Download citation
Download citation
link to html
The coordination polymer catena-poly[[(di­methyl­formamide-κO)[μ3-5-(1,3-di­oxo-4,5,6,7-tetra­phenyl­isoindolin-2-yl)isophthalato-κ4O1,O1′:O3:O3′](methanol-κO)man­gan­ese(III)] di­methyl­formamide monosolvate], {[Mn(C40H23NO6)(CH3OH)(C3H7NO)]·C3H7NO}n, has been synthesized from the reaction of 5-(1,3-dioxo-4,5,6,7-tetra­phenyl­isoindolin-2-yl)isophthalic acid and man­gan­ese(II) acetate tetra­hydrate in a glass tube at room temperature by solvent diffusion. The MnII centre is hexa­coordinated by two O atoms from one chelating carboxyl­ate group, by two O atoms from two monodentate carboxyl­ate groups and by one O atom each from a methanol and a di­methyl­formamide (DMF) ligand. The single-crystal structure crystallizes in the triclinic space group P\overline{1}. Moreover, the coordination polymer shows one-dimensional 2-connected {0} uninodal chain networks, and free DMF mol­ecules are connected to the chains by O—H...O hydrogen bonds. The thermogravimetric and photoluminescent properties of the compound have also been investigated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615014217/dt3035sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615014217/dt3035Isup2.hkl
Contains datablock I

CCDC reference: 997495

Introduction top

In recent years, coordination polymers (CPs) have attracted much attention as a large family of functional materials. Up to now, the applications of coordination polymers ranged across many areas, such as heterogeneous catalysis, sensing, gas storage, imaging and drug delivery (Park et al., 2006; Zheng et al., 2013; Lee et al., 2007; Liu et al., 2011; Gao et al., 2013). In contrast to pure organic or inorganic materials, the wide choices of metal ions and organic ligands afford coordination polymers with different morphologies and physicochemical properties, and consequently they have the potential to show promise for use in diverse applications (Della Rocca et al., 2011). Therefore, the design and synthesis of novel CPs with functional ligands have been of great inter­est.

We designed and synthesized the rigid organic ligand 5-(1,3-dioxo-4,5,6,7-tetra­phenyl­isoindolin- 2-yl)isophthalic acid (H2L), which contains four phenyl rings connected to a central aromatic ring, which is likely to enhance the electronic conjugation effect and may lead to the ligand having potential fluorescence properties. Furthermore, the conformation of the four phenyl substituents can increase the structural diversity of its coordination complexes. By means of liquid phase diffusion, self-assembly between H2L and the corresponding metal salt leads to the new complex {[Mn(L)(DMF)(MeOH)].DMF}n, (I).

Experimental top

All reagents and solvents were purchased from commercial sources and were used without further purification. IR spectra were recorded on a TENSOR 27 spectrometer by using KBr pellets in the range 4000–400 cm-1. Thermogravimetric analysis (TGA) was performed under an air atmosphere with a heating rate of 5 K min-1 on a Q600 Thermal analyzer. CHN elemental analyses were performed on an Elementar Vario EL analyzer. All fluorescence measurements were conducted on an F-280 spectrofluorimeter equipped with a xenon lamp source, and the scan speed was set at 240 nm min-1. The 1H NMR measurements were conducted on a Bruker AV 40.

\ Synthesis and crystallization of 5-(1,3-dioxo-4,5,6,7-tetra­phenyl­isoindolin-2-yl)isophthalic acid (H2L) top

5-Amino­isophthalic acid (0.324 g, 1.5 mmol) and tetra­phenyl­phthalic anhydride (0.686 g, 1.5 mmol) were dissolved in anhydrous N,N-di­methyl-formamide (DMF, 6 ml). The solution was heated at reflux for 13 h and then allowed to cool to room temperature. The mixture was poured into water (50 ml). A pale-yellow precipitate formed which was filtered off and washed with H2O (4 × 20 ml) and dried under vacuum (yield: 0.76 g, 81%). 1H NMR (DMSO-d6): 13.45 (s, 2H), 8.44 (t, 1H), 8.18 (d, 2H), 7.2 (m, 10H), 6.9 (m, 10H). Analysis calculated (%) for C40H25NO6: C 78.10, H 4.10, N 2.27; found: C 78.06, H 4.20, N 2.42.

\ Synthesis and crystallization of {[Mn(L)(DMF)(MeOH) ].DMF}n, (I) top

A DMF (5 ml) solution of manganese(II) acetate tetra­hydrate (0.025 g, 0.1 mmol) was placed at the bottom of a glass tube. A DMF–MeOH solution (5 ml, 1:1 v/v) and an MeOH (5 ml) solution of H2L (0.030 g, 0.05 mmol) were placed in the middle and upper layers of the glass tube, respectively. By slow diffusion of the above rea­cta­nts at room temperature for several days, some pale-yellow crystals were produced (yield: 45%, based on Mn). Analysis calculated (%) for C47H41MnN3O9: C 66.66, H 4.88, N 4.96; found: C 66.76, H 4.60, N 4.92.

IR spectroscopic data top

H2L: FT–IR (KBr pellet, ν, cm-1): 3442 (s, νO—H), 1776 (m), 1723 (vs, νCO asymmetric of pyromellitic di­imide), 1644 (s, νCO asymmetric of carb­oxy­lic acid), 1597 (vw), 1494 (w), 1442 (m, νCC of aromatic ring), 1362 (s, νC—N), 1266 (m, νC—O), 1174 (m), 1111 (m), 764 (m), 698 (s), 672 (w), 633 (w), 563 (w), 532 (vw).

Coordination polymer (I): FT–IR (KBr pellet, ν, cm-1): 3443 (s), 1771 (m), 1714 (vs), 1650 (vs), 1616 (s), 1572 (vs), 1495 (w), 1443 (m), 1411 (s), 1368 (vs), 1213 (w), 1120 (m), 1026 (m), 911 (vw), 766 (m), 698 (m), 563 (w), 526 (w).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms bonded to C atoms and hy­droxy O atoms were placed at calculated positions and refined using a riding-model approximation, with C—H = 0.95 Å and Uiso(H) = 1.5Ueq(C) and O—H = 0.9337 Å and Uiso(H) = 1.5Ueq(O). The H atomson the methanol O atom was located in a difference Fourier map and treated as riding, with O—H = 0.9337 Å and Uiso(H) = 1.5Ueq(O).

Results and discussion top

The general features of the FT–IR spectra for compound (I) are almost identical through the region from 4000 to 500 cm-1 (Prasad et al., 2010). Absorptions at 1770–1780 and 1710–1730cm-1 correspond to the C O stretching-frequency asymmetric and symmetric vibrations of pyromellitic di­imide. The absorption at 1370 cm-1 is attributed to the stretching vibration of the C—N—C moiety (Fang et al., 2014). The characteristic strongb bands of coordinated carboxyl­ate groups are shown in the 1650 cm-1 for the CO asymmetric stretching of a carboxyl­ate group. The bands in the regions 1607–1620 and 1448–1469 cm-1 and at 1400 cm-1 belong to the CC stretching frequency of aromatic rings. The absorption at 1572 cm-1 is attributed to a carboxyl­ate group connected to a metal ion (Karmakar & Goldberg, 2011).

Compound (I) crystallizes in the triclinic space group P1, with the asymmetric unit consisting of one MnII centre, one 5-(1,3-dioxo-4,5,6,7-tetra­phenyl­isoindolin-2-yl)isophthalate (L2-) ligand, coordinated methanol and DMF ligands and one free DMF solvent molecule. All atoms are located on general positions. As shown in Fig. 1, the MnII centre is hexacoordinated by two O atoms from one chelating carboxyl­ate group, two O atoms from two monodentate carboxyl­ate groups, and two O atoms from methanol and DMF ligands. The Mn—O bond lengths are in the range 2.1145 (16)–2.3685 (16) Å (Table 2), and the bond angles around the MnII atom vary from 57.52 (6) to 178.70 (8)°. The Mn···Mn separation is 4.4102 (7) Å. These values are comparable to those in reported Mn compounds (Jia et al., 2014).

Compound (I) is constructed from binuclear metal clusters and L2- ligands as secondary building units. As shown in Fig. 2, each L2- ligand coordinates to two Mn2 units, while each Mn2 unit connects four L2- ligands. Thus, compound (I) displays a 2-connected {0} uninodal chain network. In this connected chains, there are O—H···O hydrogen-bonding inter­actions [O9···O8 = 2.617 (3) Å], so that free DMF molecules are connected to the chains (Fig. 2 and Table 3).

Thermogravimetric analyses (TGA) were carried out under air from room temperature to about 773.15 K, with a heating rate of 5 K min-1. The TGA results indicate that the compound (I) is stable up to 633.15 K, after which the framework starts to collapse as the organic ligands decompose. To study the photoluminescent properties of compound (I), its emission spectrum has been investigated at room temperature. As depicted in Fig. 3, H2L shows a broad emission and a main peak at 468 nm upon excitation at 420 nm, which should be attributed to π* π and/or π* n transitions (Xue et al., 2008). The six aromatic rings in the molecule of H2L suggest it may have luminescence properties, which is consistent with the properties of extended polycyclic arenes (Bock et al., 2014). Compared to H2L, compound (I) reveals a blue-shift by 3 nm to 465 nm, with an excitation band at 426 nm, which indicates the mechanism should be a ligand-centred emission (Li et al., 2009). This slight blue-shift in compound (I) may due to the increased energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of deprotonated L2- by metal [not clear] ions (Cui et al., 2012).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXL (Sheldrick, 2008); software used to prepare material for publication: APEX2 (Bruker, 2014).

Figures top
[Figure 1] Fig. 1. The coordination environment of the MnII centre in (I), showing a partial atom-labelling scheme and 30% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+2; (iii) x+1, y, z.] [Please provide revision]
[Figure 2] Fig. 2. A view of the one-dimensional chain of (I). Hydrogen bonds are drawn as green dashed lines. The coordinated DMF molecules and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The solid-state emission spectra of ligand H2L and coordination polymer (I) at room temperature.
catena-Poly[[(dimethylformamide-κO)[µ3-5-(1,3-dioxo-4,5,6,7-tetraphenylisoindolin-2-yl)isophthalato-κ4O1,O1':O3:O3'](methanol-κO)manganese(III)] dimethylformamide monosolvate] top
Crystal data top
[Mn(C40H23NO6)(CH4O)(C3H7NO)]·C3H7NOV = 2097.8 (2) Å3
Mr = 846.77Z = 2
Triclinic, P1F(000) = 882
Hall symbol: -P 1Dx = 1.341 Mg m3
a = 10.3336 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.3984 (10) Åθ = 2.3–25.0°
c = 15.2649 (8) ŵ = 0.38 mm1
α = 90.673 (5)°T = 173 K
β = 98.120 (4)°Prism, pink
γ = 110.761 (5)°0.22 × 0.15 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
7389 independent reflections
Radiation source: fine-focus sealed tube5223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scanθmax = 25.0°, θmin = 2.3°
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
h = 1211
Tmin = 0.935, Tmax = 0.970k = 1617
14942 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.070P]
where P = (Fo2 + 2Fc2)/3
7389 reflections(Δ/σ)max = 0.001
547 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
[Mn(C40H23NO6)(CH4O)(C3H7NO)]·C3H7NOγ = 110.761 (5)°
Mr = 846.77V = 2097.8 (2) Å3
Triclinic, P1Z = 2
a = 10.3336 (4) ÅMo Kα radiation
b = 14.3984 (10) ŵ = 0.38 mm1
c = 15.2649 (8) ÅT = 173 K
α = 90.673 (5)°0.22 × 0.15 × 0.08 mm
β = 98.120 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7389 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
5223 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.970Rint = 0.035
14942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.106H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
7389 reflectionsΔρmin = 0.34 e Å3
547 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1812 (2)0.42880 (17)0.38770 (16)0.0280 (6)
C20.2430 (2)0.45821 (18)0.47640 (16)0.0295 (6)
C30.2575 (2)0.55645 (18)0.50517 (16)0.0295 (6)
C40.2150 (2)0.61977 (18)0.44780 (16)0.0315 (6)
C50.1557 (2)0.58829 (18)0.35810 (16)0.0305 (6)
C60.1379 (2)0.49097 (18)0.33217 (16)0.0294 (6)
C70.0684 (2)0.43477 (19)0.24478 (18)0.0343 (6)
C80.1540 (2)0.33317 (19)0.33483 (17)0.0321 (6)
C90.1132 (3)0.65298 (18)0.29307 (17)0.0362 (6)
C100.1763 (3)0.6769 (2)0.2184 (2)0.0553 (8)
H100.25260.65700.21060.066*
C110.1286 (4)0.7299 (3)0.1548 (2)0.0726 (10)
H110.17300.74670.10380.087*
C120.0181 (4)0.7585 (3)0.1648 (2)0.0717 (10)
H120.01590.79310.12000.086*
C130.0429 (3)0.7369 (2)0.2397 (2)0.0614 (9)
H130.11850.75750.24750.074*
C140.0051 (3)0.6854 (2)0.3038 (2)0.0450 (7)
H140.03660.67190.35610.054*
C150.2338 (2)0.72254 (19)0.48178 (17)0.0364 (6)
C160.3170 (3)0.8053 (2)0.4445 (2)0.0497 (8)
H160.36070.79700.39580.060*
C170.3372 (3)0.8999 (2)0.4774 (2)0.0671 (10)
H170.39460.95630.45130.081*
C180.2739 (4)0.9128 (3)0.5484 (3)0.0723 (11)
H180.28890.97800.57160.087*
C190.1900 (3)0.8316 (3)0.5850 (2)0.0616 (9)
H190.14560.84020.63330.074*
C200.1696 (3)0.7372 (2)0.55206 (19)0.0452 (7)
H200.11060.68120.57780.054*
C210.3198 (2)0.59491 (18)0.59910 (16)0.0328 (6)
C220.4483 (3)0.6727 (2)0.61892 (19)0.0442 (7)
H220.49990.70040.57270.053*
C230.5009 (3)0.7097 (2)0.7056 (2)0.0580 (9)
H230.58890.76270.71870.070*
C240.4278 (3)0.6708 (3)0.7728 (2)0.0655 (10)
H240.46420.69750.83210.079*
C250.3019 (3)0.5932 (3)0.75458 (19)0.0620 (9)
H250.25150.56550.80130.074*
C260.2486 (3)0.5554 (2)0.66821 (18)0.0444 (7)
H260.16160.50130.65600.053*
C270.2915 (2)0.39208 (18)0.53592 (16)0.0323 (6)
C280.4247 (3)0.4253 (2)0.58625 (17)0.0414 (7)
H280.48640.49170.58250.050*
C290.4684 (3)0.3637 (3)0.6413 (2)0.0547 (8)
H290.55990.38780.67490.066*
C300.3815 (4)0.2679 (3)0.6483 (2)0.0644 (9)
H300.41160.22590.68700.077*
C310.2507 (3)0.2334 (2)0.5989 (2)0.0570 (8)
H310.19030.16670.60290.068*
C320.2056 (3)0.2947 (2)0.54328 (18)0.0414 (7)
H320.11430.26950.50960.050*
C330.0371 (2)0.26727 (18)0.18019 (16)0.0305 (6)
C340.1031 (2)0.22500 (18)0.14403 (16)0.0320 (6)
H340.17090.24380.16790.038*
C350.1440 (2)0.15485 (17)0.07257 (15)0.0280 (6)
C360.0431 (2)0.12884 (17)0.03781 (15)0.0276 (5)
H360.07080.07990.01030.033*
C370.0976 (2)0.17370 (17)0.07278 (15)0.0277 (6)
C380.1373 (2)0.24164 (17)0.14548 (16)0.0305 (6)
H380.23310.27050.17140.037*
C390.2107 (2)0.15265 (18)0.03247 (17)0.0328 (6)
C400.2964 (2)0.10917 (19)0.03119 (16)0.0323 (6)
C410.4282 (6)0.4761 (4)0.1133 (3)0.1265 (17)
H41A0.37740.49700.16350.190*
H41B0.44600.53260.08810.190*
H41C0.51750.42190.13360.190*
C420.2125 (5)0.5149 (3)0.0003 (3)0.1153 (17)
H42A0.16130.48070.03750.173*
H42B0.23240.56310.03640.173*
H42C0.15540.54990.04430.173*
C430.3851 (4)0.3475 (3)0.0270 (3)0.0763 (11)
H430.32650.32890.01750.092*
H90.69420.04470.19130.104 (13)*
C440.0833 (4)0.0247 (3)0.3879 (2)0.0824 (11)
H44A0.00120.03280.40310.124*
H44B0.16490.08480.40850.124*
H44C0.09600.03270.41650.124*
C450.1913 (4)0.0118 (3)0.2553 (3)0.0964 (14)
H45A0.17100.01050.19060.145*
H45B0.21600.04590.27230.145*
H45C0.26990.07310.27770.145*
C460.0539 (4)0.0119 (2)0.2437 (2)0.0569 (8)
H460.05890.02140.18140.068*
C470.5165 (4)0.0373 (4)0.2054 (2)0.1001 (15)
H47A0.42580.05120.16770.150*
H47B0.50210.07220.26000.150*
H47C0.56120.03450.22030.150*
Mn10.58074 (3)0.12182 (3)0.02265 (3)0.03688 (14)
N10.08109 (19)0.34133 (15)0.25275 (13)0.0325 (5)
N20.3446 (3)0.4419 (2)0.0459 (2)0.0818 (9)
N30.0691 (3)0.00866 (18)0.29286 (18)0.0579 (7)
O10.18705 (19)0.26302 (14)0.35369 (12)0.0471 (5)
O20.0113 (2)0.45931 (14)0.17947 (13)0.0501 (5)
O30.37364 (15)0.15721 (13)0.04385 (13)0.0479 (5)
O40.33606 (15)0.02934 (13)0.01469 (12)0.0414 (5)
O50.18580 (16)0.11786 (13)0.04591 (12)0.0411 (5)
O60.32789 (16)0.17261 (14)0.08006 (12)0.0472 (5)
O70.4975 (2)0.27984 (18)0.06437 (17)0.0812 (7)
O80.1625 (2)0.01978 (18)0.27139 (14)0.0717 (7)
O90.6035 (2)0.07047 (18)0.15961 (13)0.0672 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0258 (12)0.0296 (14)0.0282 (14)0.0102 (10)0.0027 (10)0.0042 (12)
C20.0263 (12)0.0312 (14)0.0290 (14)0.0081 (10)0.0036 (10)0.0030 (12)
C30.0262 (12)0.0315 (15)0.0276 (14)0.0073 (10)0.0024 (10)0.0033 (12)
C40.0300 (12)0.0298 (14)0.0321 (15)0.0078 (10)0.0046 (11)0.0056 (12)
C50.0304 (12)0.0315 (15)0.0307 (15)0.0127 (10)0.0047 (11)0.0010 (12)
C60.0291 (12)0.0348 (15)0.0245 (14)0.0130 (10)0.0011 (10)0.0040 (12)
C70.0314 (13)0.0394 (16)0.0329 (16)0.0156 (11)0.0007 (12)0.0050 (13)
C80.0288 (12)0.0369 (16)0.0313 (15)0.0137 (11)0.0027 (11)0.0037 (12)
C90.0403 (14)0.0312 (15)0.0353 (16)0.0123 (11)0.0026 (12)0.0030 (12)
C100.0662 (19)0.065 (2)0.048 (2)0.0356 (16)0.0188 (16)0.0125 (17)
C110.104 (3)0.083 (3)0.049 (2)0.050 (2)0.027 (2)0.030 (2)
C120.096 (3)0.073 (2)0.060 (2)0.048 (2)0.007 (2)0.027 (2)
C130.067 (2)0.063 (2)0.068 (2)0.0399 (17)0.0112 (18)0.0160 (19)
C140.0498 (16)0.0427 (17)0.0464 (18)0.0203 (13)0.0101 (14)0.0065 (14)
C150.0368 (14)0.0331 (15)0.0358 (16)0.0127 (11)0.0053 (12)0.0052 (13)
C160.0503 (16)0.0368 (18)0.056 (2)0.0110 (13)0.0011 (14)0.0014 (15)
C170.067 (2)0.0351 (19)0.080 (3)0.0049 (15)0.0164 (19)0.0017 (18)
C180.086 (2)0.046 (2)0.079 (3)0.0329 (19)0.029 (2)0.029 (2)
C190.071 (2)0.065 (2)0.055 (2)0.0421 (18)0.0106 (17)0.0245 (19)
C200.0442 (15)0.0467 (18)0.0454 (18)0.0208 (13)0.0015 (13)0.0105 (14)
C210.0300 (13)0.0360 (15)0.0303 (15)0.0118 (11)0.0011 (11)0.0070 (12)
C220.0343 (14)0.0458 (17)0.0446 (18)0.0080 (12)0.0012 (12)0.0048 (14)
C230.0452 (16)0.054 (2)0.056 (2)0.0046 (14)0.0165 (16)0.0162 (17)
C240.066 (2)0.082 (3)0.0372 (19)0.0219 (18)0.0160 (16)0.0257 (18)
C250.063 (2)0.087 (3)0.0307 (18)0.0214 (18)0.0060 (15)0.0059 (17)
C260.0367 (14)0.0503 (18)0.0375 (17)0.0065 (12)0.0032 (13)0.0064 (14)
C270.0356 (13)0.0368 (16)0.0270 (14)0.0160 (12)0.0051 (11)0.0002 (12)
C280.0381 (14)0.0527 (18)0.0354 (16)0.0197 (13)0.0029 (12)0.0027 (14)
C290.0478 (17)0.081 (3)0.0430 (19)0.0352 (17)0.0002 (14)0.0087 (18)
C300.076 (2)0.073 (3)0.062 (2)0.046 (2)0.0151 (19)0.027 (2)
C310.069 (2)0.0454 (19)0.061 (2)0.0227 (16)0.0175 (18)0.0149 (17)
C320.0447 (15)0.0403 (17)0.0383 (17)0.0147 (13)0.0048 (13)0.0011 (14)
C330.0296 (12)0.0334 (15)0.0266 (14)0.0119 (10)0.0022 (10)0.0098 (11)
C340.0270 (12)0.0373 (15)0.0340 (15)0.0148 (11)0.0042 (11)0.0038 (12)
C350.0246 (11)0.0297 (14)0.0286 (14)0.0105 (10)0.0010 (10)0.0016 (11)
C360.0287 (12)0.0276 (14)0.0266 (14)0.0122 (10)0.0009 (10)0.0046 (11)
C370.0261 (12)0.0278 (14)0.0302 (14)0.0123 (10)0.0011 (10)0.0024 (11)
C380.0223 (11)0.0345 (15)0.0315 (14)0.0101 (10)0.0050 (10)0.0060 (12)
C390.0291 (13)0.0301 (14)0.0399 (17)0.0128 (10)0.0025 (12)0.0074 (12)
C400.0251 (12)0.0361 (16)0.0328 (15)0.0090 (11)0.0006 (11)0.0017 (13)
C410.164 (5)0.112 (4)0.106 (4)0.061 (4)0.002 (4)0.025 (3)
C420.128 (4)0.083 (3)0.099 (4)0.005 (3)0.016 (3)0.001 (3)
C430.089 (3)0.068 (3)0.077 (3)0.028 (2)0.027 (2)0.017 (2)
C440.088 (3)0.081 (3)0.066 (3)0.032 (2)0.029 (2)0.005 (2)
C450.065 (2)0.096 (3)0.121 (4)0.018 (2)0.020 (2)0.015 (3)
C460.073 (2)0.053 (2)0.0404 (19)0.0244 (17)0.0085 (17)0.0015 (16)
C470.088 (3)0.189 (5)0.048 (2)0.080 (3)0.010 (2)0.012 (3)
Mn10.0253 (2)0.0441 (3)0.0413 (3)0.01468 (17)0.00087 (17)0.0110 (2)
N10.0328 (10)0.0340 (13)0.0305 (12)0.0162 (9)0.0056 (9)0.0091 (10)
N20.106 (2)0.060 (2)0.075 (2)0.0210 (19)0.025 (2)0.0152 (18)
N30.0600 (16)0.0473 (16)0.0619 (19)0.0190 (12)0.0040 (14)0.0054 (14)
O10.0644 (12)0.0431 (12)0.0405 (12)0.0321 (10)0.0030 (9)0.0059 (9)
O20.0646 (12)0.0518 (13)0.0349 (12)0.0310 (10)0.0147 (10)0.0076 (10)
O30.0230 (9)0.0464 (12)0.0722 (14)0.0157 (8)0.0057 (9)0.0159 (10)
O40.0288 (9)0.0406 (11)0.0478 (12)0.0083 (8)0.0046 (8)0.0147 (10)
O50.0382 (9)0.0550 (12)0.0345 (11)0.0243 (8)0.0007 (8)0.0114 (9)
O60.0272 (9)0.0648 (13)0.0489 (12)0.0218 (8)0.0074 (8)0.0269 (10)
O70.0730 (16)0.0705 (17)0.092 (2)0.0183 (13)0.0081 (14)0.0140 (15)
O80.0635 (14)0.0978 (19)0.0546 (15)0.0368 (13)0.0074 (11)0.0109 (13)
O90.0491 (12)0.1113 (19)0.0469 (13)0.0392 (12)0.0006 (10)0.0177 (13)
Geometric parameters (Å, º) top
C1—C61.384 (3)C31—C321.384 (4)
C1—C21.404 (3)C31—H310.9500
C1—C81.504 (3)C32—H320.9500
C2—C31.426 (3)C33—C381.382 (3)
C2—C271.488 (4)C33—C341.384 (3)
C3—C41.409 (3)C33—N11.434 (3)
C3—C211.498 (3)C34—C351.389 (3)
C4—C51.417 (3)C34—H340.9500
C4—C151.499 (3)C35—C361.392 (3)
C5—C61.392 (3)C35—C401.512 (3)
C5—C91.495 (4)C36—C371.386 (3)
C6—C71.497 (3)C36—H360.9500
C7—O21.207 (3)C37—C381.385 (3)
C7—N11.402 (3)C37—C391.512 (3)
C8—O11.201 (3)C38—H380.9500
C8—N11.397 (3)C39—O51.247 (3)
C9—C101.380 (4)C39—O61.256 (3)
C9—C141.382 (4)C39—Mn1i2.595 (2)
C10—C111.384 (4)C40—O41.243 (3)
C10—H100.9500C40—O31.259 (3)
C11—C121.371 (5)C41—N21.452 (5)
C11—H110.9500C41—H41A0.9800
C12—C131.370 (4)C41—H41B0.9800
C12—H120.9500C41—H41C0.9800
C13—C141.377 (4)C42—N21.467 (5)
C13—H130.9500C42—H42A0.9800
C14—H140.9500C42—H42B0.9800
C15—C161.383 (4)C42—H42C0.9800
C15—C201.390 (3)C43—O71.274 (4)
C16—C171.379 (4)C43—N21.320 (4)
C16—H160.9500C43—H430.9500
C17—C181.386 (5)C44—N31.445 (4)
C17—H170.9500C44—H44A0.9800
C18—C191.366 (5)C44—H44B0.9800
C18—H180.9500C44—H44C0.9800
C19—C201.376 (4)C45—N31.445 (4)
C19—H190.9500C45—H45A0.9800
C20—H200.9500C45—H45B0.9800
C21—C261.384 (3)C45—H45C0.9800
C21—C221.390 (3)C46—O81.223 (3)
C22—C231.380 (4)C46—N31.314 (4)
C22—H220.9500C46—H460.9500
C23—C241.368 (4)C47—O91.414 (3)
C23—H230.9500C47—H47A0.9800
C24—C251.370 (4)C47—H47B0.9800
C24—H240.9500C47—H47C0.9800
C25—C261.380 (4)Mn1—O32.1145 (16)
C25—H250.9500Mn1—O4ii2.1545 (19)
C26—H260.9500Mn1—O92.162 (2)
C27—C321.384 (3)Mn1—O6iii2.1829 (16)
C27—C281.392 (3)Mn1—O72.264 (2)
C28—C291.376 (4)Mn1—O5iii2.3685 (16)
C28—H280.9500Mn1—C39iii2.595 (2)
C29—C301.368 (4)O4—Mn1ii2.1545 (19)
C29—H290.9500O5—Mn1i2.3685 (16)
C30—C311.366 (4)O6—Mn1i2.1829 (16)
C30—H300.9500O9—H90.9339
C6—C1—C2122.3 (2)C33—C34—C35119.6 (2)
C6—C1—C8108.0 (2)C33—C34—H34120.2
C2—C1—C8129.7 (2)C35—C34—H34120.2
C1—C2—C3115.2 (2)C34—C35—C36119.4 (2)
C1—C2—C27122.4 (2)C34—C35—C40120.33 (19)
C3—C2—C27122.3 (2)C36—C35—C40120.2 (2)
C4—C3—C2122.1 (2)C37—C36—C35120.6 (2)
C4—C3—C21118.2 (2)C37—C36—H36119.7
C2—C3—C21119.8 (2)C35—C36—H36119.7
C3—C4—C5121.1 (2)C38—C37—C36119.66 (19)
C3—C4—C15119.6 (2)C38—C37—C39118.43 (19)
C5—C4—C15119.3 (2)C36—C37—C39121.9 (2)
C6—C5—C4115.9 (2)C33—C38—C37119.7 (2)
C6—C5—C9120.3 (2)C33—C38—H38120.1
C4—C5—C9123.8 (2)C37—C38—H38120.1
C1—C6—C5123.3 (2)O5—C39—O6122.6 (2)
C1—C6—C7108.6 (2)O5—C39—C37119.7 (2)
C5—C6—C7128.0 (2)O6—C39—C37117.7 (2)
O2—C7—N1124.5 (2)O5—C39—Mn1i65.55 (12)
O2—C7—C6130.4 (2)O6—C39—Mn1i57.05 (11)
N1—C7—C6105.0 (2)C37—C39—Mn1i174.74 (18)
O1—C8—N1124.3 (2)O4—C40—O3124.5 (2)
O1—C8—C1130.5 (2)O4—C40—C35118.6 (2)
N1—C8—C1105.2 (2)O3—C40—C35116.8 (2)
C10—C9—C14118.7 (3)N2—C41—H41A109.5
C10—C9—C5120.4 (2)N2—C41—H41B109.5
C14—C9—C5120.9 (2)H41A—C41—H41B109.5
C9—C10—C11120.0 (3)N2—C41—H41C109.5
C9—C10—H10120.0H41A—C41—H41C109.5
C11—C10—H10120.0H41B—C41—H41C109.5
C12—C11—C10120.7 (3)N2—C42—H42A109.5
C12—C11—H11119.6N2—C42—H42B109.5
C10—C11—H11119.6H42A—C42—H42B109.5
C13—C12—C11119.5 (3)N2—C42—H42C109.5
C13—C12—H12120.2H42A—C42—H42C109.5
C11—C12—H12120.2H42B—C42—H42C109.5
C12—C13—C14120.1 (3)O7—C43—N2124.3 (4)
C12—C13—H13119.9O7—C43—H43117.8
C14—C13—H13119.9N2—C43—H43117.8
C13—C14—C9120.9 (3)N3—C44—H44A109.5
C13—C14—H14119.5N3—C44—H44B109.5
C9—C14—H14119.5H44A—C44—H44B109.5
C16—C15—C20118.3 (2)N3—C44—H44C109.5
C16—C15—C4120.7 (2)H44A—C44—H44C109.5
C20—C15—C4121.0 (2)H44B—C44—H44C109.5
C17—C16—C15120.7 (3)N3—C45—H45A109.5
C17—C16—H16119.7N3—C45—H45B109.5
C15—C16—H16119.7H45A—C45—H45B109.5
C16—C17—C18120.1 (3)N3—C45—H45C109.5
C16—C17—H17119.9H45A—C45—H45C109.5
C18—C17—H17119.9H45B—C45—H45C109.5
C19—C18—C17119.7 (3)O8—C46—N3125.4 (3)
C19—C18—H18120.1O8—C46—H46117.3
C17—C18—H18120.1N3—C46—H46117.3
C18—C19—C20120.1 (3)O9—C47—H47A109.5
C18—C19—H19119.9O9—C47—H47B109.5
C20—C19—H19119.9H47A—C47—H47B109.5
C19—C20—C15121.1 (3)O9—C47—H47C109.5
C19—C20—H20119.4H47A—C47—H47C109.5
C15—C20—H20119.4H47B—C47—H47C109.5
C26—C21—C22118.3 (2)O3—Mn1—O4ii97.45 (7)
C26—C21—C3120.5 (2)O3—Mn1—O9111.99 (7)
C22—C21—C3121.1 (2)O4ii—Mn1—O990.86 (8)
C23—C22—C21120.1 (3)O3—Mn1—O6iii99.95 (7)
C23—C22—H22120.0O4ii—Mn1—O6iii91.10 (7)
C21—C22—H22120.0O9—Mn1—O6iii147.45 (7)
C24—C23—C22120.7 (3)O3—Mn1—O783.79 (8)
C24—C23—H23119.7O4ii—Mn1—O7178.70 (8)
C22—C23—H23119.7O9—Mn1—O788.30 (9)
C23—C24—C25120.0 (3)O6iii—Mn1—O789.07 (8)
C23—C24—H24120.0O3—Mn1—O5iii157.22 (6)
C25—C24—H24120.0O4ii—Mn1—O5iii87.08 (6)
C24—C25—C26119.8 (3)O9—Mn1—O5iii90.16 (7)
C24—C25—H25120.1O6iii—Mn1—O5iii57.52 (6)
C26—C25—H25120.1O7—Mn1—O5iii91.92 (8)
C25—C26—C21121.1 (2)O3—Mn1—C39iii128.77 (8)
C25—C26—H26119.5O4ii—Mn1—C39iii88.64 (7)
C21—C26—H26119.5O9—Mn1—C39iii118.76 (8)
C32—C27—C28117.4 (3)O6iii—Mn1—C39iii28.87 (7)
C32—C27—C2121.1 (2)O7—Mn1—C39iii90.89 (8)
C28—C27—C2121.5 (2)O5iii—Mn1—C39iii28.65 (6)
C29—C28—C27121.1 (3)C8—N1—C7112.8 (2)
C29—C28—H28119.5C8—N1—C33124.2 (2)
C27—C28—H28119.5C7—N1—C33122.7 (2)
C30—C29—C28120.6 (3)C43—N2—C41121.2 (4)
C30—C29—H29119.7C43—N2—C42120.8 (4)
C28—C29—H29119.7C41—N2—C42118.0 (4)
C31—C30—C29119.3 (3)C46—N3—C44119.7 (3)
C31—C30—H30120.3C46—N3—C45122.0 (3)
C29—C30—H30120.3C44—N3—C45118.2 (3)
C30—C31—C32120.6 (3)C40—O3—Mn1124.13 (16)
C30—C31—H31119.7C40—O4—Mn1ii130.13 (17)
C32—C31—H31119.7C39—O5—Mn1i85.80 (13)
C31—C32—C27121.0 (3)C39—O6—Mn1i94.08 (14)
C31—C32—H32119.5C43—O7—Mn1124.8 (2)
C27—C32—H32119.5C47—O9—Mn1131.5 (2)
C38—C33—C34120.9 (2)C47—O9—H9107.8
C38—C33—N1118.92 (19)Mn1—O9—H9117.2
C34—C33—N1120.13 (19)
C6—C1—C2—C30.2 (3)C2—C27—C28—C29179.8 (2)
C8—C1—C2—C3177.9 (2)C27—C28—C29—C300.3 (4)
C6—C1—C2—C27179.13 (19)C28—C29—C30—C310.8 (5)
C8—C1—C2—C271.5 (3)C29—C30—C31—C320.8 (5)
C1—C2—C3—C41.2 (3)C30—C31—C32—C270.2 (4)
C27—C2—C3—C4178.18 (19)C28—C27—C32—C310.3 (4)
C1—C2—C3—C21178.91 (18)C2—C27—C32—C31179.8 (2)
C27—C2—C3—C211.8 (3)C38—C33—C34—C350.8 (4)
C2—C3—C4—C50.1 (3)N1—C33—C34—C35178.7 (2)
C21—C3—C4—C5179.79 (19)C33—C34—C35—C360.6 (4)
C2—C3—C4—C15179.6 (2)C33—C34—C35—C40178.9 (2)
C21—C3—C4—C150.3 (3)C34—C35—C36—C371.3 (4)
C3—C4—C5—C62.3 (3)C40—C35—C36—C37177.0 (2)
C15—C4—C5—C6178.21 (19)C35—C36—C37—C383.0 (4)
C3—C4—C5—C9177.74 (19)C35—C36—C37—C39175.5 (2)
C15—C4—C5—C91.7 (3)C34—C33—C38—C370.9 (4)
C2—C1—C6—C52.2 (3)N1—C33—C38—C37177.0 (2)
C8—C1—C6—C5175.9 (2)C36—C37—C38—C332.7 (4)
C2—C1—C6—C7176.29 (19)C39—C37—C38—C33175.8 (2)
C8—C1—C6—C75.6 (2)C38—C37—C39—O5158.0 (2)
C4—C5—C6—C13.4 (3)C36—C37—C39—O520.5 (4)
C9—C5—C6—C1176.7 (2)C38—C37—C39—O621.1 (4)
C4—C5—C6—C7174.8 (2)C36—C37—C39—O6160.4 (2)
C9—C5—C6—C75.1 (3)C38—C37—C39—Mn1i24 (2)
C1—C6—C7—O2176.7 (2)C36—C37—C39—Mn1i157.4 (18)
C5—C6—C7—O21.6 (4)C34—C35—C40—O4160.5 (2)
C1—C6—C7—N12.8 (2)C36—C35—C40—O421.2 (4)
C5—C6—C7—N1178.9 (2)C34—C35—C40—O321.6 (4)
C6—C1—C8—O1172.0 (2)C36—C35—C40—O3156.7 (2)
C2—C1—C8—O15.9 (4)O1—C8—N1—C7173.8 (2)
C6—C1—C8—N16.4 (2)C1—C8—N1—C74.8 (2)
C2—C1—C8—N1175.7 (2)O1—C8—N1—C330.4 (4)
C6—C5—C9—C1061.9 (3)C1—C8—N1—C33178.11 (18)
C4—C5—C9—C10118.2 (3)O2—C7—N1—C8179.0 (2)
C6—C5—C9—C14114.5 (3)C6—C7—N1—C81.5 (2)
C4—C5—C9—C1465.4 (3)O2—C7—N1—C335.5 (3)
C14—C9—C10—C111.8 (4)C6—C7—N1—C33174.95 (18)
C5—C9—C10—C11174.7 (3)C38—C33—N1—C859.7 (3)
C9—C10—C11—C120.5 (5)C34—C33—N1—C8122.4 (3)
C10—C11—C12—C131.9 (6)C38—C33—N1—C7113.0 (3)
C11—C12—C13—C141.1 (5)C34—C33—N1—C764.9 (3)
C12—C13—C14—C91.3 (5)O7—C43—N2—C410.2 (6)
C10—C9—C14—C132.7 (4)O7—C43—N2—C42179.3 (3)
C5—C9—C14—C13173.8 (3)O8—C46—N3—C440.5 (5)
C3—C4—C15—C16119.3 (3)O8—C46—N3—C45176.9 (3)
C5—C4—C15—C1660.1 (3)O4—C40—O3—Mn17.8 (4)
C3—C4—C15—C2059.9 (3)C35—C40—O3—Mn1169.92 (15)
C5—C4—C15—C20120.6 (3)O4ii—Mn1—O3—C4056.7 (2)
C20—C15—C16—C171.0 (4)O9—Mn1—O3—C4037.3 (2)
C4—C15—C16—C17178.3 (3)O6iii—Mn1—O3—C40149.1 (2)
C15—C16—C17—C180.0 (5)O7—Mn1—O3—C40122.9 (2)
C16—C17—C18—C190.9 (5)O5iii—Mn1—O3—C40156.97 (19)
C17—C18—C19—C200.7 (5)C39iii—Mn1—O3—C40150.93 (19)
C18—C19—C20—C150.3 (5)O3—C40—O4—Mn1ii91.2 (3)
C16—C15—C20—C191.2 (4)C35—C40—O4—Mn1ii91.1 (2)
C4—C15—C20—C19178.1 (3)O6—C39—O5—Mn1i1.2 (3)
C4—C3—C21—C26111.6 (3)C37—C39—O5—Mn1i179.8 (2)
C2—C3—C21—C2668.4 (3)O5—C39—O6—Mn1i1.3 (3)
C4—C3—C21—C2266.6 (3)C37—C39—O6—Mn1i179.67 (19)
C2—C3—C21—C22113.3 (3)N2—C43—O7—Mn1172.9 (2)
C26—C21—C22—C231.0 (4)O3—Mn1—O7—C4317.8 (3)
C3—C21—C22—C23177.3 (3)O4ii—Mn1—O7—C43180 (100)
C21—C22—C23—C240.2 (5)O9—Mn1—O7—C43130.2 (3)
C22—C23—C24—C251.1 (5)O6iii—Mn1—O7—C4382.3 (3)
C23—C24—C25—C260.8 (5)O5iii—Mn1—O7—C43139.7 (3)
C24—C25—C26—C210.4 (5)C39iii—Mn1—O7—C43111.1 (3)
C22—C21—C26—C251.3 (4)O3—Mn1—O9—C4715.3 (4)
C3—C21—C26—C25177.0 (3)O4ii—Mn1—O9—C4783.1 (3)
C1—C2—C27—C3249.3 (3)O6iii—Mn1—O9—C47176.5 (3)
C3—C2—C27—C32131.4 (2)O7—Mn1—O9—C4797.9 (3)
C1—C2—C27—C28130.6 (2)O5iii—Mn1—O9—C47170.2 (3)
C3—C2—C27—C2848.7 (3)C39iii—Mn1—O9—C47172.0 (3)
C32—C27—C28—C290.3 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O8ii0.931.712.617 (3)163
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C40H23NO6)(CH4O)(C3H7NO)]·C3H7NO
Mr846.77
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.3336 (4), 14.3984 (10), 15.2649 (8)
α, β, γ (°)90.673 (5), 98.120 (4), 110.761 (5)
V3)2097.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.22 × 0.15 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionGaussian
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.935, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
14942, 7389, 5223
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.106, 1.04
No. of reflections7389
No. of parameters547
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.34

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP in SHELXL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O32.1145 (16)Mn1—O6ii2.1829 (16)
Mn1—O4i2.1545 (19)Mn1—O72.264 (2)
Mn1—O92.162 (2)Mn1—O5ii2.3685 (16)
O3—Mn1—O4i97.45 (7)O9—Mn1—O788.30 (9)
O3—Mn1—O9111.99 (7)O6ii—Mn1—O789.07 (8)
O4i—Mn1—O990.86 (8)O3—Mn1—O5ii157.22 (6)
O3—Mn1—O6ii99.95 (7)O4i—Mn1—O5ii87.08 (6)
O4i—Mn1—O6ii91.10 (7)O9—Mn1—O5ii90.16 (7)
O9—Mn1—O6ii147.45 (7)O6ii—Mn1—O5ii57.52 (6)
O3—Mn1—O783.79 (8)O7—Mn1—O5ii91.92 (8)
O4i—Mn1—O7178.70 (8)
Symmetry codes: (i) x1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O8i0.931.712.617 (3)163.4
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds