicate that it exists as the neutral carb­oxy­lic form. However, in 2,6HBA, the C–O distances are very similar i.e., 1.263 (4) and 1.267 (3) Å due to resonance stabilization in the carboxyl­ate anion (Childs et al., 2007[Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.]; Aakeröy et al., 2006[Aakeröy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474-480.]). As a result, the piperazinyl group of ciprofloxacin is protonated. Therefore, compound (I)[link] is a salt. The formation of a salt is well-predicted by the pKa rule (Cruz-Cabeza, 2012[Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362-6365.]). The pKa of ciprofloxacin are 6.18 and 8.73 for the carb­oxy­lic acid and the piperazinyl ring, respectively (Sun et al., 2002[Sun, J., Sakai, S., Tauchi, Y., Deguchi, Y., Chen, J., Zhang, R. & Morimoto, K. (2002). Eur. J. Pharm. Biopharm. 54, 51-58.]). Therefore, salt formation is expected because the ΔpKa between the piperazinyl ring of ciprofloxacin and the carb­oxy­lic acid of 2,6HBA is greater than 4. Similar behaviour is observed in the salicylate salt of ciprofloxacin (Surov et al., 2019[Surov, A. O., Vasilev, N. A., Churakov, A. V., Stroh, J., Emmerling, F. & Perlovich, G. L. (2019). Cryst. Growth Des. 19, 2979-2990.]; Nugrahani et al., 2020[Nugrahani, I., Tjengal, B., Gusdinar, T., Horikawa, A. & Uekusa, H. (2020). Crystals, 10, 1-19.]).

[Figure 1]
Figure 1
Displacement ellipsoid (50% probability level) drawing with the atomic labelling scheme for compound (I)[link] showing the hydrogen bonds within the selected asymmetric unit.

Compound (II)[link] crystallizes in the non-centrosymmetric P1 space group despite the lack of a chiral centre. The asymmetric unit comprises one ciprofloxacin cation, one chloride anion and one 3,5HBA mol­ecule, as shown in Fig. 2[link]. In addition, one water mol­ecule is incorporated into the crystal lattice. An anion-exchange reaction during crystallization did not occur in this system. Compared to 2,6HBA, the coformer is a weaker acid with a pKa of 4.04 (Habibi-yangjeh et al., 2005[Habibi-yangjeh, A., Danandeh-jenagharad, M. & Nooshyar, M. (2005). Bull. Korean Chem. Soc. 26, 2007-2016.]). Contrary to the previous structures, the coformer exists as a neutral mol­ecule in the crystal. The carb­oxy­lic C18—O4 and C18—O5 distances of 2,6HBA are 1.320 (4) and 1.216 (4) Å, respectively, confirming its neutral state. Additionally, the carb­oxy­lic C1—O1 and C1—O2 distances of ciprofloxacin, i.e. 1.227 (4) and 1.314 (4) Å, respectively, also confirm the neutral state of this moiety. On the other hand, the piperazinyl group is protonated. Hence, compound (II)[link] is a salt co-crystal monohydrate of ciprofloxacin.

[Figure 2]
Figure 2
Displacement ellipsoid (50% probability level) drawing with the atomic labelling scheme for compound (II)[link] showing the hydrogen bonds within the selected asymmetric unit.

Compounds (I)[link] and (II)[link] exhibit similar conformations, as shown in Fig. 3[link]. The mol­ecular conformation of the ciprofloxacin mol­ecule is governed by intra­molecular O2—H2⋯O3 and C14—H14A⋯F1 hydrogen bonding (Tables 1[link] and 2[link]). In both structures, the piperazinium ring exhibits a chair conformation. The main difference is the relative orientation between the piperazinium moiety and the quinolone ring. The C7—N2—C14—C15 torsion angles are 97.0 (2) and −167.8 (2)°, respectively, for compounds (I)[link] and (II)[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.84 1.73 2.512 (2) 155
N3—H3A⋯O1i 0.91 2.38 2.977 (2) 123
N3—H3A⋯O6 0.91 2.09 2.890 (2) 146
N3—H3B⋯O4ii 0.91 2.18 2.897 (3) 136
N3—H3B⋯O5ii 0.91 2.24 3.090 (3) 155
C11—H11⋯O3iii 1.00 2.46 3.239 (3) 134
C12—H12A⋯O4iv 0.99 2.54 3.374 (3) 141
C13—H13A⋯O7v 0.99 2.51 3.193 (3) 126
C14—H14A⋯F1 0.99 2.13 2.831 (2) 126
C15—H15B⋯O1iii 0.99 2.33 3.282 (3) 161
C17—H17A⋯O5ii 0.99 2.60 3.408 (3) 139
O6—H6⋯O5 0.84 1.77 2.520 (3) 148
O7—H7⋯O4 0.84 1.85 2.508 (4) 134
C21—H21⋯O4ii 0.95 2.54 3.488 (3) 178
Symmetry codes: (i) x, y, z+1; (ii) [x-1, y, z]; (iii) [-x+1, -y+1, -z+1]; (iv) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [x-1, y, z-1].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.84 1.78 2.551 (3) 152
N3—H3A⋯O1i 0.91 1.75 2.652 (3) 172
N3—H3B⋯Cl1 0.91 2.30 3.106 (3) 148
C10—H10⋯F1ii 0.95 2.46 3.158 (4) 130
C12—H12B⋯O7iii 0.99 2.47 3.435 (4) 166
C14—H14B⋯F1 0.99 2.27 2.927 (3) 123
C16—H16B⋯Cl1iv 0.99 2.78 3.609 (3) 142
O4—H4⋯Cl1 0.84 2.28 3.082 (2) 160
O6—H6⋯Cl1v 0.84 2.40 3.232 (2) 170
O7—H7⋯O8 0.84 1.96 2.769 (3) 161
O8—H8A⋯Cl1i 0.88 (6) 2.51 (6) 3.362 (3) 164 (4)
O8—H8B⋯O5vi 0.82 (6) 2.05 (6) 2.865 (4) 170 (5)
Symmetry codes: (i) [x, y+1, z-1]; (ii) [x, y-1, z]; (iii) [x-1, y-1, z+1]; (iv) [x-1, y, z]; (v) x, y+1, z; (vi) [x, y, z-1].
[Figure 3]
Figure 3
Mol­ecular overlay of ciprofloxacin cation in compounds (I)[link] (red) and (II)[link] (blue). Hydrogen atoms are omitted for clarity.

3. Supra­molecular features

In compound (I)[link], the carboxyl­ate anion of 2,6HBA acts as a hydrogen-bond donor for intra­molecular hydrogen bonds involving two hydroxyl groups, namely O6—H6⋯O5 and O7—H7⋯O4. The protonated nitro­gen atom N3 of the piperazinyl ring is involved in the formation of trifurcated hydrogen bonds with O4, O5, and O6 of the coformer. These charge-assisted hydrogen bonds, i.e. N3—H3B⋯O4, N3—H3B⋯O5, and N3—H3A⋯O6, form an infinite chain structure along the a-axis direction (Table 1[link], Fig. 4[link]). The chains are connected to the adjacent ciprofloxacin mol­ecule through head-to-tail N3—H3A⋯O1 hydrogen bonding. The crystal packing of (I)[link] is shown in Fig. 5[link]. Along the a-axis, centrosymmetric pairs of ciprofloxacin mol­ecules are stacked by ππ inter­actions. The distance between the centroids of symmetry-related C4–C9 rings is 3.4986 (11) Å. This arrangement leads to the formation of a columnar packing arrangement. Inter­estingly, a similar packing feature was observed in the 1.75 hydrate of ciprofloxacin salicylate (Nugrahani et al., 2020[Nugrahani, I., Tjengal, B., Gusdinar, T., Horikawa, A. & Uekusa, H. (2020). Crystals, 10, 1-19.]). In addition, compound (I)[link] shows a layered structure with alternating ciprofloxacin and 2,6HBA layers along the b axis.

[Figure 4]
Figure 4
Inter­molecular hydrogen-bonding motifs in (I)[link] showing infinite chains along the a-axis direction formed by ciprofloxacin and 2,6HBA (red). Hydrogen atoms are omitted for clarity.
[Figure 5]
Figure 5
Packing motifs of (I)[link] viewed along (a) the a axis and (b) the c axis highlighting the alternating layers of ciprofloxacin and the coformer.

The supra­molecular features of compound (II)[link] are similar to those observed in compound (I)[link]. Ciprofloxacin cations are inter­connected through head-to-tail N3—H3A⋯O1 hydrogen bonds (Table 2[link]), forming an infinite chain arrangement. The chloride ion and water mol­ecule are involved in an extensive hydrogen-bond network bridging ciprofloxacin and 3,5HBA (Fig. 6[link]a). Inter­estingly, compound (II)[link] also shows a layered arrangement of ciprofloxacin and the coformer (Fig. 6[link]b).

[Figure 6]
Figure 6
Inter­molecular hydrogen-bonding motifs in (II)[link] highlighting the role of the chloride ion and water mol­ecule in bridging ciprofloxacin and 3,5HBA (blue). Hydrogen atoms are omitted for clarity. (b) The crystal packing of (II)[link] showing the alternating layered arrangement.

4. Database survey

Several crystal structures of ciprofloxacin salts with benzoic acid derivatives have been reported, including salts with salicylic acid (Surov et al., 2019[Surov, A. O., Vasilev, N. A., Churakov, A. V., Stroh, J., Emmerling, F. & Perlovich, G. L. (2019). Cryst. Growth Des. 19, 2979-2990.]; Nagalapalli & Yaga Bheem, 2014[Nagalapalli, R. & Yaga Bheem, S. (2014). J. Crystallogr. pp. 1-5.]; CSD refcode family DOFWUT), 4-hy­droxy­benzoic acid (Surov et al., 2020[Surov, A. O., Vasilev, N. A., Voronin, A. P., Churakov, A. V., Emmerling, F. & Perlovich, G. L. (2020). CrystEngComm, 22, 4238-4249.]; CSD refcode PUNMUJ), 4-amino­benzoic acid (Surov et al., 2020[Surov, A. O., Vasilev, N. A., Voronin, A. P., Churakov, A. V., Emmerling, F. & Perlovich, G. L. (2020). CrystEngComm, 22, 4238-4249.]; CSD refcode PUNMIX) and gallic acid (Surov et al., 2020[Surov, A. O., Vasilev, N. A., Voronin, A. P., Churakov, A. V., Emmerling, F. & Perlovich, G. L. (2020). CrystEngComm, 22, 4238-4249.]; CSD refcode PUNMOD). A search for salt co-crystals of ciprofloxacin hydro­chloride yielded one reported crystal structure, a co-crystal of ciprofloxacin hydro­chloride with 4-hy­droxy­benzoic acid (Martínez-Alejo et al., 2014[Martínez-Alejo, J. M., Domínguez-Chávez, J. G., Rivera-Islas, J., Herrera-Ruiz, D., Höpfl, H., Morales-Rojas, H. & Senosiain, J. P. (2014). Cryst. Growth Des. 14, 3078-3095.]; CSD refcode XOHTUL). Compound (II)[link] was also disclosed in a patent without any structural information (Rojas et al., 2016[Rojas, H. M., Chávez, J. G. D., Höpfl, D. H. R., Alejo, J. M. M. & Peláez, J. P. S. (2016). Solid forms of antibiotics. United States Patent and Trademark Office.]).

5. Synthesis and crystallization

Single crystals of (I)[link] and (II)[link] were obtained by preparing a saturated solution of equimolar ciprofloxacin hydro­chloride and the respective coformer in methanol/water (1:1) at room temperature. The saturated solution was allowed to slowly evaporate at room temperature. A suitable single crystal was selected and measured for structure determination.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were refined using a riding model and their displacement parameters (Uiso) were fixed to 1.2Ueq of the parent carbon or nitro­gen atom and 1.5Ueq for hydroxyl groups.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C17H19FN3O3+·C7H5O4 C17H19FN3O3+·C7H6O4·Cl·H2O
Mr 485.46 539.93
Crystal system, space group Monoclinic, P21/c Triclinic, P1
Temperature (K) 93 93
a, b, c (Å) 7.9722 (5), 21.2705 (11), 13.0860 (7) 7.2165 (2), 8.8298 (4), 10.1184 (3)
α, β, γ (°) 90, 101.805 (6), 90 92.997 (3), 95.219 (2), 111.557 (4)
V3) 2172.1 (2) 594.60 (4)
Z 4 1
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.98 2.00
Crystal size (mm) 0.23 × 0.05 × 0.04 0.28 × 0.2 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.919, 1.000 0.839, 1.000
No. of measured, independent and observed reflections 15936, 4378, 3601 (?) 16358, 4420, 4323 [I > 2σ(I)]
Rint 0.038 0.035
(sin θ/λ)max−1) 0.630 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.139, 1.04 0.034, 0.094, 1.12
No. of reflections 4378 4420
No. of parameters 319 344
No. of restraints 0 3
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.41 0.25, −0.47
Absolute structure Flack x determined using 1889 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.011 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: Mercury (Macrae et al., 2020).

4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 2,6-dihydroxybenzoate (I) top
Crystal data top
C17H19FN3O3+·C7H5O4F(000) = 1016
Mr = 485.46Dx = 1.485 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 7.9722 (5) ÅCell parameters from 4777 reflections
b = 21.2705 (11) Åθ = 4.0–72.0°
c = 13.0860 (7) ŵ = 0.98 mm1
β = 101.805 (6)°T = 93 K
V = 2172.1 (2) Å3Block, colourless
Z = 40.23 × 0.05 × 0.04 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
15936 measured reflections
Radiation source: Rotating-anode X-ray tube, Rigaku XtaLAB Synergy-R4378 independent reflections
Mirror monochromatorRint = 0.038
Detector resolution: 10.0000 pixels mm-1θmax = 76.3°, θmin = 4.0°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1726
Tmin = 0.919, Tmax = 1.000l = 1516
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.062P)2 + 1.4432P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4378 reflectionsΔρmax = 0.34 e Å3
319 parametersΔρmin = 0.41 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.05295 (16)0.41493 (5)0.67770 (9)0.0377 (3)
O10.4436 (2)0.54707 (8)0.16888 (11)0.0432 (4)
O20.3833 (2)0.44645 (7)0.18852 (11)0.0402 (4)
H20.3477420.4241960.2326960.060*
O30.28730 (19)0.41034 (7)0.35014 (11)0.0362 (3)
N10.3471 (2)0.59129 (8)0.46044 (12)0.0314 (4)
N20.0934 (2)0.53783 (8)0.75639 (13)0.0328 (4)
N30.2572 (3)0.58568 (8)0.95730 (14)0.0395 (4)
H3A0.3568000.5955651.0021530.047*
H3B0.1692250.5948510.9894470.047*
C10.4001 (3)0.50538 (10)0.22173 (15)0.0354 (5)
C20.3602 (3)0.51643 (10)0.32635 (15)0.0327 (4)
C30.3006 (2)0.46647 (10)0.38290 (15)0.0326 (4)
C40.2566 (2)0.48427 (10)0.48093 (15)0.0316 (4)
C50.1856 (3)0.44006 (9)0.54010 (15)0.0327 (4)
H50.1721510.3975740.5175320.039*
C60.1363 (3)0.45781 (9)0.62931 (15)0.0321 (4)
C70.1580 (2)0.51970 (9)0.67053 (15)0.0313 (4)
C80.2342 (2)0.56281 (9)0.61296 (15)0.0314 (4)
H80.2561300.6044190.6386110.038*
C90.2786 (2)0.54598 (9)0.51851 (15)0.0303 (4)
C100.3838 (3)0.57567 (10)0.36771 (15)0.0329 (4)
H100.4281100.6072310.3291870.040*
C110.3814 (3)0.65431 (9)0.50290 (16)0.0338 (4)
H110.4717540.6574180.5680930.041*
C120.2333 (3)0.69888 (10)0.49555 (18)0.0418 (5)
H12A0.2328220.7274210.5552450.050*
H12B0.1188610.6842080.4590280.050*
C130.3671 (3)0.70946 (10)0.43140 (17)0.0407 (5)
H13A0.3346050.7014230.3553930.049*
H13B0.4485100.7446150.4515620.049*
C140.1041 (3)0.49851 (10)0.84970 (16)0.0357 (5)
H14A0.1153600.4538630.8307910.043*
H14B0.0029080.5029590.8763770.043*
C150.2556 (3)0.51692 (9)0.93462 (16)0.0340 (4)
H15A0.2508240.4932370.9990940.041*
H15B0.3631130.5053070.9125860.041*
C160.2411 (3)0.62529 (10)0.86112 (16)0.0364 (5)
H16A0.3444740.6204810.8309020.044*
H16B0.2298750.6701390.8788110.044*
C170.0831 (3)0.60408 (10)0.78271 (15)0.0327 (4)
H17A0.0200760.6111420.8123030.039*
H17B0.0715660.6296590.7184420.039*
O41.1188 (2)0.66620 (11)1.0984 (2)0.0830 (8)
O50.8981 (3)0.62083 (8)0.99400 (18)0.0683 (6)
O60.5971 (2)0.63810 (8)1.02051 (13)0.0476 (4)
H60.6759910.6254220.9918030.071*
O71.0721 (3)0.74339 (12)1.23479 (19)0.0809 (8)
H71.1284720.7128311.2189550.121*
C180.9592 (3)0.65706 (12)1.0688 (2)0.0531 (7)
C190.8411 (3)0.68834 (9)1.12632 (16)0.0336 (4)
C200.6639 (3)0.67641 (10)1.10169 (16)0.0332 (4)
C210.5540 (3)0.70341 (11)1.1582 (2)0.0447 (5)
H210.4348670.6942281.1420880.054*
C220.6208 (4)0.74400 (12)1.2386 (2)0.0593 (8)
H220.5455150.7631451.2770980.071*
C230.7929 (5)0.75756 (13)1.2647 (2)0.0625 (8)
H230.8357170.7856561.3203760.075*
C240.9025 (3)0.72996 (12)1.20927 (18)0.0475 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0444 (7)0.0350 (6)0.0334 (6)0.0065 (5)0.0070 (5)0.0004 (5)
O10.0555 (10)0.0466 (9)0.0264 (7)0.0049 (7)0.0058 (7)0.0000 (7)
O20.0470 (9)0.0437 (9)0.0280 (7)0.0011 (7)0.0030 (6)0.0068 (6)
O30.0384 (8)0.0360 (8)0.0312 (7)0.0019 (6)0.0003 (6)0.0065 (6)
N10.0347 (9)0.0338 (9)0.0239 (8)0.0014 (7)0.0017 (7)0.0003 (6)
N20.0370 (9)0.0345 (9)0.0254 (8)0.0019 (7)0.0030 (7)0.0007 (7)
N30.0477 (10)0.0353 (9)0.0290 (9)0.0021 (8)0.0074 (8)0.0025 (7)
C10.0360 (11)0.0418 (11)0.0255 (10)0.0036 (9)0.0008 (8)0.0026 (9)
C20.0300 (10)0.0390 (11)0.0260 (9)0.0034 (8)0.0014 (8)0.0031 (8)
C30.0288 (9)0.0364 (10)0.0288 (10)0.0040 (8)0.0033 (8)0.0031 (8)
C40.0290 (9)0.0370 (10)0.0254 (9)0.0016 (8)0.0022 (7)0.0011 (8)
C50.0331 (10)0.0313 (10)0.0298 (10)0.0020 (8)0.0024 (8)0.0035 (8)
C60.0304 (10)0.0340 (10)0.0293 (10)0.0024 (8)0.0001 (8)0.0016 (8)
C70.0300 (9)0.0360 (10)0.0253 (9)0.0006 (8)0.0002 (7)0.0010 (8)
C80.0308 (10)0.0337 (10)0.0265 (9)0.0011 (8)0.0017 (7)0.0016 (8)
C90.0297 (10)0.0345 (10)0.0242 (9)0.0027 (8)0.0001 (7)0.0005 (8)
C100.0332 (10)0.0387 (11)0.0249 (9)0.0031 (8)0.0014 (8)0.0011 (8)
C110.0398 (11)0.0325 (10)0.0282 (10)0.0005 (8)0.0053 (8)0.0009 (8)
C120.0457 (12)0.0372 (11)0.0420 (12)0.0049 (9)0.0074 (10)0.0010 (9)
C130.0538 (13)0.0345 (11)0.0328 (11)0.0025 (9)0.0067 (9)0.0015 (9)
C140.0406 (11)0.0380 (11)0.0275 (10)0.0058 (9)0.0047 (8)0.0008 (8)
C150.0385 (11)0.0330 (10)0.0283 (10)0.0013 (8)0.0018 (8)0.0005 (8)
C160.0410 (11)0.0326 (10)0.0321 (10)0.0006 (8)0.0011 (9)0.0021 (8)
C170.0335 (10)0.0359 (10)0.0269 (9)0.0020 (8)0.0017 (8)0.0010 (8)
O40.0390 (10)0.0790 (14)0.140 (2)0.0173 (9)0.0391 (12)0.0559 (15)
O50.1042 (17)0.0351 (9)0.0862 (15)0.0002 (10)0.0675 (13)0.0015 (10)
O60.0513 (10)0.0531 (10)0.0356 (8)0.0164 (8)0.0027 (7)0.0101 (7)
O70.0613 (12)0.0922 (16)0.0708 (14)0.0414 (11)0.0296 (11)0.0281 (13)
C180.0488 (14)0.0374 (13)0.082 (2)0.0124 (10)0.0340 (14)0.0259 (13)
C190.0320 (10)0.0335 (10)0.0344 (10)0.0010 (8)0.0048 (8)0.0063 (8)
C200.0342 (10)0.0347 (10)0.0296 (10)0.0019 (8)0.0036 (8)0.0007 (8)
C210.0394 (12)0.0431 (12)0.0547 (14)0.0024 (10)0.0172 (10)0.0040 (11)
C220.096 (2)0.0364 (13)0.0590 (16)0.0030 (13)0.0477 (16)0.0036 (11)
C230.108 (2)0.0474 (14)0.0343 (12)0.0330 (15)0.0198 (14)0.0087 (11)
C240.0525 (14)0.0496 (13)0.0341 (11)0.0194 (11)0.0056 (10)0.0104 (10)
Geometric parameters (Å, º) top
F1—C61.359 (2)C12—H12A0.9900
O1—C11.218 (3)C12—H12B0.9900
O2—H20.8400C12—C131.503 (3)
O2—C11.325 (3)C13—H13A0.9900
O3—C31.265 (2)C13—H13B0.9900
N1—C91.405 (3)C14—H14A0.9900
N1—C101.347 (3)C14—H14B0.9900
N1—C111.455 (3)C14—C151.516 (3)
N2—C71.383 (3)C15—H15A0.9900
N2—C141.468 (3)C15—H15B0.9900
N2—C171.457 (3)C16—H16A0.9900
N3—H3A0.9100C16—H16B0.9900
N3—H3B0.9100C16—C171.521 (3)
N3—C151.492 (3)C17—H17A0.9900
N3—C161.498 (3)C17—H17B0.9900
C1—C21.486 (3)O4—C181.267 (3)
C2—C31.431 (3)O5—C181.263 (4)
C2—C101.369 (3)O6—H60.8400
C3—C41.448 (3)O6—C201.358 (3)
C4—C51.408 (3)O7—H70.8400
C4—C91.400 (3)O7—C241.355 (3)
C5—H50.9500C18—C191.479 (3)
C5—C61.359 (3)C19—C201.406 (3)
C6—C71.420 (3)C19—C241.409 (3)
C7—C81.402 (3)C20—C211.382 (3)
C8—H80.9500C21—H210.9500
C8—C91.400 (3)C21—C221.381 (4)
C10—H100.9500C22—H220.9500
C11—H111.0000C22—C231.375 (5)
C11—C121.501 (3)C23—H230.9500
C11—C131.490 (3)C23—C241.376 (4)
C1—O2—H2109.5C13—C12—H12B117.8
C9—N1—C11119.24 (16)C11—C13—C1260.21 (15)
C10—N1—C9119.88 (17)C11—C13—H13A117.8
C10—N1—C11120.86 (17)C11—C13—H13B117.8
C7—N2—C14123.30 (17)C12—C13—H13A117.8
C7—N2—C17120.67 (17)C12—C13—H13B117.8
C17—N2—C14110.55 (16)H13A—C13—H13B114.9
H3A—N3—H3B107.8N2—C14—H14A109.4
C15—N3—H3A109.0N2—C14—H14B109.4
C15—N3—H3B109.0N2—C14—C15111.36 (17)
C15—N3—C16112.86 (16)H14A—C14—H14B108.0
C16—N3—H3A109.0C15—C14—H14A109.4
C16—N3—H3B109.0C15—C14—H14B109.4
O1—C1—O2121.63 (19)N3—C15—C14111.86 (17)
O1—C1—C2123.19 (19)N3—C15—H15A109.2
O2—C1—C2115.18 (19)N3—C15—H15B109.2
C3—C2—C1121.03 (18)C14—C15—H15A109.2
C10—C2—C1118.14 (19)C14—C15—H15B109.2
C10—C2—C3120.83 (19)H15A—C15—H15B107.9
O3—C3—C2122.61 (19)N3—C16—H16A110.0
O3—C3—C4121.90 (19)N3—C16—H16B110.0
C2—C3—C4115.48 (18)N3—C16—C17108.50 (17)
C5—C4—C3120.65 (18)H16A—C16—H16B108.4
C9—C4—C3121.38 (19)C17—C16—H16A110.0
C9—C4—C5117.95 (18)C17—C16—H16B110.0
C4—C5—H5119.8N2—C17—C16111.57 (16)
C6—C5—C4120.40 (19)N2—C17—H17A109.3
C6—C5—H5119.8N2—C17—H17B109.3
F1—C6—C5117.95 (18)C16—C17—H17A109.3
F1—C6—C7118.58 (18)C16—C17—H17B109.3
C5—C6—C7123.34 (19)H17A—C17—H17B108.0
N2—C7—C6122.04 (18)C20—O6—H6109.5
N2—C7—C8121.89 (18)C24—O7—H7109.5
C8—C7—C6115.79 (18)O4—C18—C19118.7 (3)
C7—C8—H8119.2O5—C18—O4122.3 (3)
C9—C8—C7121.53 (19)O5—C18—C19119.0 (2)
C9—C8—H8119.2C20—C19—C18121.1 (2)
C4—C9—N1119.20 (18)C20—C19—C24117.7 (2)
C4—C9—C8120.89 (19)C24—C19—C18121.2 (2)
C8—C9—N1119.91 (18)O6—C20—C19120.12 (19)
N1—C10—C2123.07 (19)O6—C20—C21118.6 (2)
N1—C10—H10118.5C21—C20—C19121.3 (2)
C2—C10—H10118.5C20—C21—H21120.7
N1—C11—H11115.6C22—C21—C20118.7 (2)
N1—C11—C12118.27 (18)C22—C21—H21120.7
N1—C11—C13120.07 (17)C21—C22—H22119.0
C12—C11—H11115.6C23—C22—C21122.0 (2)
C13—C11—H11115.6C23—C22—H22119.0
C13—C11—C1260.32 (15)C22—C23—H23120.4
C11—C12—H12A117.8C22—C23—C24119.3 (2)
C11—C12—H12B117.8C24—C23—H23120.4
C11—C12—C1359.47 (14)O7—C24—C19119.6 (3)
H12A—C12—H12B115.0O7—C24—C23119.3 (3)
C13—C12—H12A117.8C23—C24—C19121.1 (2)
F1—C6—C7—N21.6 (3)C9—C4—C5—C61.8 (3)
F1—C6—C7—C8175.68 (16)C10—N1—C9—C42.8 (3)
O1—C1—C2—C3176.50 (19)C10—N1—C9—C8177.48 (18)
O1—C1—C2—C104.2 (3)C10—N1—C11—C12102.8 (2)
O2—C1—C2—C32.7 (3)C10—N1—C11—C1332.6 (3)
O2—C1—C2—C10176.59 (18)C10—C2—C3—O3175.52 (18)
O3—C3—C4—C54.5 (3)C10—C2—C3—C44.3 (3)
O3—C3—C4—C9177.25 (17)C11—N1—C9—C4175.72 (17)
N1—C11—C12—C13110.4 (2)C11—N1—C9—C84.0 (3)
N1—C11—C13—C12107.5 (2)C11—N1—C10—C2177.41 (18)
N2—C7—C8—C9171.43 (18)C14—N2—C7—C642.6 (3)
N2—C14—C15—N352.0 (2)C14—N2—C7—C8143.72 (19)
N3—C16—C17—N258.5 (2)C14—N2—C17—C1661.2 (2)
C1—C2—C3—O33.8 (3)C15—N3—C16—C1753.4 (2)
C1—C2—C3—C4176.44 (17)C16—N3—C15—C1451.4 (2)
C1—C2—C10—N1178.08 (18)C17—N2—C7—C6166.08 (18)
C2—C3—C4—C5175.74 (17)C17—N2—C7—C87.6 (3)
C2—C3—C4—C92.5 (3)C17—N2—C14—C1556.9 (2)
C3—C2—C10—N12.6 (3)O4—C18—C19—C20175.4 (2)
C3—C4—C5—C6176.56 (18)O4—C18—C19—C243.0 (3)
C3—C4—C9—N10.9 (3)O5—C18—C19—C202.6 (3)
C3—C4—C9—C8179.39 (18)O5—C18—C19—C24179.0 (2)
C4—C5—C6—F1173.48 (16)O6—C20—C21—C22177.9 (2)
C4—C5—C6—C72.5 (3)C18—C19—C20—O63.4 (3)
C5—C4—C9—N1179.21 (17)C18—C19—C20—C21177.1 (2)
C5—C4—C9—C81.1 (3)C18—C19—C24—O72.3 (3)
C5—C6—C7—N2174.32 (18)C18—C19—C24—C23178.0 (2)
C5—C6—C7—C80.2 (3)C19—C20—C21—C221.6 (3)
C6—C7—C8—C92.7 (3)C20—C19—C24—O7179.2 (2)
C7—N2—C14—C1597.0 (2)C20—C19—C24—C230.5 (3)
C7—N2—C17—C1693.5 (2)C20—C21—C22—C230.9 (4)
C7—C8—C9—N1176.92 (17)C21—C22—C23—C240.0 (4)
C7—C8—C9—C43.4 (3)C22—C23—C24—O7179.9 (2)
C9—N1—C10—C21.1 (3)C22—C23—C24—C190.2 (4)
C9—N1—C11—C1278.7 (2)C24—C19—C20—O6178.08 (19)
C9—N1—C11—C13148.89 (19)C24—C19—C20—C211.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.732.512 (2)155
N3—H3A···O1i0.912.382.977 (2)123
N3—H3A···O60.912.092.890 (2)146
N3—H3B···O4ii0.912.182.897 (3)136
N3—H3B···O5ii0.912.243.090 (3)155
C11—H11···O3iii1.002.463.239 (3)134
C12—H12A···O4iv0.992.543.374 (3)141
C13—H13A···O7v0.992.513.193 (3)126
C14—H14A···F10.992.132.831 (2)126
C15—H15B···O1iii0.992.333.282 (3)161
C17—H17A···O5ii0.992.603.408 (3)139
O6—H6···O50.841.772.520 (3)148
O7—H7···O40.841.852.508 (4)134
C21—H21···O4ii0.952.543.488 (3)178
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x1, y+3/2, z1/2; (v) x1, y, z1.
4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium chloride–3,5-hydroxybenzoic acid–water (1/1/1) (II) top
Crystal data top
C17H19FN3O3+·C7H6O4·Cl·H2OZ = 1
Mr = 539.93F(000) = 282
Triclinic, P1Dx = 1.508 Mg m3
a = 7.2165 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.8298 (4) ÅCell parameters from 10041 reflections
c = 10.1184 (3) Åθ = 4.4–75.8°
α = 92.997 (3)°µ = 2.00 mm1
β = 95.219 (2)°T = 93 K
γ = 111.557 (4)°Block, colourless
V = 594.60 (4) Å30.28 × 0.2 × 0.05 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
4420 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku XtaLAB Synergy-R4323 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.0000 pixels mm-1θmax = 74.5°, θmin = 4.4°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1011
Tmin = 0.839, Tmax = 1.000l = 1212
16358 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.0709P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.25 e Å3
4420 reflectionsΔρmin = 0.47 e Å3
344 parametersAbsolute structure: Flack x determined using 1889 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.011 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85144 (9)0.46863 (8)0.40663 (7)0.02533 (17)
F10.4599 (3)0.5185 (2)0.98137 (17)0.0273 (4)
O10.3224 (3)0.3703 (3)1.2978 (2)0.0284 (5)
O20.3642 (4)0.1499 (3)1.4315 (2)0.0294 (5)
H20.3795720.0518351.4238170.044*
O30.3972 (3)0.1143 (3)1.3272 (2)0.0280 (5)
N10.2840 (4)0.1445 (3)0.9603 (2)0.0213 (5)
N20.3796 (4)0.3457 (3)0.7334 (2)0.0210 (5)
N30.4407 (4)0.4661 (3)0.4778 (2)0.0233 (5)
H3A0.4122020.5252660.4135620.028*
H3B0.5287780.4238480.4485340.028*
C10.3370 (4)0.2274 (4)1.3126 (3)0.0249 (6)
C20.3276 (4)0.1342 (4)1.1970 (3)0.0222 (6)
C30.3655 (4)0.0366 (4)1.2138 (3)0.0226 (6)
C40.3687 (4)0.1155 (4)1.0907 (3)0.0220 (6)
C50.4158 (4)0.2850 (4)1.0937 (3)0.0227 (6)
H50.4441440.3496211.1764800.027*
C60.4203 (4)0.3556 (4)0.9773 (3)0.0214 (6)
C70.3828 (4)0.2667 (4)0.8503 (3)0.0202 (6)
C80.3389 (4)0.1003 (4)0.8483 (3)0.0212 (6)
H80.3146180.0368410.7652860.025*
C90.3297 (4)0.0241 (4)0.9661 (3)0.0204 (6)
C100.2882 (4)0.2168 (4)1.0730 (3)0.0218 (6)
H100.2626850.3305551.0666430.026*
C110.2568 (4)0.2397 (4)0.8324 (3)0.0219 (6)
H110.3819270.2289260.7919790.026*
C120.0740 (5)0.2667 (4)0.7366 (3)0.0257 (6)
H12A0.0876780.2709480.6401830.031*
H12B0.0217680.2176770.7633080.031*
C130.0926 (5)0.4047 (4)0.8124 (3)0.0259 (6)
H13A0.0078250.4400610.8852060.031*
H13B0.1172360.4933150.7621210.031*
C140.5686 (4)0.4771 (4)0.7139 (3)0.0231 (6)
H14A0.6676700.4292590.6919210.028*
H14B0.6234270.5498620.7974310.028*
C150.5351 (5)0.5757 (4)0.6022 (3)0.0253 (6)
H15A0.4470940.6329550.6281020.030*
H15B0.6651440.6591310.5864530.030*
C160.2536 (5)0.3306 (4)0.5001 (3)0.0240 (6)
H16A0.1985140.2567130.4171030.029*
H16B0.1525830.3757660.5231190.029*
C170.2940 (4)0.2351 (4)0.6112 (3)0.0221 (6)
H17A0.1673650.1470060.6265400.027*
H17B0.3888120.1842150.5863090.027*
O40.8307 (4)0.7243 (3)0.2157 (2)0.0292 (5)
H40.8451490.6749000.2822880.044*
O50.8281 (4)0.9108 (3)0.3721 (2)0.0338 (5)
O60.9253 (4)1.4048 (3)0.1019 (2)0.0282 (5)
H60.9229431.4265660.1833930.042*
O70.7685 (4)0.9471 (3)0.2173 (2)0.0282 (5)
H70.7697161.0190310.2686910.042*
C180.8310 (5)0.8689 (4)0.2561 (3)0.0245 (6)
C190.8373 (4)0.9759 (4)0.1448 (3)0.0233 (6)
C200.8753 (4)1.1395 (4)0.1782 (3)0.0230 (6)
H200.8942551.1809950.2690530.028*
C210.8855 (4)1.2429 (4)0.0771 (3)0.0230 (6)
C220.8531 (4)1.1805 (4)0.0565 (3)0.0229 (6)
H220.8606431.2507390.1255120.028*
C230.8099 (4)1.0150 (4)0.0877 (3)0.0231 (6)
C240.8048 (4)0.9107 (4)0.0123 (3)0.0243 (6)
H240.7799080.7983990.0093500.029*
O80.7775 (4)1.1327 (3)0.4306 (2)0.0309 (5)
H8A0.799 (7)1.230 (7)0.457 (5)0.046*
H8B0.779 (7)1.068 (7)0.492 (5)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0315 (3)0.0267 (3)0.0219 (3)0.0151 (3)0.0052 (2)0.0029 (2)
F10.0445 (10)0.0200 (9)0.0203 (8)0.0152 (8)0.0057 (7)0.0001 (7)
O10.0376 (12)0.0253 (12)0.0242 (11)0.0142 (9)0.0011 (9)0.0058 (9)
O20.0419 (13)0.0289 (12)0.0176 (10)0.0132 (10)0.0032 (9)0.0048 (8)
O30.0426 (13)0.0294 (12)0.0144 (9)0.0160 (10)0.0048 (9)0.0003 (8)
N10.0270 (12)0.0220 (13)0.0168 (12)0.0117 (10)0.0024 (9)0.0002 (9)
N20.0255 (12)0.0232 (13)0.0144 (11)0.0097 (10)0.0009 (9)0.0008 (9)
N30.0303 (12)0.0286 (13)0.0173 (11)0.0174 (10)0.0047 (9)0.0046 (10)
C10.0243 (14)0.0325 (18)0.0202 (14)0.0131 (12)0.0027 (11)0.0050 (12)
C20.0238 (13)0.0266 (15)0.0179 (13)0.0108 (11)0.0036 (10)0.0041 (12)
C30.0262 (14)0.0272 (15)0.0175 (14)0.0131 (12)0.0044 (11)0.0038 (11)
C40.0234 (13)0.0268 (15)0.0177 (13)0.0117 (11)0.0035 (10)0.0007 (11)
C50.0282 (14)0.0232 (15)0.0182 (13)0.0117 (12)0.0036 (10)0.0011 (11)
C60.0267 (14)0.0176 (13)0.0206 (14)0.0094 (11)0.0032 (11)0.0006 (11)
C70.0222 (13)0.0228 (15)0.0171 (13)0.0105 (11)0.0018 (10)0.0016 (11)
C80.0239 (13)0.0230 (15)0.0167 (13)0.0095 (11)0.0021 (10)0.0023 (11)
C90.0210 (13)0.0217 (14)0.0188 (14)0.0084 (10)0.0030 (10)0.0005 (11)
C100.0242 (13)0.0215 (15)0.0225 (14)0.0112 (11)0.0033 (11)0.0050 (11)
C110.0291 (14)0.0213 (14)0.0173 (13)0.0121 (12)0.0024 (11)0.0009 (11)
C120.0317 (15)0.0243 (15)0.0213 (13)0.0117 (12)0.0005 (12)0.0006 (11)
C130.0329 (15)0.0211 (15)0.0242 (14)0.0110 (12)0.0038 (11)0.0004 (11)
C140.0281 (14)0.0233 (15)0.0183 (13)0.0103 (12)0.0021 (11)0.0011 (11)
C150.0335 (15)0.0240 (15)0.0198 (14)0.0116 (12)0.0050 (11)0.0040 (11)
C160.0291 (15)0.0241 (15)0.0192 (13)0.0111 (12)0.0006 (11)0.0012 (11)
C170.0264 (14)0.0242 (16)0.0174 (13)0.0121 (11)0.0006 (10)0.0006 (11)
O40.0432 (13)0.0270 (12)0.0240 (11)0.0194 (10)0.0077 (9)0.0056 (9)
O50.0540 (14)0.0318 (13)0.0216 (11)0.0224 (11)0.0074 (10)0.0025 (9)
O60.0423 (12)0.0214 (11)0.0220 (10)0.0133 (9)0.0046 (9)0.0007 (8)
O70.0408 (12)0.0264 (12)0.0186 (10)0.0140 (10)0.0046 (9)0.0003 (9)
C180.0269 (14)0.0271 (16)0.0230 (14)0.0137 (12)0.0048 (11)0.0025 (12)
C190.0240 (13)0.0265 (16)0.0216 (14)0.0116 (11)0.0039 (11)0.0017 (12)
C200.0254 (13)0.0255 (15)0.0196 (13)0.0117 (11)0.0029 (11)0.0003 (11)
C210.0244 (13)0.0205 (14)0.0243 (14)0.0092 (11)0.0023 (11)0.0019 (11)
C220.0249 (14)0.0247 (15)0.0215 (14)0.0115 (11)0.0045 (11)0.0035 (12)
C230.0240 (13)0.0281 (16)0.0187 (14)0.0119 (12)0.0023 (11)0.0010 (12)
C240.0261 (14)0.0259 (15)0.0232 (15)0.0122 (12)0.0058 (11)0.0007 (12)
O80.0438 (13)0.0286 (13)0.0212 (11)0.0146 (10)0.0044 (9)0.0017 (9)
Geometric parameters (Å, º) top
F1—C61.357 (4)C12—C131.513 (4)
O1—C11.227 (4)C13—H13A0.9900
O2—H20.8400C13—H13B0.9900
O2—C11.314 (4)C14—H14A0.9900
O3—C31.263 (4)C14—H14B0.9900
N1—C91.397 (4)C14—C151.517 (4)
N1—C101.339 (4)C15—H15A0.9900
N1—C111.463 (4)C15—H15B0.9900
N2—C71.407 (4)C16—H16A0.9900
N2—C141.468 (4)C16—H16B0.9900
N2—C171.467 (4)C16—C171.510 (4)
N3—H3A0.9100C17—H17A0.9900
N3—H3B0.9100C17—H17B0.9900
N3—C151.489 (4)O4—H40.8400
N3—C161.484 (4)O4—C181.320 (4)
C1—C21.475 (4)O5—C181.216 (4)
C2—C31.428 (4)O6—H60.8400
C2—C101.369 (4)O6—C211.356 (4)
C3—C41.457 (4)O7—H70.8400
C4—C51.406 (4)O7—C231.372 (4)
C4—C91.407 (4)C18—C191.501 (4)
C5—H50.9500C19—C201.385 (4)
C5—C61.358 (4)C19—C241.395 (4)
C6—C71.419 (4)C20—H200.9500
C7—C81.384 (4)C20—C211.395 (4)
C8—H80.9500C21—C221.399 (4)
C8—C91.394 (4)C22—H220.9500
C10—H100.9500C22—C231.389 (5)
C11—H111.0000C23—C241.398 (4)
C11—C121.499 (4)C24—H240.9500
C11—C131.492 (4)O8—H8A0.88 (6)
C12—H12A0.9900O8—H8B0.82 (6)
C12—H12B0.9900
C1—O2—H2109.5C11—C13—C1259.9 (2)
C9—N1—C11120.6 (2)C11—C13—H13A117.8
C10—N1—C9119.9 (3)C11—C13—H13B117.8
C10—N1—C11119.0 (3)C12—C13—H13A117.8
C7—N2—C14115.7 (2)C12—C13—H13B117.8
C7—N2—C17114.7 (2)H13A—C13—H13B114.9
C17—N2—C14111.0 (2)N2—C14—H14A109.5
H3A—N3—H3B108.0N2—C14—H14B109.5
C15—N3—H3A109.3N2—C14—C15110.6 (2)
C15—N3—H3B109.3H14A—C14—H14B108.1
C16—N3—H3A109.3C15—C14—H14A109.5
C16—N3—H3B109.3C15—C14—H14B109.5
C16—N3—C15111.4 (2)N3—C15—C14110.2 (2)
O1—C1—O2121.8 (3)N3—C15—H15A109.6
O1—C1—C2121.2 (3)N3—C15—H15B109.6
O2—C1—C2117.0 (3)C14—C15—H15A109.6
C3—C2—C1121.3 (3)C14—C15—H15B109.6
C10—C2—C1117.3 (3)H15A—C15—H15B108.1
C10—C2—C3121.4 (3)N3—C16—H16A109.5
O3—C3—C2122.5 (3)N3—C16—H16B109.5
O3—C3—C4122.3 (3)N3—C16—C17110.7 (2)
C2—C3—C4115.2 (3)H16A—C16—H16B108.1
C5—C4—C3120.8 (3)C17—C16—H16A109.5
C5—C4—C9118.6 (3)C17—C16—H16B109.5
C9—C4—C3120.6 (3)N2—C17—C16109.4 (2)
C4—C5—H5120.3N2—C17—H17A109.8
C6—C5—C4119.5 (3)N2—C17—H17B109.8
C6—C5—H5120.3C16—C17—H17A109.8
F1—C6—C5119.0 (3)C16—C17—H17B109.8
F1—C6—C7117.8 (2)H17A—C17—H17B108.2
C5—C6—C7123.2 (3)C18—O4—H4109.5
N2—C7—C6120.4 (3)C21—O6—H6109.5
C8—C7—N2122.6 (3)C23—O7—H7109.5
C8—C7—C6116.9 (3)O4—C18—C19113.1 (3)
C7—C8—H8119.4O5—C18—O4123.1 (3)
C7—C8—C9121.1 (3)O5—C18—C19123.8 (3)
C9—C8—H8119.4C20—C19—C18117.9 (3)
N1—C9—C4119.8 (2)C20—C19—C24121.7 (3)
C8—C9—N1119.6 (3)C24—C19—C18120.4 (3)
C8—C9—C4120.7 (3)C19—C20—H20120.3
N1—C10—C2123.0 (3)C19—C20—C21119.3 (3)
N1—C10—H10118.5C21—C20—H20120.3
C2—C10—H10118.5O6—C21—C20122.8 (3)
N1—C11—H11116.2O6—C21—C22117.1 (3)
N1—C11—C12118.9 (3)C20—C21—C22120.1 (3)
N1—C11—C13117.2 (2)C21—C22—H22120.2
C12—C11—H11116.2C23—C22—C21119.6 (3)
C13—C11—H11116.2C23—C22—H22120.2
C13—C11—C1260.8 (2)O7—C23—C22121.6 (3)
C11—C12—H12A117.8O7—C23—C24117.3 (3)
C11—C12—H12B117.8C22—C23—C24121.1 (3)
C11—C12—C1359.4 (2)C19—C24—C23118.2 (3)
H12A—C12—H12B115.0C19—C24—H24120.9
C13—C12—H12A117.8C23—C24—H24120.9
C13—C12—H12B117.8H8A—O8—H8B112 (5)
F1—C6—C7—N22.4 (4)C9—N1—C11—C13140.3 (3)
F1—C6—C7—C8178.8 (3)C9—C4—C5—C60.7 (4)
O1—C1—C2—C3173.3 (3)C10—N1—C9—C43.6 (4)
O1—C1—C2—C104.3 (4)C10—N1—C9—C8175.5 (3)
O2—C1—C2—C35.9 (4)C10—N1—C11—C12117.4 (3)
O2—C1—C2—C10176.5 (3)C10—N1—C11—C1347.5 (4)
O3—C3—C4—C52.6 (4)C10—C2—C3—O3178.2 (3)
O3—C3—C4—C9179.1 (3)C10—C2—C3—C42.9 (4)
N1—C11—C12—C13106.9 (3)C11—N1—C9—C4175.7 (2)
N1—C11—C13—C12109.5 (3)C11—N1—C9—C83.4 (4)
N2—C7—C8—C9175.5 (3)C11—N1—C10—C2175.1 (3)
N2—C14—C15—N355.7 (3)C14—N2—C7—C662.4 (4)
N3—C16—C17—N258.0 (3)C14—N2—C7—C8121.4 (3)
C1—C2—C3—O34.2 (4)C14—N2—C17—C1659.9 (3)
C1—C2—C3—C4174.7 (3)C15—N3—C16—C1756.1 (3)
C1—C2—C10—N1177.1 (3)C16—N3—C15—C1454.5 (3)
C2—C3—C4—C5176.4 (3)C17—N2—C7—C6166.4 (3)
C2—C3—C4—C92.0 (4)C17—N2—C7—C89.8 (4)
C3—C2—C10—N10.5 (4)C17—N2—C14—C1559.2 (3)
C3—C4—C5—C6179.1 (3)O4—C18—C19—C20168.3 (3)
C3—C4—C9—N11.1 (4)O4—C18—C19—C2411.9 (4)
C3—C4—C9—C8178.0 (3)O5—C18—C19—C2011.1 (5)
C4—C5—C6—F1178.0 (3)O5—C18—C19—C24168.6 (3)
C4—C5—C6—C71.1 (5)O6—C21—C22—C23179.4 (3)
C5—C4—C9—N1179.5 (3)O7—C23—C24—C19177.1 (3)
C5—C4—C9—C80.4 (4)C18—C19—C20—C21178.9 (3)
C5—C6—C7—N2176.7 (3)C18—C19—C24—C23179.2 (3)
C5—C6—C7—C80.3 (4)C19—C20—C21—O6178.9 (3)
C6—C7—C8—C90.8 (4)C19—C20—C21—C221.4 (4)
C7—N2—C14—C15167.8 (2)C20—C19—C24—C230.5 (4)
C7—N2—C17—C16166.7 (2)C20—C21—C22—C230.3 (4)
C7—C8—C9—N1179.7 (3)C21—C22—C23—O7177.1 (3)
C7—C8—C9—C41.2 (4)C21—C22—C23—C242.2 (4)
C9—N1—C10—C22.9 (4)C22—C23—C24—C192.3 (4)
C9—N1—C11—C1270.4 (4)C24—C19—C20—C211.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.782.551 (3)152
N3—H3A···O1i0.911.752.652 (3)172
N3—H3B···Cl10.912.303.106 (3)148
C10—H10···F1ii0.952.463.158 (4)130
C12—H12B···O7iii0.992.473.435 (4)166
C14—H14B···F10.992.272.927 (3)123
C16—H16B···Cl1iv0.992.783.609 (3)142
O4—H4···Cl10.842.283.082 (2)160
O6—H6···Cl1v0.842.403.232 (2)170
O7—H7···O80.841.962.769 (3)161
O8—H8A···Cl1i0.88 (6)2.51 (6)3.362 (3)164 (4)
O8—H8B···O5vi0.82 (6)2.05 (6)2.865 (4)170 (5)
Symmetry codes: (i) x, y+1, z1; (ii) x, y1, z; (iii) x1, y1, z+1; (iv) x1, y, z; (v) x, y+1, z; (vi) x, y, z1.
 

Acknowledgements

The authors thank the Materials Analysis Division of the Open Facility Center at the Tokyo Institute of Technology for the research facilities.

References

First citationAakeröy, C. B., Hussain, I. & Desper, J. (2006). Cryst. Growth Des. 6, 474–480.  Google Scholar
First citationChilds, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362–6365.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFujito, T., Oshima, T., Higashi, K., Ueda, K., Ito, M., Masu, H., Noguchi, S. & Moribe, K. (2021). Cryst. Growth Des. https://doi.org/10.1021/acs.cgd.1c01050.  Google Scholar
First citationGdaniec, M., Gilski, M. & Denisov, G. S. (1994). Acta Cryst. C50, 1622–1626.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHabibi-yangjeh, A., Danandeh-jenagharad, M. & Nooshyar, M. (2005). Bull. Korean Chem. Soc. 26, 2007–2016.  CAS Google Scholar
First citationKavanagh, O. N., Croker, D. M., Walker, G. M. & Zaworotko, M. J. (2019). Drug Discovery Today, 24, 796–804.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartínez-Alejo, J. M., Domínguez-Chávez, J. G., Rivera-Islas, J., Herrera-Ruiz, D., Höpfl, H., Morales-Rojas, H. & Senosiain, J. P. (2014). Cryst. Growth Des. 14, 3078–3095.  Google Scholar
First citationNagalapalli, R. & Yaga Bheem, S. (2014). J. Crystallogr. pp. 1–5.  Google Scholar
First citationNugraha, Y. P. & Uekusa, H. (2018). CrystEngComm, 20, 2653–2662.  Web of Science CSD CrossRef CAS Google Scholar
First citationNugrahani, I., Tjengal, B., Gusdinar, T., Horikawa, A. & Uekusa, H. (2020). Crystals, 10, 1–19.  Web of Science CrossRef Google Scholar
First citationOlivera, M. E., Manzo, R. H., Junginger, H. E., Midha, K. K., Shah, V. P., Stavchansky, S., Dressman, J. B. & Barends, D. M. (2011). J. Pharm. Sci. 100, 22–33.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPutra, O. D. & Uekusa, H. (2020). Advances in Organic Crystal Chemistry, pp. 153–184. Singapore: Springer Singapore.  Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRojas, H. M., Chávez, J. G. D., Höpfl, D. H. R., Alejo, J. M. M. & Peláez, J. P. S. (2016). Solid forms of antibiotics. United States Patent and Trademark Office.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, J., Sakai, S., Tauchi, Y., Deguchi, Y., Chen, J., Zhang, R. & Morimoto, K. (2002). Eur. J. Pharm. Biopharm. 54, 51–58.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSurov, A. O., Vasilev, N. A., Churakov, A. V., Stroh, J., Emmerling, F. & Perlovich, G. L. (2019). Cryst. Growth Des. 19, 2979–2990.  Web of Science CSD CrossRef CAS Google Scholar
First citationSurov, A. O., Vasilev, N. A., Voronin, A. P., Churakov, A. V., Emmerling, F. & Perlovich, G. L. (2020). CrystEngComm, 22, 4238–4249.  Web of Science CSD CrossRef CAS Google Scholar
First citationThakur, T. S. & Thakuria, R. (2020). Cryst. Growth Des. 20, 6245–6265.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds